1
|
Huang D, Huang H, Wang G, Li R, Xiao R, Du L, Zhou W, Xu W. Simultaneous elimination of antibiotic-resistant bacteria and antibiotic resistance genes by different Fe-N co-doped biochars activating peroxymonosulfate: The key role of pyridine-N and Fe-N sites. J Colloid Interface Sci 2024; 668:12-24. [PMID: 38669989 DOI: 10.1016/j.jcis.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 108 CFU mL-1) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL-1) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO4•- and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe0, and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
2
|
Zhou CS, Cao GL, Liu BF, Liu W, Ma WL, Ren NQ. Deciphering the reduction of antibiotic resistance genes (ARGs) during medium-chain fatty acids production from waste activated sludge: Driven by inhibition of ARGs transmission and shift of microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134676. [PMID: 38788579 DOI: 10.1016/j.jhazmat.2024.134676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Medium-chain fatty acids (MCFAs) production from waste activated sludge (WAS) by chain extension (CE) is a promising technology. However, the effects and mechanisms of CE process on the fate of antibiotic resistance genes (ARGs) remain unclear. In this study, the results showed that the removal efficiency of ARGs was 81.15 % in CE process, suggesting its efficacy in reducing environmental risks. Further, the observed decrease in mobile genetic elements (MGEs) indicated that CE process restricted the horizontal gene transfer (HGT). Complementing this, the increase in soluble organic matters and extracellular 16 S rDNA confirmed that MCFAs production caused bacterial damage. Decreased intracellular ARGs and increased extracellular ARGs further revealed that MCFAs production impaired ARGs hosts, thereby limiting the vertical gene transfer (VGT) of ARGs. Shift of microbial community combined with co-occurrence network analysis demonstrated that functional bacteria without host potential for ARGs were enriched, but potential ARGs and MGEs hosts decreased, showing the role of functional bacterial phylogeny and selection pressure of MCFAs in reducing ARGs. Finally, partial least squares path model was used to systematic verify the mechanism of ARGs removal in CE process, which was attributed to the inhibition of ARGs transmission (HGT and VGT) and shift of microbial community.
Collapse
Affiliation(s)
- Chun-Shuang Zhou
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guang-Li Cao
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Bing-Feng Liu
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Liu
- Heilongjiang Institute of Energy and Environment, Harbin 150007, China
| | - Wan-Li Ma
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Zhou YH, Yang SY, Wang MX, Guan YH, Ma J. Fast degradation of atrazine by nZVI-Cu 0/PMS: Re-evaluation and quantification of reactive species, generation pathways, and application feasibility. WATER RESEARCH 2023; 243:120311. [PMID: 37459795 DOI: 10.1016/j.watres.2023.120311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/28/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023]
Abstract
Additive metal to zero-valent iron (ZVI) could enhance the reduction ability and the additive Cu0 was incorporated to ZVI to accelerate PMS activation with atrazine (ATZ) as target compound. The efficiencies of ATZ degradation and PMS decomposition climbed up firstly and then declined as Cu0 loading increased from 0.01 to 1.00 wt% with the maximums at 0.10 wt%. SO4•-, HO•, Fe(IV), O2•- and 1O2 were generated by nZVI-Cu0/PMS based on the results of electron paramagnetic resonance (EPR) and simultaneous degradation of nitrobenzene, ATZ, and methyl phenyl sulfoxide (PMSO). The rate constant of Fe(IV) and ATZ was estimated as 7 × 104 M-1∙s-1 via the variation of methyl phenyl sulfone (PMSO2)formation at different ATZ concentrations. However, Fe(IV) contributed negligibly to ATZ degradation due to the strong scavenging of Fe(IV) by PMS. SO4•- and HO• were the reactive species responsible for ATZ degradation and the yield ratio of SO4•- and HO• was about 8.70 at initial stage. Preliminary thermodynamic calculation on the possible activation ways revealed that the dominant production of SO4•- might originate from the atomic H reduction of PMS in the surface layer of nZVI-Cu0. Ten products of ATZ degradation were identified by HPLC/ESI/QTOF and the possible degradation pathways were analyzed combined with theoretical calculation on ATZ structure. The decrease of temperature or increase of solution pH led to the decline of ATZ degradation, as well as the individual addition of common ions (HCO3-, Cl-, SO42-, NH4+, NO3- and F-) and natural organic matters (NOM). In real water, ATZ was still efficiently degraded with the decontamination efficiency decreasing in the sequence of tap water > surface water > simulated wastewater > groundwater. For the treatment of ATZ-polluted continuous flow, nZVI-Cu0 in double-layer layout had a higher capacity than the single-layer mode. Meanwhile, the leaching TFe and TCu were limited. The results indicate nZVI-Cu0/PMS is applicable and the multiple-layer layout of nZVI-Cu0 is suggested for ATZ-polluted ground water and soil remediation.
Collapse
Affiliation(s)
- Yue-Han Zhou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Song-Yu Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Ming-Xuan Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Ying-Hong Guan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Zhou CS, Cao GL, Wu XK, Liu BF, Qi QY, Ma WL. Removal of antibiotic resistant bacteria and genes by nanoscale zero-valent iron activated persulfate: Implication for the contribution of pH decrease. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131343. [PMID: 37027910 DOI: 10.1016/j.jhazmat.2023.131343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The mechanism of removing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) by persulfate was attributed to the generation of reactive oxygen species (ROS). However, the potential contribution of decreased pH in persulfate system to ARB and ARGs removal has rarely been reported. Here, the efficiency and mechanism of removing ARB and ARGs by nanoscale zero-valent iron activated persulfate (nZVI/PS) were investigated. Results showed that the ARB (2 × 108 CFU/mL) could be completely inactivated within 5 min, and the removal efficiencies of sul1 and intI1 were 98.95% and 99.64% by nZVI/20 mM PS, respectively. Investigation of mechanism revealed that hydroxyl radicals was the dominant ROS of nZVI/PS in removing ARB and ARGs. Importantly, the pH of nZVI/PS system was greatly decreased, even to 2.9 in nZVI/20 mM PS system. Impressively, when the pH of the bacterial suspension was adjusted to 2.9, the removal efficiency of ARB, sul1 and intI1 were 60.33%, 73.76% and 71.51% within 30 min, respectively. Further excitation-emission-matrix analysis confirmed that decreased pH contributed to ARB damage. The above results on the effect of pH indicated that the decreased pH of nZVI/PS system also made an important contribution for the removal of ARB and ARGs.
Collapse
Affiliation(s)
- Chun-Shuang Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiu-Kun Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing-Yue Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Zeng S, Kan E. Escherichia coli inactivation in water by sulfate radical-based oxidation process using FeCl 3-activated biochar/persulfate system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160561. [PMID: 36574557 DOI: 10.1016/j.scitotenv.2022.160561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Pathogenic microbes in water present great risks to environments, water resources, and human health. In the present study, for the first time, a FeCl3-activated bermudagrass-derived biochar (FA-BC) was applied to activate persulfate (PS) for E. coli inactivation. The PS activation was ascribed to the presence of Fe0 and Fe3O4 on the surface of FA-BC, and SO4·- radicals were proved to be the main role for E. coli inactivation using FA-BC activated PS system (FA-BC/PS). Decreasing the pH (5-9) and increasing the PS concentration (50-300 mg/L), reaction temperature (20-50 °C), and FA-BC dosage (100-500 mg/L) resulted in the enhancement of disinfection efficiency of E. coli using FA-BC/PS. 6.21 log reductions of E. coli were achieved within 20 min under the optimal conditions (500 mg/L FA-BC, 200 mg/L PS, pH 7, and 20 °C with 107 CFU/mL E. coli in DI water). The FA-BC/PS effectively eliminated various initial concentrations of E. coli (105-108 CFU/mL). The E. coli inactivation rate decreased from 0.1426 min-1 to 0.0883, 0.1268 min-1, and 0.1093 min-1 with the presence of 10 mg/L humic acid, 100 mg/L Cl-, and 100 mg/L HCO3-, respectively. In addition, after three cycles of disinfection tests using FA-BC/PS, the E. coli inactivation rate only slightly decreased from 0.1426 to 0.1288 min-1. The FA-BC/PS also effectively removed the E. coli in real stormwater with a 99.2 % inactivation efficiency within 180 min. The FA-BC/PS in fixed-bed column tests revealed the continuous and high inactivation of E. coli in water. Increasing the FA-BC amount (1.5 %-5 %) and PS concentration (50-200 mg/L) and decreasing the flow rate (2-4 mL/min) caused the lower E. coli concentration in effluent. Therefore, the FA-BC/PS can be considered as a promising and efficient technique for water disinfection.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department of Biological and Agricultural Engineering, Texas A&M University, TX 77843, USA; Texas A&M AgriLife Research Center, Texas A&M University, TX 77843, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering, Texas A&M University, TX 77843, USA; Department of Wildlife, and Natural Resources, Tarleton State University, TX 76401, USA; Texas A&M AgriLife Research Center, Texas A&M University, TX 77843, USA.
| |
Collapse
|
6
|
Liu F, Hou Y, Wang S, Li Z, Zhang B, Tong M. Periodate activation by pyrite for the disinfection of antibiotic-resistant bacteria: Performance and mechanisms. WATER RESEARCH 2023; 230:119508. [PMID: 36610181 DOI: 10.1016/j.watres.2022.119508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The propagation of antibiotic-resistant bacteria (ARB) greatly endangers the ecological safety and human health. This study employed pyrite (FeS2, naturally abundant mineral) for periodate (PI) activation to disinfect ARB. FeS2/PI system could disinfect 1 × 107 CFU mL-1 of kanamycin-resistant E.coli below the limit of detection in 20 min. Efficient ARB inactivation performance was achieved in pH from 3 to 9, ionic strength from 0 to 300 mM, with HA (0.1-10 mg L-1) in suspension, and in real water samples including tap water, river water and sewage. FeS2/PI system could also efficiently disinfect gentamycin-resistant E.coli and Gram-positive B. subtilis. The generated reactive species including Fe(IV), ·O2- and ·OH would attack cell membrane and overwhelmed intracellular defense system. The intracellular kanamycin resistance genes in cells would be released and then degraded in FeS2/PI system. PI preferred to be adsorbed on Fe site of FeS2 (with lower adsorption energy, more occupancy of bonding state and stronger bonding strength). The subsequent transfer of electron cloud from Fe site to PI would cleave IO bond to generate reactive species. Moreover, FeS2/PI system could also combine with sand filtration system to efficiently capture and disinfect ARB. Therefore, FeS2/PI system is a promising approach to inactivate ARB in different scenarios.
Collapse
Affiliation(s)
- Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
7
|
Wang J, Liu C, Sun H, Wang S, Liao X, Zhang L. Membrane disruption boosts iron overload and endogenous oxidative stress to inactivate Escherichia coli by nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128951. [PMID: 35472538 DOI: 10.1016/j.jhazmat.2022.128951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The inactivation of microorganisms by nanoscale zero-valent iron (nZVI) was extensively reported, but what happens inside the cells is rarely explored. Herein, we revealed that nZVI caused the drastic increase of intracellular iron concentrations, which subsequently catalyzed the Haber-Weiss reaction to produce high levels of endogenous reactive oxygen species (ROSs) and inactivated E. coli cells by oxidative damage of DNA, evidenced by the significantly higher inactivation efficiencies of E. coli mutant strains deficient in iron uptake regulation and DNA repair than the parental strain. The intracellular iron levels, endogenous ROSs levels and the inactivation efficiencies of E. coli were positively correlated. The permeabilized cytomembrane due to the close contact between nZVI and E. coli was responsible for the iron overload. This work demonstrates experimentally for the first time that nZVI causes iron overload and endogenous oxidative stress to inactivate E. coli, thus deepening our knowledge of the nZVI antimicrobial mechanism.
Collapse
Affiliation(s)
- Jian Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Congcong Liu
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Shaohui Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Xiaomei Liao
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
8
|
Xu C, Yang G, Li J, Zhang S, Fang Y, Peng F, Zhang S, Qiu R. Efficient purification of tetracycline wastewater by activated persulfate with heterogeneous Co-V bimetallic oxides. J Colloid Interface Sci 2022; 619:188-197. [PMID: 35395537 DOI: 10.1016/j.jcis.2022.03.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/26/2022]
Abstract
The persistence and wide dispersion of antibiotics have a severe impact on the ecological environment. Developing an effective method with universal applicability to remove pollutants is pretty necessary. Herein, a bimetallic oxides (Co3V2O8) heterogeneous material was successfully prepared and used to activate the persulfate (PS) for purification of tetracycline (TC) wastewater. By exploring the reaction conditions and influencing factors, the removal rate of 50 mg⋅L-1 TC reached 87.1% by Co3V2O8/PS system, and the reaction rate constant was up to 0.0271 min-1. As a highly efficient catalyst for the activation of PS, Co3V2O8/PS system produces radicals of SO4•-, •OH, •O2- and 1O2 in the reaction process due to the Co(II) and V(IV) exchange electrons with S2O82- and O2. Simultaneously, the internal electron exchange occurs between Co(II)/Co(III) and V(IV)/V(V), which stabilizes the content of Co(II) and V(IV). This work provides a novel activator for PS activation to degrade contaminants and contributes to a better understanding of the PS activation mechanism by transition compound.
Collapse
Affiliation(s)
- Chuanyi Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Guanrong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jie Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shanqing Zhang
- Centre for Clean Environment and Energy and School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Yueping Fang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shengsen Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Shen W, Xu J, Zhu L. Triton X-100 improves the reactivity and selectivity of sulfidized nanoscale zerovalent iron toward tetrabromobisphenol A: Implications for groundwater and soil remediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126119. [PMID: 34492914 DOI: 10.1016/j.jhazmat.2021.126119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Sulfidized nanoscale zerovalent iron (SNZVI) with improved reactivity and selectivity has shown great potential for environmental remediation. However, it is unclear if SNZVI could be applied for the remediation of soil washing solution, and how a soil-washing surfactant affects the reactivity and selectivity of SNZVI. Here, we assess the impact of Triton X-100 (TX-100) on the reactivity and selectivity of a sulfidized commercial NZVI toward tetrabromobisphenol A (TBBPA). While sulfidation of NZVI improved its reactivity and electron efficiency toward TBBPA, TX-100 could further improve these promoting effects, which was 8-21 and 4-7 times higher than those without TX-100, respectively, depending on TX-100 concentration. Because TX-100 could induce the solubilization of TBBPA, sorb onto the SNZVI surface, and favor the subsequent sorption and degradation of TBBPA. SNZVI performance for successive treatments of TBBPA contaminated water was also greatly improved by TX-100. Moreover, washing the TBBPA-contaminated soil with TX-100 could efficiently extract the TBBPA, and almost all of the TBBPA in the soil washing solution could be efficiently degraded by SNZVI. These results suggest that TX-100 is a good additive to SNZVI for improving its performance, and SNZVI coupled with TX-100 can be a promising technology for the remediation of TBBPA-contaminated soil.
Collapse
Affiliation(s)
- Wenting Shen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|