1
|
Saraiva AS, dos Reis EB, Farnese FS, Oliveira MS, Ofoegbu PU, Dornelas ASP, Sarmento RA, de Souza JCP, Resende EC, Rodrigues ACM. Unveiling the Subtle Threats: The Neurobehavioral Impact of Chlorpyrifos on Girardia tigrina. TOXICS 2024; 12:512. [PMID: 39058164 PMCID: PMC11280607 DOI: 10.3390/toxics12070512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Chlorpyrifos, an organophosphate insecticide widely used to control agricultural pests, poses a significant environmental threat due to its toxicity and persistence in soil and water. Our work aimed to evaluate the acute (survival) and chronic (regeneration, locomotion, and reproduction) toxicity of chlorpyrifos to the non-target freshwater planarian Girardia tigrina. The 48 h lethal concentration (LC50) of the commercial formulation, containing 480 g L-1 of chlorpyrifos, the active ingredient, was determined to be 622.8 µg a.i. L-1 for planarians. Sublethal effects were translated into a significant reduction in locomotion and delayed head regeneration (lowest observed effect concentration-LOEC = 3.88 µg a.i. L-1). Additionally, chlorpyrifos exposure did not affect planarian fecundity or fertility. Overall, this study demonstrates the potential of chlorpyrifos-based insecticides to harm natural populations of freshwater planarians at environmentally relevant concentrations. The observed toxicity emphasizes the need for stricter regulations and careful management of chlorpyrifos usage to mitigate its deleterious effects on aquatic ecosystems. By understanding the specific impacts on non-target organisms like G. tigrina, we can make more informed suggestions regarding the usage and regulation of organophosphate insecticides, ultimately promoting sustainable agricultural practices and environmental conservation.
Collapse
Affiliation(s)
- Althiéris S. Saraiva
- Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Campos Belos (CAE Research Group—Conservação de Agroecossistemas e Ecotoxicologia), Campos Belos 73840-000, GO, Brazil
| | - Eloisa Borges dos Reis
- Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (E.B.d.R.); (F.S.F.); (M.S.O.)
| | - Fernanda S. Farnese
- Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (E.B.d.R.); (F.S.F.); (M.S.O.)
| | - Marilene S. Oliveira
- Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (E.B.d.R.); (F.S.F.); (M.S.O.)
| | - Pearl U. Ofoegbu
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Aline S. P. Dornelas
- Programa de Apoio à Fixação de Jovens Doutores no Brasil, Estagio Pós-Doutoral—Universidade Federal do Tocantins, Campus Universitário de Gurupi, Gurupi 77402-970, TO, Brazil;
| | - Renato A. Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, Gurupi 77402-970, TO, Brazil;
| | - João C. P. de Souza
- Departamento de Química da Faculdade de Ciências da Universidade Estadual Paulista “Júlio de Mesquita Filho”—Unesp—Campus Bauru, Bauru 17033-360, SP, Brazil;
| | - Erika C. Resende
- Instituto Federal de Educação, Ciência e Tecnologia Goiano—Campus Iporá-GO, Iporá 76200-000, GO, Brazil;
| | - Andreia C. M. Rodrigues
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
2
|
Gravato C, da Silva Barbosa R, Cavallini GS, Cruz ÁB, Pereira DH, de Souza NLGD, Carlos TD, Soares AM, Sarmento RA. Theoretical insights, degradation, and sub-lethal toxicity of thiamethoxam to the planarian Girardia tigrina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44068-44079. [PMID: 38922471 DOI: 10.1007/s11356-024-34067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Advanced oxidative processes, such as Photo-Fenton, transform organic contaminants due to the attack by radicals. In this context, the lethal and sub-lethal effects of the Cruiser® 350FS (CRZ) with the active ingredient thiamethoxam (TMX) were investigated using the planarian Girardia tigrina. Degradation of thiamethoxam by the Fenton process was also assessed by using theoretical studies and the efficiency of Solar-Fenton versus Fenton. The 48 h LC50 value of CRZ for planarians was 478.6 mg L-1. The regeneration of planarians was significantly affected for concentrations ≥ 17 mg·L-1 of TMX (24 h). The Solar-Fenton showed a high degradation percentage reaching ~70%. The theoretical model showed the atoms of the TMX molecule that will suffer attacks from the formed radicals. Current results open new perspectives concerning the treatment of TMX in the aquatic environment because the 70% degradation seems to be sufficient to reach concentrations that do not induce sub-lethal effects in planarians. Further studies should determine if the by-products generated might be toxic for planaria or other organisms.
Collapse
Affiliation(s)
- Carlos Gravato
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, 1749-016, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, 1749-016, Portugal
| | - Rone da Silva Barbosa
- National Institute of Science and Technology on Terrestrial Ecotoxicology, Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação em Química, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Állefe Barbosa Cruz
- Programa de Pós-Graduação em Química, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Douglas Henrique Pereira
- Programa de Pós-Graduação em Química, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | | | - Thayrine Dias Carlos
- Bionorte - Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Amadeu Mvm Soares
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | - Renato Almeida Sarmento
- National Institute of Science and Technology on Terrestrial Ecotoxicology, Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil.
| |
Collapse
|
3
|
Moyano Salcedo AJ, Prat N, Bertrans-Tubau L, Piñero-Fernandez M, Cunillera-Montcusí D, López-Doval JC, Abril M, Proia L, Cañedo-Argüelles M. What happens when salinization meets eutrophication? A test using stream microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168824. [PMID: 38030007 DOI: 10.1016/j.scitotenv.2023.168824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Nutrient and salt pollution often co-occur in rivers and streams due to human activities (e.g., agriculture, urbanization). Thus, understanding the interactive effects of nutrients and salinity on freshwater ecosystems is critical for environmental management. We experimentally assessed the interactive effects of nutrient and salt pollution on stream microcosms using biofilm and macroinvertebrates as model systems. Six treatments were performed in triplicate: control (C: N-NH4+ = 0.05; P- PO43- = 0.037; Cl- = 33.5 mg L-1), intermediate nutrient (IN: N-NH4+ = 0.4; P- PO43- = 0.271; Cl- = 33. 5 mg L-1), high nutrient (HN: N-NH4+ = 0.84; P- PO43- = 0.80; Cl- = 33.5 mg L-1), salt (S: N-NH4+ = 0.05; P- PO43- = 0.037; Cl- = 3000 mg L-1), salt with intermediate nutrient (SIN: N-NH4+ = 0.4; P- PO43- = 0.27; Cl- = 3000 mg L-1) and salt with high nutrient (SHN: N-NH4+ = 0.84; P- PO43- = 0.80; Cl- = 3000 mg L-1). After 14 days of exposure, biofilm chlorophyll-a increased across all treatments, with cyanobacteria replacing diatoms and green algae. Treatments with no added nutrients (C and S) had more P uptake capacity than the rest. The indicator species analysis showed 8 significant taxa, with Orthocladius (Orthocladius) gr. Wetterensis and Virganytarsus significantly associated with the salinity treatment. Overall, salt pollution led to a very strong decline in macroinvertebrate richness and diversity. However, salt toxicity seemed to be ameliorated by nutrient addition. Finally, both structural equation models and biotic-abiotic interaction networks showed that complex biological interactions could be modulating the response of the biological communities to our treatments. Thus, our study calls for species-level assessments of salt and nutrient effects on river ecosystems and advocates for better management of co-occurring pollutants.
Collapse
Affiliation(s)
- Alvaro Javier Moyano Salcedo
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Geohazards and Civil Engineering Research Group, Department of Civil Engineering, Saint Thomas Villavicencio University, C/22 No 1a, 500003 Villavicencio, Colombia; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Carrer de Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Narcís Prat
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Lluís Bertrans-Tubau
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Martí Piñero-Fernandez
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - David Cunillera-Montcusí
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; WasserCluster Lunz - Biologische Station GmbH, Lunz am See, Austria
| | - Julio C López-Doval
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Lorenzo Proia
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Miguel Cañedo-Argüelles
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Carrer de Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
5
|
de Souza AR, Prato A, Franca W, Santos S, Lima LD, Alves DA, Bernardes RC, Santos EF, do Nascimento FS, Lima MAP. A predatory social wasp does not avoid nestmates contaminated with a fungal biopesticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103851-103861. [PMID: 37695481 DOI: 10.1007/s11356-023-29770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Fungus-based biopesticides have been used worldwide for crop pest control as a safer alternative to chemical pesticides such as neonicotinoids. Both agrochemicals can be lethal and may also trigger side effects on the behavioral traits of non-target social insects, which play a crucial role in providing essential biological pest control services in agroecosystems. Here, we evaluated whether a commercial formulation of the entomopathogenic fungus Beauveria bassiana or the neonicotinoid imidacloprid causes mortality in foragers of Mischocyttarus metathoracicus. These social wasps are natural enemies of caterpillars and other herbivorous insects and inhabit both urban and agricultural environments in Brazil. We also tested whether wasps discriminate between biopesticide-exposed and unexposed conspecifics. Through a combination of laboratory (survival assay) and field experiments (lure presentation), along with chemical analyses (cuticular hydrocarbon profiles), we showed that topic exposure to the label rate of each pesticide causes a lethal effect, with the biopesticide exhibiting a slower effect. Moreover, wasps do not discriminate biopesticide-exposed from unexposed conspecifics, likely because of the similarity of their cuticular chemical profiles 24 h after exposure. Overall, the delayed lethal time at the individual level, combined with the indistinctive chemical cues of exposure and the lack of discrimination by conspecifics suggests that the fungal biopesticide may ultimately pose a threat to the colony survival of this predatory wasp.
Collapse
Affiliation(s)
- André Rodrigues de Souza
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil.
| | - Amanda Prato
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Wilson Franca
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Sircio Santos
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Luan Dias Lima
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Denise Araujo Alves
- Department of Entomology and Acarology, University of São Paulo, São Paulo, Brazil
| | | | - Eduardo Fernando Santos
- Department of Zoology E Botany, Sao Paulo State University "Júlio de Mesquita Filho", São Paulo, Brazil
| | - Fábio Santos do Nascimento
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | | |
Collapse
|
6
|
Cesarini G, Coppola F, Campos D, Venditti I, Battocchio C, Di Giulio A, Muzzi M, Pestana JLT, Scalici M. Nanoplastic exposure inhibits feeding and delays regeneration in a freshwater planarian. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121959. [PMID: 37271363 DOI: 10.1016/j.envpol.2023.121959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
The concentration of nanoplastics (NPs) is expected to increase in aquatic environments thus potentially threatening freshwater organisms through interactions with plastic particles that variously float, circulate in the water column or sink into the benthos. Studies into the mechanisms of any NP effects are still scarce, particularly with respect to the regenerative ability of biota for which there is no recognised model organism. The present study therefore aimed to investigate behavioural and regeneration responses of the freshwater planarian Girardia tigrina after 10 days exposed to along a gradient 0.01-10 mg/L of poly (styrene-co-methyl methacrylate) NPs (∼426 ± 175 nm). Exposure to NPs induced a significant reduction in planarian feeding rate even at low concentrations (LOEC of 0.01 mg/L), while head regeneration was delayed in a clear dose response way (LOEC of 0.1 mg/L for blastema length). Planaria locomotion assessed was not affected. Our results highlight the potential adverse effects of exposure to poly (styrene-co-methyl methacrylate) NPs and show that feeding behaviour and regeneration of a freshwater benthic organism can be indicators of the resulting toxicity. Planarians are becoming widely used model organisms in ecotoxicology and can help to address potential effects of plastic polymers on regeneration.
Collapse
Affiliation(s)
- Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy.
| | - Francesca Coppola
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Diana Campos
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Iole Venditti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | - Chiara Battocchio
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | - Andrea Di Giulio
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | - Maurizio Muzzi
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | - João L T Pestana
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| |
Collapse
|
7
|
Dornelas ASP, Pestana JLT, de Souza Saraiva A, Barbosa RS, Cavallini GS, Gravato C, da Maia Soares AMV, Sarmento RA. The combined effects of microbial insecticides and sodium chloride on the development and emergence of Chironomus xanthus. PEST MANAGEMENT SCIENCE 2023; 79:2255-2263. [PMID: 36775861 DOI: 10.1002/ps.7407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Freshwater organisms are facing increasing salinity levels, not only due to natural environmental processes, but also human activities, which can cause several physiological adaptations to osmotic stress. Additionally, these organisms might also have to deal with contamination by microbial insecticides. Our main goal was to use Chironomus xanthus to assess the chronic effects of increasing the salinity and commercial formulations of the microbial insecticides based on Bacillus thuringiensis subs. kurstaki (Btk) and Beauveria bassiana (Bb) as active ingredients, respectively. RESULTS A significant interaction of growth was observed between the biopesticide based on Bb and NaCl on the larvae of C. xanthus. Single exposure to NaCl and each one of the formulations demonstrated deleterious impacts not only on larval development, but also on the emergence success and emergence time of this nontarget insect, with potential consequences for freshwater ecosystems due to cascading effects. CONCLUSION The chronic effects induced by both bioinsecticides show that these formulations can have environmental impacts on nontarget freshwater insects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | | | - Rone Silva Barbosa
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| | - Carlos Gravato
- Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | | | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| |
Collapse
|
8
|
Dornelas ASP, de Jesus Ferreira JS, Silva LCR, de Souza Saraiva A, Cavallini GS, Gravato CAS, da Maia Soares AMV, Almeida Sarmento R. The sexual reproduction of the nontarget planarian Girardia tigrina is affected by ecologically relevant concentrations of difenoconazole: new sensitive tools in ecotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27095-27103. [PMID: 34981389 DOI: 10.1007/s11356-021-18423-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The fungicide difenoconazole, widely used to reduce the negative impacts of fungi diseases on areas with intensive farming, can reach freshwater systems causing deleterious effects on nontarget organisms. The acute and chronic toxicity of a commercial formulation containing 250 g L-1 of difenoconazole (Prisma®) as the active ingredient was assessed in the freshwater planarian Girardia tigrina. The endpoints evaluated were feeding rate, locomotion, regeneration, and sexual reproduction of planarians. The estimated 48 h LC50 of the commercial formulation on planarians expressed as the concentration of the active ingredient difenoconazole was 47.5 mg a.i.L-1. A significant decrease of locomotion (LOEC = 18.56 mg a.i.L-1), delayed regeneration (LOEC = 9.28 mg a.i.L-1), and sexual reproduction impairment, i.e., decreased fecundity and fertility rates (LOEC ≤ 1.16 mg a.i.L-1) were observed on planarians exposed to sublethal concentrations of the formulation. This study demonstrated the importance of using reproductive, physiological, and behavioral parameters as more sensitive and complementary tools to assess the deleterious effects induced by a commercial formulation of difenoconazole on a nontarget freshwater organism. The added value and importance of our research work, namely, the impairment of sexual reproduction of planarians, contributes to the development of useful tools for ecotoxicology and highlights the fact that those tools should be developed as guidelines for testing of chemicals. Our results showed that the use of reproductive parameters of Girardia tigrina would help to complement and achieve a better assessment of the risk posed by triazole fungicides to freshwater ecosystems.
Collapse
Affiliation(s)
- Aline Silvestre Pereira Dornelas
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Joel Santiago de Jesus Ferreira
- Curso de Engenharia de Bioprocessos E Biotecnologia, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Laila Cristina Rezende Silva
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Althiéris de Souza Saraiva
- Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Campos Belos (Laboratório de Conservação de Agroecossistemas E Ecotoxicologia), Campos Belos, Goiás, 73840-000, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | | | | | - Renato Almeida Sarmento
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| |
Collapse
|
9
|
Vieira MM, Pereira Dornelas AS, Carlos TD, Pallini A, Gravato C, Pereira DH, Sarmento RA, Cavallini GS. When treatment increases the contaminant's ecotoxicity: A study of the Fenton process in the degradation of methylene blue. CHEMOSPHERE 2021; 283:131117. [PMID: 34134044 DOI: 10.1016/j.chemosphere.2021.131117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The degradation of dyes can generate harmful by-products, thereby requiring the need to evaluate the toxicity to aquatic organisms. This study aims to evaluate the chronic ecotoxicity of methylene blue dye degraded by the Fenton process using the non-target planarian Girardia tigrina as a sensitive bioindicator of environmental contamination. The bioassays evaluated the lethality of several concentrations of the untreated and degraded dye methylene blue (MB), as well as, their sub-lethal effects on locomotion, feeding, regeneration, and reproduction. In both acute and chronic tests, the degraded dye had a stronger toxic effect when compared to the untreated dye. This negative effect after treatment was mainly associated with the presence of residual hydrogen peroxide and iron (and consequently the hydroxyl radical formed). We conclude that the utilization of the Fenton process using less oxidizing agents should be considered as important alternatives for the protection of aquatic ecosystems, without compromising the efficient removal of MB.
Collapse
Affiliation(s)
- Mayane Marques Vieira
- Curso de Química Ambiental, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | | | - Thayrine Dias Carlos
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | - Angelo Pallini
- Departamento de Entomologia - Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Douglas Henrique Pereira
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação Em Produção Vegetal e Programa de Pós-Graduação Em Biodiversidade e Biotecnologia da Amazônia Legal - Bionorte, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | | |
Collapse
|
10
|
Cai S, Jia Y, Donde OO, Wang Z, Zhang J, Fang T, Xiao B, Wu X. Effects of microcystin-producing and non-microcystin-producing Microcystis on the behavior and life history traits of Chironomus pallidivittatus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117613. [PMID: 34147780 DOI: 10.1016/j.envpol.2021.117613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Species of the genus Microcystis are among the most notorious cyanobacteria in eutrophic lakes worldwide, with ability present adverse effects on many aquatic organisms. In the surface sediments, Microcystis can be ingested by benthic macroinvertebrates such as Chironomus. However, the potential negative effects of Microcystis on Chironomus life history traits remain unclear. In the present study, we investigated the effect of different Microcystis diets on specific behaviors (burrowing activity, locomotion ability) and life history traits of Chironomus pallidivittatus (Diptera, Chironomidae). We also studied the interactive effects of microcystin-producing M. aeruginosa and temperature (15, 20, and 25 °C) stress on chironomid larvae. The results showed that the inhibitory effect on the cumulative emergence and burrowing activity of larvae was more severe when they were fed M. aeruginosa among the three Microcystis diets groups. Locomotion ability (i.e., locomotor distance and velocity) and adult dry weight decreased significantly in the group fed M. aeruginosa. Locomotion was significantly inhibited and mortality increased when the larvae were fed a mixture of M. aeruginosa and M. wesenbergii, which may have been the result of additive or synergistic effect of the toxins. Under the stress of lower temperature, C. pallidivittatus larvae exhibited weaker locomotion and growth ability, and the emerging adults were mostly male. At both the lower and higher temperature conditions, M. aeruginosa cause cumulative emergence decreased, and sex ratio imbalance, which inhibited the reproduction of larvae from the population perspective. The fourth-instar larvae showed better adaption to Microcystis than did the other instars. This study thus highlights the adverse effects of microcystin-producing M. aeruginosa on Chironomus. It also provides a novel perspective on how environmental factors may influence the behavior and life history traits of chironomid larvae, and how they may respond to cyanobacterial blooms and global warming.
Collapse
Affiliation(s)
- Shenghe Cai
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlu Jia
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Oscar Omondi Donde
- Department of Environmental Science, Egerton University, P. O. Box 536-20115, Egerton, Kenya
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
| | - Junqian Zhang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tao Fang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|