1
|
Chen L, Lei Y, Yang Y, Huang J, Zhang W, Hoong Ng K, Lai Y. Metal organic framework-assisted copper-modified titania (Cu/TiO 2) with abundant exposed active sites and highly accessible pore channels for an enhanced photo-generation of hydrogen. J Colloid Interface Sci 2025; 677:647-656. [PMID: 39159519 DOI: 10.1016/j.jcis.2024.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Metal-doping is a common strategy for establishing active sites on photocatalyst, but appropriately exposing them for maximized atomic utilization remains a great challenge in photocatalytic research. Herein, we propose a metal organic framework (MOF)-assisted approach to synthesis copper-modified titania (Cu-TiO2/Cu) photocatalyst with homogenously distributed and highly accessible active sites in its matrix. Significantly, an MOF precursor, namely NH2-MIL-125, with co-chelation of titania (Ti) and copper (Cu) was subjected to mild calcination, subsequently results in Cu-modified TiO2 with highly accessible channels to its inner surface. These channels provide not only a large reactive surface (>400 m2 g-1); they also enable facile modifying route for the pre-deposited Cu in prior to photoreaction. Specifically, NH3 treatment was applied to partially reduce deposited Cu ions (Cu+ and Cu2+) into Cu nanoparticles, where their interplays realize improved optical properties and charge separation during photoreactions. Furthermore, the NH3-induced Cu nanoparticles could also serve as the adsorptive site for H+, thereby enabling 5629 μmol h-1 g-1 H2 generation over the optimum photocatalyst of Cu20/TiO2/Cu500. Such performance is associated to 35.44 and 1.71-fold improvements compared to pure TiO2 (Cu0/TiO2) and untreated Cu-ion modified TiO2 (Cu20/TiO2), respectively. This work offers a new synthetic strategy for obtaining photocatalyst with evenly distributed and highly accessible active sites, thus improving the commensurability of photocatalytic H2 generation from the industrial perspective.
Collapse
Affiliation(s)
- Lejun Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
| | - Yonggang Lei
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, PR China
| | - Yue Yang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| | - Weiying Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| |
Collapse
|
2
|
Hao P, Shi R, Wang X, Zhang J, Li B, Wang J, Liu B, Liu Y, Qiao X, Wang Z. Efficient tetracycline degradation using carbon quantum dot modified TiO 2@LaFeO 3 hollow core shell photocatalysts. Sci Rep 2024; 14:27057. [PMID: 39511277 PMCID: PMC11543689 DOI: 10.1038/s41598-024-78782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Efficient harnessing of solar energy presents a significant challenge in environmental cleanup efforts. This study develops a highly effective carbon quantum dots-modified hollow core-shell TiO2-LaFeO3 heterojunction photocatalyst (CDs-TLFO). Structural analysis confirmed that nanosheets are loaded with CQDs, forming a hollow core-shell structure with intimate interconnection. Photocatalytic experiments reveal that CDs-TLFO degrads tetracycline hydrochloride (TC) 2.02 times faster than TLFO alone, and significantly outperformes h-TiO2 and LaFeO3 (11.28 and 2.78 times, respectively). This enhancement is attributed to CQDs acting as electron acceptors with upconversion properties, enhancing the separation of e--h+ pairs and boosting visible light absorption. Integration of CQDs onto the TLFO surface creates numerous active sites and enhances visible light absorption. SEM and TEM tests confirm that the catalyst has a hollow core-shell structure. ESR tests and radical trapping experiments indicate that the high degradation efficiency of the catalyst mainly owns to the synergistic effect of hydroxyl radicals (·OH) and superoxide radicals (·O2-). The reusability and stability of the catalysts are investigated, potential TC degradation pathways are proposed as well as the photocatalytic reaction mechanism is revealed. This research introduces promising avenues for environmental cleanup and offers a straightforward, energy-efficient, and environmentally friendly method for producing CDs-TLFO heterojunction materials with superior photocatalytic capabilities.
Collapse
Affiliation(s)
- Pengcheng Hao
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Rui Shi
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Xuanhang Wang
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Juan Zhang
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Bo Li
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Jing Wang
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Bo Liu
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Yayuan Liu
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Xin Qiao
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Zhongzhi Wang
- Baotou Research Institute of Rare Earths, Baotou, 014030, China.
| |
Collapse
|
3
|
Tang C, Rao H, Li S, She P, Qin JS. A Review of Metal-Organic Frameworks Derived Hollow-Structured Photocatalysts: Synthesis and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405533. [PMID: 39212632 DOI: 10.1002/smll.202405533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis is a most important approach to addressing global energy shortages and environmental issues due to its environmentally friendly and sustainable properties. The key to realizing efficient photocatalysis relies on developing appropriate catalysts with high efficiency and chemical stability. Among various photocatalysts, Metal-organic frameworks (MOFs)-derived hollow-structured materials have drawn increased attention in photocatalysis based on advantages like more active sites, strong light absorption, efficient transfer of pho-induced charges, excellent stability, high electrical conductivity, and better biocompatibility. Specifically, MOFs-derived hollow-structured materials are widely utilized in photocatalytic CO2 reduction (CO2RR), hydrogen evolution (HER), nitrogen fixation (NRR), degradation, and other reactions. This review starts with the development story of MOFs, the commonly adopted synthesis strategies of MOFs-derived hollow materials, and the latest research progress in various photocatalytic applications are also introduced in detail. Ultimately, the challenges of MOFs-derived hollow-structured materials in practical photocatalytic applications are also prospected. This review holds great potential for developing more applicable and efficient MOFs-derived hollow-structured photocatalysts.
Collapse
Affiliation(s)
- Chenxi Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
4
|
Liu H, Wang Y, Xue X, Liu Y, Chen P, Wang P, Yin SF. Local weak hydrogen bonds induced dipole-dipole interactions in polymer for enhancing photocatalytic oxidation. J Colloid Interface Sci 2024; 669:393-401. [PMID: 38718592 DOI: 10.1016/j.jcis.2024.04.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
Functionalizing organic polymers is an effective strategy for enhancing their photocatalytic performance. However, this approach is currently limited by specific motifs, complex preparation methods, and an unclear electron transfer mechanism. Here, we present a meticulously designed structure of perylene diimide connected with poly (barbituric acid trimer) through self-assembled hydrogen bonding. In particular, the local chemical environment of the two components is adjusted by hydrogen bond-induced dipole-dipole interactions, leading to the emergence of a significant inherent electric field. Additionally, the formation of hydrogen bonds provides electronic pathways that facilitate charge transfer from perylene to adjacent units. Moreover, the distinctive electronic structure enhances polarity transfer and improves activation and adsorption capabilities for reactive molecules. Ultimately, B-PDI exhibits outstanding oxidation rates for benzylamine to N-benzylidene-benzylamine (10.03 mmol g-1h-1) and selectivity (>99.99 %). Our work offers a widely popular approach for enhancing the photocatalytic activity of organic semiconductor materials by constructing hydrogen bonds in heterogeneous molecules.
Collapse
Affiliation(s)
- Hongyan Liu
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yi Wang
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xiao Xue
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yuhui Liu
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Peng Chen
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Peng Wang
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China.
| | - Shuang-Feng Yin
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, P.R. China; Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P R China.
| |
Collapse
|
5
|
Jiang X, Huang Z, Liu Z, Wang S, Qiu Y, Su X, Wang Y, Xu H. MOF-Derived Oxygen-Deficient Titania-Mediated Photodynamic/Photothermal-Enhanced Immunotherapy for Tumor Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34591-34606. [PMID: 38917296 DOI: 10.1021/acsami.4c04985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Immunotherapy has emerged as a revolutionizing therapeutic modality for cancer. However, its efficacy has been largely limited by a weak immune response and an immunosuppressive tumor microenvironment. Herein, we report a metal-organic framework (MOF)-derived titanium oxide nanoparticle (MCTx NP) as an immune booster that can greatly improve the immunotherapy efficacy by inducing "immunogenic cell death" (ICD) and remodeling the tumor microenvironment. The NPs, inheriting the characteristic structure of MIL-125 and enriched with oxygen vacancies (OVs), demonstrate both high photothermal conversion efficiency and a reactive oxygen species (ROS) generation yield upon near-infrared (NIR) activation. Moreover, the NPs can release O2 and reduce glutathione (GSH) in the tumor environment, showcasing their potential to reverse the immunosuppressive microenvironment. In vitro/vivo results demonstrate that MCTx NPs directly kill tumor cells and effectively eliminate primary tumors by exerting dual photodynamic/photothermal therapy under a single NIR irritation. At the same time, MCTx NPs augment the PD-L1 blockade efficacy by potently inducing ICDs and reversing the immunosuppressive tumor microenvironment, including promoting dendritic cell (DC) maturation, decreasing regulatory T cells (Tregs)' infiltration, and increasing cytotoxic T lymphocytes (CTLs) and helper T cells (Ths), resulting in effective distant tumor suppression. This work highlights MCTx NP-mediated photodynamic- and photothermal-enhanced immunotherapy as an effective strategy for tumor treatment.
Collapse
Affiliation(s)
- Xin Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Zhengjie Huang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Zhuqing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Sitong Wang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Xiaolian Su
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Yitong Wang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - He Xu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, People's Republic of China
| |
Collapse
|
6
|
Shi J, Zhao T, Yang T, Pu K, Shi J, Zhou A, Li H, Wang S, Xue J. Z-scheme heterojunction photocatalyst formed by MOF-derived C-TiO 2 and Bi 2WO 6 for enhancing degradation of oxytetracycline: Mechanistic insights and toxicity evaluation in the presence of a single active species. J Colloid Interface Sci 2024; 665:41-59. [PMID: 38513407 DOI: 10.1016/j.jcis.2024.03.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
In the work, Bi2WO6/C-TiO2 photocatalyst was successfully synthesized for the first time by loading narrow bandgap semiconductor Bi2WO6 on MOF-derived carboxyl modified TiO2. The phase structure, morphology, photoelectric properties, surface chemical states and photocatalytic performance of the prepared photocatalysts were systematically investigated using various characterization tools. The degradation efficiency of oxytetracycline by 6BT Z-scheme heterojunction photocatalyst under visible light could reach 93.6 % within 100 min, which was related to the high light harvesting and effective separation and transfer of photo-generated carriers. Furthermore, the effects of various environmental factors in actual wastewater were further investigated, and the results showed that 6BT exhibited good adaptability, durability and resistance to interference. Unlike most works, the degradation system with a different single active species were designed and constructed based on their formation mechanism. In addition, for the first time, a positive study was conducted on the priority attack sites, intermediate products, and degradation pathways for the photocatalytic degradation of oxytetracycline by a single active species through HPLC-MS and Fukui index calculations. The toxicity changes of intermediate products produced in three different single active species oxidation systems were evaluated using toxicity assessment software tools (T.E.S.T.), Escherichia coli growth experiments, and wheat growth experiments. Among them, the intermediate products formed through O2- oxidation had the lowest toxicity and the main active sites it attacked were the 20C, 38O, 18C, 41O, and 55O atoms with high f+ values in the oxytetracycline molecular structure. This work provided the insight into the role of each active species in the degradation of antibiotics and offered new ideas for the design and synthesis of efficient and eco-friendly photocatalysts.
Collapse
Affiliation(s)
- Jianhui Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China.
| | - Ting Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Tiantian Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Kaikai Pu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jiating Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jinbo Xue
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| |
Collapse
|
7
|
Dhakshinamoorthy A, Li Z, Yang S, Garcia H. Metal-organic framework heterojunctions for photocatalysis. Chem Soc Rev 2024; 53:3002-3035. [PMID: 38353930 DOI: 10.1039/d3cs00205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heterojunctions combining two photocatalysts of staggered conduction and valence band energy levels can increase the photocatalytic efficiency compared to their individual components. This activity enhancement is due to the minimization of undesirable charge recombination by the occurrence of carrier migration through the heterojunction interface with separated electrons and holes on the reducing and oxidizing junction component, respectively. Metal-organic frameworks (MOFs) are currently among the most researched photocatalysts due to their tunable light absorption, facile charge separation, large surface area and porosity. The present review summarizes the current state-of-the-art in MOF-based heterojunctions, providing critical comments on the construction of these heterostructures. Besides including examples showing the better performance of MOF heterojunctions for three important photocatalytic processes, such as hydrogen evolution reaction, CO2 photoreduction and dye decolorization, the focus of this review is on describing synthetic procedures to form heterojunctions with MOFs and on discussing the experimental techniques that provide evidence for the operation of charge migration between the MOF and the other component. Special attention has been paid to the design of rational MOF heterojunctions with small particle size and controlled morphology for an appropriate interfacial contact. The final section summarizes the achievements of the field and provides our views on future developments.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
- School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Sihai Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Hermenegildo Garcia
- Departamento de Química/Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
8
|
Iniyan S, Ren J, Deshmukh S, Rajeswaran K, Jegan G, Hou H, Suryanarayanan V, Murugadoss V, Kathiresan M, Xu BB, Guo Z. An Overview of Metal-organic Framework Based Electrocatalysts: Design and Synthesis for Electrochemical Hydrogen Evolution, Oxygen Evolution, and Carbon Dioxide Reduction Reactions. CHEM REC 2023:e202300317. [PMID: 38054611 DOI: 10.1002/tcr.202300317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Due to the increasing global energy demands, scarce fossil fuel supplies, and environmental issues, the pursued goals of energy technologies are being sustainable, more efficient, accessible, and produce near zero greenhouse gas emissions. Electrochemical water splitting is considered as a highly viable and eco-friendly energy technology. Further, electrochemical carbon dioxide (CO2 ) reduction reaction (CO2 RR) is a cleaner strategy for CO2 utilization and conversion to stable energy (fuels). One of the critical issues in these cleaner technologies is the development of efficient and economical electrocatalyst. Among various materials, metal-organic frameworks (MOFs) are becoming increasingly popular because of their structural tunability, such as pre- and post- synthetic modifications, flexibility in ligand design and its functional groups, and incorporation of different metal nodes, that allows for the design of suitable MOFs with desired quality required for each process. In this review, the design of MOF was discussed for specific process together with different synthetic methods and their effects on the MOF properties. The MOFs as electrocatalysts were highlighted with their performances from the aspects of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical CO2 RR. Finally, the challenges and opportunities in this field are discussed.
Collapse
Affiliation(s)
- S Iniyan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Swapnil Deshmukh
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
- DKTE Society's Textile and Engineering an Autonomous Institute, Ichalkaranji, 416115, India
| | - K Rajeswaran
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - G Jegan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Hua Hou
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Vembu Suryanarayanan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Vignesh Murugadoss
- Membrane and Separation Technology Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, 700032, India
| | - Murugavel Kathiresan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| |
Collapse
|
9
|
Su L, Liu X, Xia W, Wu B, Li C, Xu B, Yang B, Xia R, Zhou J, Qian J, Miao L. Simultaneous photothermal and photocatalytic MOF- derived C/TiO 2 composites for high-efficiency solar driven purification of sewage. J Colloid Interface Sci 2023; 650:613-621. [PMID: 37437441 DOI: 10.1016/j.jcis.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Solar-driven water evaporation is a promising technology of freshwater production to address the water scarcity. However, the photothermal material and the distilled water would be contaminated in the evaporation of wastewater including organic pollutants. In this work, MOF-derived C/TiO2 composites (carbonized UiO-66-NH2 (Ti)) with simultaneous photothermal and photocatalytic functions are designed for producing freshwater from sewage. With advantageous features of porous structure with large specific area, excellent sunlight absorption and super-hydrophilicity, the carbonized UiO-66-NH2 (Ti) layer exhibits high water evaporation efficiency of 94% under 1.0 sun irradiation. Meanwhile, the layer can simultaneously decompose the organic pollutants with degradation efficiency of 92.7% in the underlying water during solar-driven water evaporation. This bifunctional material will provide a new approach for solar-driven water evaporation and photocatalytic degradation of organic pollutant synergistically.
Collapse
Affiliation(s)
- Lifen Su
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China; School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Xiaoyu Liu
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Wei Xia
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Bin Wu
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Changjiang Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Bo Xu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Bin Yang
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ru Xia
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Jianhua Zhou
- Guangxi Key Laboratory of Information Materials, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jiasheng Qian
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Lei Miao
- Guangxi Key Laboratory for Relativity Astrophysics, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Wu Y, Zhong W, Wang X, Wu W, Muddassir M, Daniel O, Raj Jayswal M, Prakash O, Dai Z, Ma A, Pan Y. New Transition Metal Coordination Polymers Derived from 2-(3,5-Dicarboxyphenyl)-6-carboxybenzimidazole as Photocatalysts for Dye and Antibiotic Decomposition. Molecules 2023; 28:7318. [PMID: 37959737 PMCID: PMC10648955 DOI: 10.3390/molecules28217318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Coordination polymers (CPs) are an assorted class of coordination complexes that are gaining attention for the safe and sustainable removal of organic dyes from wastewater discharge by either adsorption or photocatalytic degradation. Herein, three different coordination polymers with compositions [Ni(HL)(H2O)2·1.9H2O] (1), [Mn3(HL)(L)(μ3-OH)(H2O)(phen)2·2H2O] (2), and [Cd(HL)4(H2O)]·H2O (3) (H3L = 2-(3,5-dicarboxyphenyl)-6-carboxybenzimidazole; phen = 1,10-phenanthroline) have been synthesized and characterized spectroscopically and by single crystal X-ray diffraction. Single crystal X-ray diffraction results indicated that 1 forms a 2D layer-like framework, while 2 exhibits a 3-connected net with the Schläfli symbol of (44.6), and 3 displays a 3D supramolecular network in which two adjacent 2D layers are held by π···π interactions. All three compounds have been used as photocatalysts to catalyze the photodegradation of antibiotic dinitrozole (DTZ) and rhodamine B (RhB). The photocatalytic results suggested that the Mn-based CP 2 exhibited better photodecomposition of DTZ (91.1%) and RhB (95.0%) than the other two CPs in the time span of 45 min. The observed photocatalytic mechanisms have been addressed using Hirshfeld surface analyses.
Collapse
Affiliation(s)
- Yu Wu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Wenxu Zhong
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xin Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Weiping Wu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Mohd. Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Omoding Daniel
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India; (O.D.); (M.R.J.)
| | - Madhav Raj Jayswal
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India; (O.D.); (M.R.J.)
| | - Om Prakash
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India; (O.D.); (M.R.J.)
| | - Zhong Dai
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Aiqing Ma
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| |
Collapse
|
11
|
Adenuga DO, Tichapondwa SM, Chirwa EMN. Influence of wastewater matrix on the visible light degradation of phenol using AgCl/Bi 24O 31Cl 10 photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98922-98933. [PMID: 36322360 DOI: 10.1007/s11356-022-23872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
A significant amount of research has been conducted on the development and application of photocatalytic materials for the visible light degradation of organic pollutants in wastewater. However, most pollutant degradation studies are conducted using simulated wastewater often prepared using DI water. This is far removed from the realities of environmentally relevant water systems. It is therefore important to investigate the activity of these semiconductor materials with real water samples. In this study, the photocatalytic activity of the photocatalyst was investigated in the secondary effluent of a wastewater treatment plant (WWTP) in Pretoria, South Africa, for the degradation of phenol under visible light irradiation. The experimental design was done using the Taguchi method L16 orthogonal tray with three factors (pH, initial phenol concentration, and photocatalyst dosage) and four levels. The results show that pH is the highest-ranked significant factor influencing the degradation rate, closely followed by the initial concentration of the pollutant. The photocatalyst dosage had the least significant impact on degradation. The effects of individual anion components such as Cl-, NO3-, NO2-, SO42- and cations such as Ca2+, Mg2+, Zn2+, and K+ were investigated. While Cl- did not negatively influence the degradation rate, the results show that NO3- and SO42- inhibit the degradation of phenol. More specifically, the presence of nitrites resulted in total impeding of the degradation process illustrating that nitrite concentrations ≥ 20 ppm should be removed from wastewater prior to photocatalytic degradation. The cations investigated promoted the degradation of phenol. Generally, there was enhanced degradation in the water matrix when compared to DI water, and the results revealed improved degradation efficiency due to the cumulative impact of various components of the wastewater.
Collapse
Affiliation(s)
- Dorcas O Adenuga
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, 0002, Pretoria, South Africa.
| | - Shepherd M Tichapondwa
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, 0002, Pretoria, South Africa
| | - Evans M N Chirwa
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, 0002, Pretoria, South Africa
| |
Collapse
|
12
|
Scolaro C, Liotta LF, Calabrese C, Marcì G, Visco A. Adhesive and Rheological Features of Ecofriendly Coatings with Antifouling Properties. Polymers (Basel) 2023; 15:polym15112456. [PMID: 37299255 DOI: 10.3390/polym15112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, formulations of "environmentally compatible" silicone-based antifouling, synthesized in the laboratory and based on copper and silver on silica/titania oxides, have been characterized. These formulations are capable of replacing the non-ecological antifouling paints currently available on the market. The texture properties and the morphological analysis of these powders with an antifouling action indicate that their activity is linked to the nanometric size of the particles and to the homogeneous dispersion of the metal on the substrate. The presence of two metal species on the same support limits the formation of nanometric species and, therefore, the formation of homogeneous compounds. The presence of the antifouling filler, specifically the one based on titania (TiO2) and silver (Ag), facilitates the achievement of a higher degree of cross-linking of the resin, and therefore, a better compactness and completeness of the coating than that attained with the pure resin. Thus, a high degree of adhesion to the tie-coat and, consequently, to the steel support used for the construction of the boats was achieved in the presence of the silver-titania antifouling.
Collapse
Affiliation(s)
- Cristina Scolaro
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Carla Calabrese
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Giuseppe Marcì
- "Schiavello-Grillone" Photocatalysis Group, Department of Engineering, University of Palermo, Viale Delle Scienze, 90128 Palermo, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials, CNR-IPCB, Via P. Gaifami 18, 9-95126 Catania, Italy
| |
Collapse
|
13
|
Saadati A, Habibi-Yangjeh A, Rahim Pouran S, Yekan Motlagh P, Khataee A. Facile integration of brown TiO2−x with Bi4V2O11 and BiVO4: Double S-scheme mechanism for exceptional visible-light photocatalytic performance in degradation of pollutants. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Qi L, Zhang H, Xiao C, Ni L, Chen S, Qi J, Zhou Y, Zhu Z, Li J. Improvement of peroxymonosulfate utilization efficiency for sulfamethazine degradation by photo-electron activating peroxymonosulfate: Performance and mechanism. J Colloid Interface Sci 2023; 633:411-423. [PMID: 36459944 DOI: 10.1016/j.jcis.2022.11.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Enhancing the utilization efficiency of oxidant is of great importance for advanced oxidation processes (AOPs). Herein, nitrogen-doped titania dioxide/carbon (NTC7) catalyst was fabricated via pyrolyzing NH2-MIL-125 under nitrogen atmosphere at 700 °C. Excitation of NTC7 under visible light can successfully achieve efficient activation of peroxymonosulfate (PMS) (NTC7 + PMS + Vis). Degradation performance and PMS activation mechanism were systematically investigated using sulfamethazine (SMT) as the target pollutant. It was found that the photo-generated electrons excited from NTC7 under visible light played the dominant role in enhancing the productive consumption of PMS. Its utilization increased by 66 % (Δ[PMS]/Δ[SMT] = 7.0) in NTC7 + PMS + Vis process and the degradation rate was 2.14 times higher than that of NTC7 + PMS process. The ketonic CO groups and structural defects were responsible for the generation of 1O2 in dark activation while radicals (•OH, O2•-) were more inclined to be continuously produced in NTC7 + PMS + Vis process. The involved degradation pathways, intermediates, and toxicity assessment have been studied in detail. This work provides an effective approach to enhance the utilization efficiency of oxidant for pollutant degradation by AOPs.
Collapse
Affiliation(s)
- Lanyue Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Linhan Ni
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Saisai Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China.
| |
Collapse
|
15
|
Zhang H, Wu S, Zhang Y, Mao Z, Zhong Y, Sui X, Xu H, Zhang L. Fabrication of Fe-BTC on aramid fabrics for repeated degradation of isoproturon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35214-35222. [PMID: 36527560 DOI: 10.1007/s11356-022-24473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Catalytic degradation is a promising and ideal technology in environmental remediation. Among them, catalytic oxidation and photocatalysis respectively based on catalysts and photocatalysts both trigger broad interests because of their high removal activity. However, the reusability of the powder catalysts still faces substantial challenges. Here, a simple strategy is proposed to load Fe-BTC catalyst on aramid fabrics (AF) to construct Fe-BTC MOF @ aramid fabric (Fe-BTC@AF) composite materials with layer-by-layer in situ self-assembly methods. The experimental results illustrated that 98% isoproturon could be removed by Fe-BTC@AF20 with oxidant H2O2, while the single Fe-BTC@AF20 could photo-degrade 99% isoproturon within 7 h. Meanwhile, it could sustain a high degradation rate of more than 80%, even if it had gone through 5 degradation cycles. Thus, the Fe-BTC@AF composite has a significant advantage in the recycling ability for degradation of isoproturon, which will have potential applications in the efficient removal of organic contaminants in water.
Collapse
Affiliation(s)
- Hongyu Zhang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Shouying Wu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Ying Zhang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, 271000, Shandong, China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China.
- Key Lab Bioorganic Phosphorus Chem & Chem Biol, Ministry of Education, Dept. Chem, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Liu C, Xu C, Wang W, Chen L, Li X, Wu Y. Oxygen Vacancy Mediated Band-Gap Engineering via B-Doping for Enhancing Z-Scheme A-TiO 2/R-TiO 2 Heterojunction Photocatalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:794. [PMID: 36903674 PMCID: PMC10005070 DOI: 10.3390/nano13050794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Fabrication of Z-scheme heterojunction photocatalysts is an ideal strategy for solving environmental problems by providing inexhaustible solar energy. A direct Z-scheme anatase TiO2/rutile TiO2 heterojunction photocatalyst was prepared using a facile B-doping strategy. The band structure and oxygen-vacancy content can be successfully tailored by controlling the amount of B-dopant. The photocatalytic performance was enhanced via the Z-scheme transfer path formed between the B doped anatase-TiO2 and rutile-TiO2, optimized band structure with markedly positively shifted band potentials, and the synergistically-mediated oxygen vacancy contents. Moreover, the optimization study indicated that 10% B-doping with the R-TiO2 to A-TiO2 weight ratio of 0.04 could achieve the highest photocatalytic performance. This work may provide an effective approach to synthesize nonmetal-doped semiconductor photocatalysts with tunable-energy structures and promote the efficiency of charge separation.
Collapse
|
17
|
Zhang X, Yang G, Han C, Yang J, Zeng Z, Xiong Z, Jia J, Sa K, Ye H, Liang Y. Construction of 0D/2D CdZnS quantum dots/SnIn4S8 nanosheets heterojunction photocatalysts for boosting photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
18
|
Xiao W, Cheng M, Liu Y, Wang J, Zhang G, Wei Z, Li L, Du L, Wang G, Liu H. Functional Metal/Carbon Composites Derived from Metal–Organic Frameworks: Insight into Structures, Properties, Performances, and Mechanisms. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wenjun Xiao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jun Wang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Gaoxia Zhang
- Carbon Neutrality Research Institute of Power China Jiangxi Electric Power Construction Co., Ltd., Nanchang 330001, China
| | - Zhen Wei
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Hongda Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| |
Collapse
|
19
|
Pathak AK, Swargiary K, Kongsawang N, Jitpratak P, Ajchareeyasoontorn N, Udomkittivorakul J, Viphavakit C. Recent Advances in Sensing Materials Targeting Clinical Volatile Organic Compound (VOC) Biomarkers: A Review. BIOSENSORS 2023; 13:114. [PMID: 36671949 PMCID: PMC9855562 DOI: 10.3390/bios13010114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In general, volatile organic compounds (VOCs) have a high vapor pressure at room temperature (RT). It has been reported that all humans generate unique VOC profiles in their exhaled breath which can be utilized as biomarkers to diagnose disease conditions. The VOCs available in exhaled human breath are the products of metabolic activity in the body and, therefore, any changes in its control level can be utilized to diagnose specific diseases. More than 1000 VOCs have been identified in exhaled human breath along with the respiratory droplets which provide rich information on overall health conditions. This provides great potential as a biomarker for a disease that can be sampled non-invasively from exhaled breath with breath biopsy. However, it is still a great challenge to develop a quick responsive, highly selective, and sensitive VOC-sensing system. The VOC sensors are usually coated with various sensing materials to achieve target-specific detection and real-time monitoring of the VOC molecules in the exhaled breath. These VOC-sensing materials have been the subject of huge interest and extensive research has been done in developing various sensing tools based on electrochemical, chemoresistive, and optical methods. The target-sensitive material with excellent sensing performance and capturing of the VOC molecules can be achieved by optimizing the materials, methods, and its thickness. This review paper extensively provides a detailed literature survey on various non-biological VOC-sensing materials including metal oxides, polymers, composites, and other novel materials. Furthermore, this review provides the associated limitations of each material and a summary table comparing the performance of various sensing materials to give a better insight to the readers.
Collapse
Affiliation(s)
- Akhilesh Kumar Pathak
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kankan Swargiary
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuntaporn Kongsawang
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pannathorn Jitpratak
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Noppasin Ajchareeyasoontorn
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jade Udomkittivorakul
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charusluk Viphavakit
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
20
|
Chen H, Shao L, Ma J, He W, Zhang B, Zhai X, Fu Y. Hierarchical hollow CuO/Cu2O and Cu2O/Cu/C derived from metal-organic framework for non-enzymatic oxidation toward glucose. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Adegoke KA, Adegoke OR, Adigun RA, Maxakato NW, Bello OS. Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Visible-light driven of heterostructured LaFeO3/TiO2 photocatalysts for degradation of antibiotics: Ciprofloxacin as case study. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Zhang Y, Li Y, Yuan Y. Carbon Quantum Dot-Decorated BiOBr/Bi 2WO 6 Photocatalytic Micromotor for Environmental Remediation and DFT Calculation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanyuan Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yue Li
- Micro/Nanotechnology Research Centre, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuan Yuan
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
24
|
Nordin NA, Mohamed MA, Salehmin MNI, Mohd Yusoff SF. Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Hu ZT, Chen Y, Fei YF, Loo SL, Chen G, Hu M, Song Y, Zhao J, Zhang Y, Wang J. An overview of nanomaterial-based novel disinfection technologies for harmful microorganisms: Mechanism, synthesis, devices and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155720. [PMID: 35525366 DOI: 10.1016/j.scitotenv.2022.155720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Harmful microorganism (e.g., new coronavirus) based infection is the most important security concern in life sciences and healthcare. This article aims to provide a state-of-the-art review on the development of advanced technology based on nanomaterial disinfection/sterilization techniques (NDST) for the first time including the nanomaterial types, disinfection techniques, bactericidal devices, sterilization products, and application scenarios (i.e., water, air, medical healthcare), with particular brief account of bactericidal behaviors referring to varied systems. In this emerging research area spanning the years from 1998 to 2021, total of ~200 publications selected for the type of review paper and research articles were reviewed. Four typical functional materials (namely type of metal/metal oxides, S-based, C-based, and N-based) with their development progresses in disinfection/sterilization are summarized with a list of synthesis and design. Among them, the widely used silver nanoparticles (AgNPs) are considered as the most effective bacterial agents in the type of nanomaterials at present and has been reported for inactivation of viruses, fungi, protozoa. Some methodologies against (1) disinfection by-products (DBPs) in traditional sterilization, (2) noble metal nanoparticles (NPs) agglomeration and release, (3) toxic metal leaching, (4) solar spectral response broadening, and (5) photogenerated e-/h+ pairs recombination are reviewed and discussed in this field, namely (1) alternative techniques and nanomaterials, (2) supporter anchoring effect, (3) nonmetal functional nanomaterials, (4) element doping, and (5) heterojunction constructing. The feasible strategies in the perspective of NDST are proposed to involve (1) non-noble metal disinfectors, (2) multi-functional nanomaterials, (3) multi-component nanocomposite innovation, and (4) hybrid techniques for disinfection/sterilization system. It is promising to achieve 100% bactericidal efficiency for 108 CFU/mL within a short time of less than 30 min.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yue Chen
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yan-Fei Fei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Siew-Leng Loo
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yujie Song
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China.
| |
Collapse
|
26
|
Zhang B, Liu F, Nie C, Hou Y, Tong M. Photocatalytic degradation of paracetamol and bisphenol A by chitosan supported covalent organic framework thin film with visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128966. [PMID: 35472551 DOI: 10.1016/j.jhazmat.2022.128966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/09/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Covalent Organic Frameworks (COFs) have attracted extensive attention for the photocatalytic degradation of emerging organic contaminants. The difficulty in separation and recovery after use yet would hinder the practical application of COFs in powder form. In present study, COFs in film form were fabricated via using chitosan as the film-substrate to support COFs (CSCF). We found that CSCF could effectively degrade two types of emerging organic contaminants under visible light irradiation. Particularly, CSCF could effectively degrade 99.8% of paracetamol (PCT) and 94.0% of bisphenol A (BPA) within 180 min under visible light irradiation. •O2- and h+ played dominant roles during the photocatalytic degradation process. Hydroxylation and cleavage were the main degradation processes. CSCF exhibited good photocatalytic degradation performance in a broad range of ionic strengths, in the presence of common coexisting ions including Cl-, NO3- and SO42-, in a wide range of pH (5-11), and in real water samples including tap water, river water and lake water. Moreover, CSCF could be easily collected after use and exhibited excellent degradation performance in five successive cycles. CSCF has potential applications to treat water with either PCT or BPA contamination. This study provided a new insight into the practical application of COFs.
Collapse
Affiliation(s)
- Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
27
|
Microwave-assisted synthesis of oxygen vacancy associated TiO2 for efficient photocatalytic nitrate reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Wan X, Mo G, Luo J. Metal–organic frameworks derived
TiO
2
for photocatalytic degradation of tetracycline hydrochloride. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Wan
- Department of Chemical Engineering Sichuan University Chengdu Sichuan People's Republic of China
| | - Guanglai Mo
- Department of Chemical Engineering Sichuan University Chengdu Sichuan People's Republic of China
| | - Jianhong Luo
- Department of Chemical Engineering Sichuan University Chengdu Sichuan People's Republic of China
| |
Collapse
|
29
|
Sheng S, Zhang Z, Wang M, He X, Jiang C, Wang Y. Synthesis of MIL-125(Ti) derived TiO2 for selective photoelectrochemical sensing and photocatalytic degradation of tetracycline. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Humayun M, Shu L, Pi W, Xia H, Khan A, Zheng Z, Fu Q, Tian Y, Luo W. Vertically grown CeO 2 and TiO 2 nanoparticles over the MIL53Fe MOF as proper band alignments for efficient H 2 generation and 2,4-DCP degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34861-34873. [PMID: 35041166 DOI: 10.1007/s11356-022-18684-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The design of highly efficient photoca talysts for clean energy production and environmental remediation are the grand challenges of scientific research. Herein, TiO2@MIL53Fe and CeO2@MIL53Fe composite photocatalysts are synthesized via solvothermal technique. The SEM and TEM micrographs reveal that TiO2 and CeO2 nanoparticles are vertically grown onto the surface of MIL53Fe MOF. Further, HRTEM micrograph confirmed the formation of heterojunction. It has been investigated that the resultant TiO2@MIL53Fe and CeO2@MIL53Fe photocatalysts exhibit remarkably improved visible light activities for H2 production and 2,4-dichlorophenol (2,4-DCP) degradation in comparison to the bare MIL53Fe photocatalyst. The enhanced photoactivities of the fabricated TiO2@MIL53Fe and CeO2@MIL53Fe photocatalysts are attributed to significantly promoted charge separation as confirmed via the surface photo voltage (SPV) and photoluminescence (PL) results. Further, the photocatalysts exhibit high stability and reusability as confirmed via the recyclable tests. This work will promote the design of MOF-based efficient photocatalysts for clean energy production and environment purification.
Collapse
Affiliation(s)
- Muhammad Humayun
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Lang Shu
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Wenbo Pi
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Hui Xia
- Institute of Electrical Engineering, Chinese Academy of Sciences, No. 6 Beiertiao, Zhongguancun, Beijing, 100190, China.
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP, 23200, Pakistan
| | - Zhiping Zheng
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Qiuyun Fu
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Yahui Tian
- Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wei Luo
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
31
|
Wang C, Yu R. Highly efficient visible light photocatalysis of tablet-like carbon-doped TiO2 photocatalysts via pyrolysis of cellulose/MIL-125(Ti) at low temperature. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Klu PK, Nasir Khan MA, Wang C, Qi J, Sun X. Mechanism of peroxymonosulfate activation and the utilization efficiency using hollow (Co, Mn) 3O 4 nanoreactor as an efficient catalyst for degradation of organic pollutants. ENVIRONMENTAL RESEARCH 2022; 207:112148. [PMID: 34606843 DOI: 10.1016/j.envres.2021.112148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Development of efficient catalysts for peroxymonosulfate (PMS) activation and further understanding its mechanism on organic pollutants degradation is of significant importance for advanced oxidation processes (AOPs). Herein, hollow (Co, Mn)3O4 catalysts were synthesized by calcination of Co, Mn containing metal-organic frameworks (MOFs) and further used to evaluate the effectiveness of organic pollutants (Bisphenol A (BPA), atrazine (ATZ), and diethyl phthalate (DEP)) degradation by PMS activation. The PMS utilization efficiency in (Co, Mn)3O4/PMS system (36.4%) was estimated to be 28.0% and 43.8% higher than that of Co3O4/PMS and Mn5O8/PMS system, respectively. Notably, the metal leaching in (Co, Mn)3O4/PMS system was significantly suppressed. The utilization efficiency also reveals an inverse proportionality relationship with BPA mineralization but decreases with increasing initial pH value. A synergy between oxides of Co and Mn was perceived to enhance PMS utilization efficiency and BPA degradation. The results indicate enhanced catalytic performance with (Co, Mn)3O4 compared to Co3O4 derived from Co-MOF and other reported catalysts, with 99% of BPA degradation within 4 min. The oxidation mechanism was then proposed based on the electron paramagnetic resonance (EPR) and XPS results. Our findings might have contributed to designing heterogeneous catalysts for efficient PMS utilization in AOPs.
Collapse
Affiliation(s)
- Prosper Kwame Klu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Muhammad Abdul Nasir Khan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chaohai Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junwen Qi
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
33
|
Zhang Z, Niu M, Li W, Ding C, Xie P, Li Y, Chen L, Lan X, Liu C, Yan X, Fu X, Liu Y, Liu Y, Cao D, Dai J, Hong X, Liu C. Steered polymorphic nanodomains in TiO 2 to boost visible-light photocatalytic oxidation. RSC Adv 2022; 12:9660-9670. [PMID: 35424931 PMCID: PMC8959444 DOI: 10.1039/d2ra00782g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
A breakthrough in enhancing visible-light photocatalysis of wide-bandgap semiconductors such as prototypical titania (TiO2) via cocatalyst decoration is still challenged by insufficient heterojunctions and inevitable interfacial transport issues. Herein, we report a novel TiO2-based composite material composed of in situ generated polymorphic nanodomains including carbon nitride (C3N4) and (001)/(101)-faceted anatase nanocrystals. The introduction of ultrafine C3N4 results in the generation of many oxygen vacancies in the TiO2 lattice, and simultaneously induces the exposure and growth of anatase TiO2(001) facets with high surface energy. The photocatalytic performance of C3N4-induced TiO2 for degradation of 2,4-dichlorophenol under visible-light irradiation was tested, its apparent rate being up to 1.49 × 10-2 min-1, almost 3.8 times as high as that for the pure TiO2 nanofibers. More significantly, even under low operation temperature and after a long-term photocatalytic process, the composite still exhibits exceptional degradation efficiency and stability. The normalized degradation efficiency and effective lifespan of the composite photocatalyst are far superior to other reported modified photocatalysts.
Collapse
Affiliation(s)
- Zeju Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Mang Niu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Wei Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Chenfeng Ding
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST) 1919-1 Tancha Kunigami-gun, Onna-son Okinawa 904-0495 Japan
- Foshan (Southern China) Institute for New Materials Foshan 528200 China
| | - Peitao Xie
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Yongxin Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Lili Chen
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Xiaopeng Lan
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Chunlei Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Xuewei Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 Sichuan China
| | - Yaochun Liu
- Foshan (Southern China) Institute for New Materials Foshan 528200 China
| | - Yuan Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
- Foshan (Southern China) Institute for New Materials Foshan 528200 China
| | - Dapeng Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Jingjie Dai
- School of Mechanical and Electronic Engineering, Qingdao Binhai University Qingdao 266555 Shandong China
| | - Xiaofen Hong
- Zhejiang Rich Environmental Protection Technology Co., Ltd Hangzhou 310000 China
| | - Chunzhao Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| |
Collapse
|
34
|
Wang Z, Miao R, He L, Guan Q, Shi Y. Green synthesis of MIL-100(Fe) derivatives and revealing their structure-activity relationship for 2,4-dichlorophenol photodegradation. CHEMOSPHERE 2022; 291:132950. [PMID: 34801575 DOI: 10.1016/j.chemosphere.2021.132950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
MIL-100(Fe), a kind of iron-based metal-organic framework materials (MOFs), can be synthesized at room temperature or hydrothermal conditions, which are promising precursor materials for preparing photocatalysts to degrade some recalcitrant chlorophenols in industrial wastewater. However, the relationship between the structural characterization of MIL-100(Fe) derivatives and their photodegradation behavior of chlorophenol pollutants is still unclear. Thus, in this work, a porous Z-scheme α-Fe2O3/MIL-100(Fe) composite was successfully fabricated via partial-pyrolysis of MIL-100(Fe) precursor synthesized through green synthesis route, which was further used for degrading high-concentration of 2,4-dichlorophenol under visible-light illumination (λ > 420 nm). The effects of synthesis route and pyrolysis temperature of MIL-100(Fe) on the degradation efficiencies of as-derived materials for 2,4-dichlorophenol were investigated. The structure-activity relationship was illuminated in detail. Otherwise, the influence of several process factors, i.e., initial concentration and pH of the 2,4-dichlorophenol solution, catalyst dosage on the degradation efficiency of 2,4-dichlorophenol has also been performed. The removal efficiency of 2,4-dichlorophenol with the initial concentration of 100 mg L-1 reached up to 87.65% under optimized conditions. Lastly, the possible mechanism was explored based on trapping experiments and some other characterization results. The study in this paper not only exhibited new insight into the modified α-Fe2O3 material with high photocatalytic activity but also provided a promising method for treating wastewater containing 2,4-dichlorophenol or other similar organic pollutants.
Collapse
Affiliation(s)
- Zhijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, China; Faculty of Chemical Engineering and Technology, Xinjiang University, 830046, Urumqi, China; College of Chemistry and Environmental Science, Qujing Normal University, 655011, Qujing, China
| | - Rongrong Miao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China.
| | - Qingqing Guan
- Faculty of Chemical Engineering and Technology, Xinjiang University, 830046, Urumqi, China.
| | - Yuzhen Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| |
Collapse
|
35
|
Din STU, Lee H, Yang W. Z-Scheme Heterojunction of 3-Dimensional Hierarchical Bi 3O 4Cl/Bi 5O 7I for a Significant Enhancement in the Photocatalytic Degradation of Organic Pollutants (RhB and BPA). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:767. [PMID: 35269255 PMCID: PMC8911787 DOI: 10.3390/nano12050767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
In this study, we report the synthesis of a 3-dimensional (3D) hierarchical Bi3O4Cl/Bi5O7I (BOC/BOI) heterostructure for the photocatalytic degradation of Rhodamine-B (RhB) dye and colorless Bisphenol-A (BPA) pollutant under visible light. The heterostructure was prepared using in situ solvothermal and calcination methods. BOC/BOI exhibits a 3D hierarchical structure constructed with thin nano-platelets. The photocatalytic performance of the BOC/BOI photocatalyst demonstrated that the degradation efficiencies of RhB and BPA were 97% and 92% after light illumination within 90 and 30 min, respectively. In comparison, bare BOC and BOI efficiencies were only 20% and 10% for RhB dye, respectively, and 2.3% and 37% for BPA aqueous pollutants, respectively. Moreover, radical trapping measurements indicated that •O2- and •OH radicals played prominent roles in RhB and BPA degradation into mineralization. Analysis of band structures and photochemical redox reactions of BOC/BOI revealed a Z-scheme charge transfer between BOC and BOI by an internal electric field formed at the interface. Therefore, the highly improved photocatalytic performance of the BOC/BOI heterostructure is attributed to the synergetic effects of large surface area, high visible-light absorption, and the enhanced separation and transport of photo-excited electron-hole pairs induced by the hierarchical and Z-scheme heterojunction of the BOC/BOI.
Collapse
Affiliation(s)
| | | | - Woochul Yang
- Department of Physics, Dongguk University, Seoul 04620, Korea; (S.T.U.D.); (H.L.)
| |
Collapse
|
36
|
Yu X, Huang J, Zhao J, Zhou C, Xin C, Guo Q. Topotactic formation of poriferous (Al,C)-Ta 2O 5 mesocrystals for improved visible-light photocatalysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114289. [PMID: 34929428 DOI: 10.1016/j.jenvman.2021.114289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Poriferous monocrystal-like nanostructures are contributing to fabricate long-distance charge transfer pathways and rapid diffusions of the degraded products, and attracts wide attentions. In this work, layered and poriferous (Al,C)-Ta2O5 mesocrystals were fabricated by topotactic transformation strategy with Ta4AlC3 MAX as starting materials for visible-light photocatalytic antibiotic degradation. The prepared sample exhibited enhanced visible-light absorption and visible-light photocatalytic performance, far superior to those of commercial Ta2O5 and Ta4AlC3 MAX, which was mainly because of the elemental doping in the samples. The experimental results also indicated that continuous attacks of the photo-generated holes and ·O2- species efficiently induced efficient visible-light photodegradation of tetracycline. Current work also indicates a new and potential tantalum-based semiconductors for high-performance environmental photocatalysis.
Collapse
Affiliation(s)
- Xin Yu
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Jielin Huang
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhao
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Chao Zhou
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Changhui Xin
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Quanhui Guo
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
37
|
Li G, Liu Z, Wang W, Liu D, Shen MQ, Jin JC, Singh A, Kumar A. A new Cu(II) metal–organic architecture driven by ether-bridged dicarboxylate: Photocatalytic properties and Hirshfeld surface analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Duan C, Wang J, Liu Q, Zhou Y, Zhou Y. Efficient removal of Salbutamol and Atenolol by an electronegative silanized β-cyclodextrin adsorbent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Introducing a flexible and Y-shaped tricarboxylic acid linker into functional complex: Photocatalytic dye degradation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Li X, Wu D, Hua T, Lan X, Han S, Cheng J, Du KS, Hu Y, Chen Y. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150096. [PMID: 34798724 DOI: 10.1016/j.scitotenv.2021.150096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 05/24/2023]
Abstract
Advanced oxidation processes (AOPs) have demonstrated an effective wastewater treatment method. But the application of AOPs using nanomaterials as catalysts is challenged with a series of problems, including limited mass transfer, surface fouling, poor stability, and difficult recycling. Recently, metal-organic frameworks (MOFs) with high tunability and ultrahigh porosity are emerging as excellent precursors for the delicate design of the structure/composition of catalysts and many MOF-derived catalysts with distinct physicochemical characteristics have shown optimized performance in various AOPs. Herein, to elucidate the structure-composition-performance relationship, a review on the performance optimization of MOF-derived catalysts to overcome the existing problems in AOPs by micro/macrostructure and multicomponent design is given. Impressively, MOF-derived strategy for the design of catalyst materials from the aspects of microstructure, macrostructure, and multicomponent (polymetallic, heteroatom doping, M/C hybrids, etc.) is firstly presented. Moreover, important advances of MOF-derived catalysts in the application of various AOPs (Fenton, persulfate-based AOPs, photocatalysis, electrochemical processes, hybrid AOPs) are summarized. The relationship between the unique micro/macrostructure and/or multicomponent features and performance optimization in mass transfer, catalytic efficiency, stability, and recyclability is clarified. Furthermore, the challenges and future work directions for the practical application of MOF-derived catalysts in AOPs for wastewater treatment are provided.
Collapse
Affiliation(s)
- Xiaoman Li
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Danhui Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao Hua
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiuquan Lan
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuaipeng Han
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Ke-Si Du
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
41
|
Qin M, Jin K, Li X, Wang R, Zhao Y, Wang H. Bi nanosphere-decorated oxygen-vacancy BiOBr hollow microspheres with exposed (110) facets to enhance the photocatalytic performance for the degradation of azo dyes. NEW J CHEM 2022. [DOI: 10.1039/d2nj02076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile preparation strategy is proposed for a novel highly-active composite photocatalyst comprising Bi nanosphere-decorated oxygen-vacancy BiOBr hollow microspheres with exposed (110) facets for the efficient degradation of azo dyes.
Collapse
Affiliation(s)
- Mian Qin
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Kejie Jin
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Rui Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Yang Zhao
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| |
Collapse
|
42
|
Hou C, Yuan X, Niu M, Li Y, Wang L, Zhang M. In situ composite of Co-MOF on a Ti-based material for visible light multiphase catalysis: synthesis and the photocatalytic degradation mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj01294d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co-MOF/Ti-based Z-type heterojunction prepared by an in situ growth method exhibits good photocatalytic activity for tetracycline.
Collapse
Affiliation(s)
- Chentao Hou
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xiaoping Yuan
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Miaomiao Niu
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Yijie Li
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Liping Wang
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Mingyuan Zhang
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
| |
Collapse
|
43
|
Feng K, Sun T, Hu X, Fan J, Yang D, Liu E. 0D/2D Co 0.85Se/TiO 2 p–n heterojunction for enhanced photocatalytic H 2 evolution. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00858k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The H2 rate of 15%-Co0.85Se/TiO2 is 2312.5 μmol g−1 h−1, which is 10.3 times and 10.8 times higher than TiO2 and Co0.85Se. The enhanced activity is attributed to the higher electrochemically active surface area and the formation of p–n heterostructure.
Collapse
Affiliation(s)
- Keting Feng
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| | - Tao Sun
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| | - Xiaoyun Hu
- School of Physics, Northwest University, Xi'an, 710069, P. R. China
| | - Jun Fan
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| | - Dongyuan Yang
- Shaanxi Yanchang Petroleum Group Co., Ltd., Xi'an, 710000, P. R. China
| | - Enzhou Liu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
44
|
Liu Z, Li Y, Li C, Thummavichai K, Feng C, Li Z, Liu S, Zhang S, Wang N, Zhu Y. MOF-derived biochar composites for enhanced high performance photocatalytic degradation of tetracycline hydrochloride. RSC Adv 2022; 12:31900-31910. [PMID: 36380948 PMCID: PMC9641384 DOI: 10.1039/d2ra05819g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Biochar reinforced advanced nanocomposites are of interest to a wide circle of researchers. Herein, we describe a novel MOF-derived reinforced cow dung biochar composite, which was prepared by a one-step hydrothermal method to form the MOF MIL-125(Ti) onto a nitrogen and sulfur co-doped bio-carbon (NSCDBC). The UV-vis diffuse reflectance spectrum of NSCDBC/MIL-125(Ti) exhibits an extension of light absorption in the visible region (360–800 nm), indicating its higher visible light capture capacity relative to pure MIL-125(Ti). The photocatalytic activity results show that all the NSCDBC/MIL-125(Ti) composite samples, namely NSCM-5, NSCM-10, NSCM-20 and NSCM-30 display good performance in the removal of tetracycline hydrochloride compared to pure MIL-125(Ti). Among them, NSCM-20 exhibits the highest catalytic activity with a removal rate of 94.62%, which is attributed to the excellent adsorption ability of NSCDBC and the ability to inhibit the complexation of photogenerated electron–hole pairs. Photoluminescence verifies that the loading of biochar successfully enhances the separation of photogenerated electron–hole pairs. Subsequently, the active species in the photocatalytic process are identified by using electron spin resonance spin-trap techniques and free radical trapping experiments. Finally, the possible reaction mechanism for the photocatalytic process is revealed. These results confirm that NSCDBC/MIL-125(Ti) is a potentially low-cost, green photocatalyst for water quality improvement. Schematic diagram of fabricating process of NSCDBC/MIL-125(Ti).![]()
Collapse
Affiliation(s)
- Zhiwei Liu
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials. Guangxi University, Nanning 530004, China
| | - Yi Li
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials. Guangxi University, Nanning 530004, China
| | - Chen Li
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials. Guangxi University, Nanning 530004, China
| | - Kunyapat Thummavichai
- College of Engineering, Department of Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Chen Feng
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials. Guangxi University, Nanning 530004, China
| | - Zhen Li
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials. Guangxi University, Nanning 530004, China
| | - Song Liu
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials. Guangxi University, Nanning 530004, China
| | - Shenghua Zhang
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials. Guangxi University, Nanning 530004, China
| | - Nannan Wang
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials. Guangxi University, Nanning 530004, China
| | - Yanqiu Zhu
- Guangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials. Guangxi University, Nanning 530004, China
- College of Engineering, Department of Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
45
|
Chen Y, Li F, Chen H, Huang Y, Guo D, Li S. Synergistic effect of dielectric barrier discharge plasma and Ho-TiO2/rGO catalytic honeycomb ceramic plate for removal of quinolone antibiotics in aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.118723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Li N, Gao P, Chen H, Li F, Wang Z. Amidoxime modified Fe 3O 4@TiO 2 particles for antibacterial and efficient uranium extraction from seawater. CHEMOSPHERE 2022; 287:132137. [PMID: 34496335 DOI: 10.1016/j.chemosphere.2021.132137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Uranium extraction and recovery play a critical role in guaranteeing the sustainable nuclear energy supply and protecting the environmental safety. The ideal uranium sorbents possess high adsorption capacity, excellent selectivity and reusability, as well as outstanding antimicrobial property, which are greatly desired for the real application of uranium extraction from seawater. To address this challenge, a novel magnetic core-shell adsorbent was designed and fabricated by a facile method. The obtained amidoximed Fe3O4@TiO2 particles (Fe3O4@TiO2-AO) achieved equilibrium in 2 h and the maximum adsorption capacity calculated from Langmuir model is 217.0 mg/g. The adsorption kinetics followed the pseudo-second-order model. Meanwhile, the Fe3O4@TiO2-AO exhibited great selectivity when competitive metal ions and anions coexisted. In addition, the magnetic Fe3O4@TiO2-AO could be conveniently separated and collected by an external magnetic field, the regeneration efficiency maintained at 78.5% even after ten adsorption-desorption cycles. In natural seawater, the uranium uptake reached 87.5 μg/g in 33 days. Furthermore, the TiO2 contained adsorbent showed effective photo induced bactericidal properties against both E. coli and S. aureus. The Fe3O4@TiO2-AO with great U(VI) adsorption performance is highly promising in uranium extraction and reclamation.
Collapse
Affiliation(s)
- Nan Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Pin Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Huawei Chen
- Water Resources Research Institute of Shandong Province, Shandong Key Laboratory of Water Resources and Environment, Jinan, 250014, PR China.
| | - Fulin Li
- Water Resources Research Institute of Shandong Province, Shandong Key Laboratory of Water Resources and Environment, Jinan, 250014, PR China
| | - Zhining Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
47
|
Jin JC, Yang M, Zhang YL, Dutta A, Xie CG, Kumar A. Integration of mixed ligand into a multivariate metal-organic framework for enhanced UV-light photocatalytic degradation of Rhodamine B. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Tchinsa A, Hossain MF, Wang T, Zhou Y. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review. CHEMOSPHERE 2021; 284:131393. [PMID: 34323783 DOI: 10.1016/j.chemosphere.2021.131393] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The development of metal organic frameworks (MOFs) has recently drawn a lot of scientific interest in water treatment due to the unique properties such as tunable porosities, large pore volumes, hierarchical structures, excellent adsorption and regeneration performances. MOFs represent an eco-friendly alternative to conventional adsorbents especially for the adsorptive removal of noxious organic pollutants from aqueous solution. Advanced MOFs' performances are justified by the introduction of functional groups, magnetic moieties, and specific foreign materials onto MOFs. This however leads to increase in the manufacturing costs of MOFs and consequently possess a huge challenge in large-scale applications. This review hence critically discusses the recent progresses in the development of MOFs-based adsorbents for the removal of selected organic pollutants (e.g., dyes, antibiotics and pesticides) from aqueous solution. Furthermore, major interaction mechanisms between MOFs and organic pollutants in response to numerous experimental conditions, such as pH, temperature, coexisting ions are put forward. Finally, some recommendations in support for designing MOFs with improved adsorption performances are also highlighted.
Collapse
Affiliation(s)
- Audrey Tchinsa
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Md Faysal Hossain
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Tong Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
49
|
Wang R, He C, Chen W, Fu L, Zhao C, Huo J, Sun C. Design strategies of two-dimensional metal-organic frameworks toward efficient electrocatalysts for N 2 reduction: cooperativity of transition metals and organic linkers. NANOSCALE 2021; 13:19247-19254. [PMID: 34787144 DOI: 10.1039/d1nr06366a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) serve as emerging electrocatalysts due to their high conductivity, chemical tunability, and accessibility of active sites. We herein proposed a series of 2D MOFs with different metal atoms and organic linkers with the formula M3C12X12 (M = Cr, Mo, and W; X = NH, O, S, and Se) to design efficient nitrogen reduction reaction (NRR) electrocatalysts. Our theoretical calculations showed that metal atoms in M3C12X12 can efficiently capture and activate N2 molecules. Among these candidates, W3C12X12 (X = O, S, and Se) show the best NRR performance due to their high activity and selectivity as well as low limiting potential (-0.59 V, -0.14 V, and -0.01 V, respectively). Moreover, we proposed a d-band center descriptor strategy to screen out the high activity and selectivity of M3C12X12 for the NRR. Therefore, our work not only demonstrates a class of promising electrocatalysts for the NRR but also provides a strategy for further predicting the catalytic activity of 2D MOFs.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Chaozheng He
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Weixing Chen
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Ling Fu
- College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui 741001, China
| | - Chenxu Zhao
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Jinrong Huo
- School of Sciences, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Faculty of Science Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122 Australia
| |
Collapse
|
50
|
Zhou Z, Zhang L, Su W, Li Y, Zhang G. Facile fabrication of AgI/Sb 2O 3 heterojunction photocatalyst with enhanced visible-light driven photocatalytic performance for efficient degradation of organic pollutants in water. ENVIRONMENTAL RESEARCH 2021; 197:111143. [PMID: 33865821 DOI: 10.1016/j.envres.2021.111143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The construction of heterojunction is considered as a promising approach to designing highly effective visible-light driven photocatalysts. In this research, the AgI/Sb2O3 heterojunction photocatalyst was synthesized by a simple in situ deposition-precipitation procedure, which was supported by XPS results. Among the prepared samples, the 60% AgI/Sb2O3 samples exhibited the best ARG degradation ratio (98.3%) in 1 h under visible light irradiation, while the pure Sb2O3 and AgI exhibited almost none photocatalytic performance. The trapping experiments and EPR proved that the photo-generated ·O2- and ·OH made major contributions to the photocatalytic degradation of ARG by the 60% AgI/Sb2O3 samples. The enhanced photocatalytic performance of AgI/Sb2O3 heterojunction photocatalysts was ascribed to that the e- produced in the CB of AgI would be transferred to the empty CB of Sb2O3, which could effectively promote separation of photo-induced carries. More importantly, the transfer of electrons from AgI to Sb2O3 would be in favor of restraining the reduction of Ag+ to Ag0 resulting in the good stability of heterojunction photocatalysts. The heterojunction photocatalyst provided in this work might be a prospective candidate for decontamination of water.
Collapse
Affiliation(s)
- Ziyue Zhou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Leguan Zhang
- College of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Wuao Su
- Urban Construction College, Wuchang Shouyi University, Wuhan, 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|