1
|
Alqarni LS, Algethami JS, El Kaim Billah R, Bahsis L, Alorabi AQ, Alosaimi EH, Algethami FK, Lima EC, Wasilewska M, López-Maldonado EA. Synthesis and characterization of a crosslinked deacetylated chitin modified chicken bone waste-derived hydroxyapatite and TiO 2 biocomposite for defluoridation of drinking water. Int J Biol Macromol 2024; 282:136839. [PMID: 39461631 DOI: 10.1016/j.ijbiomac.2024.136839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
This work represents an innovative approach to the synthesis and characterization of a chitosan-based biocomposite for fluoride adsorption. The work involved the development of a biocomposite based on modified chicken bone waste-derived hydroxyapatite and TiO2. The composite was characterized using scanning electron microscopy with Energy Dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD), Fourier-transform infrared analysis (FTIR), thermal-gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The optimum parameters for fluoride removal were determined, and the kinetic data was better fitted to the pseudo-first-order model. The Liu equations provided a better description of the experimental adsorption isotherm data. The adsorption mechanism and the interaction of the composite with fluoride were better understood using Density Functional Theory (DFT) calculations and Non-Covalent Interactions (NCI) analyses, paving the way for more effective and efficient defluoridation methods.
Collapse
Affiliation(s)
- Laila S Alqarni
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O.Box 90950, Riyadh 11623, Saudi Arabia
| | - Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box, 1988, Najran 11001, Saudi Arabia; Advanced Materials and Nano-Research Centre (AMNRC), Najran University, Najran 11001, Saudi Arabia.
| | - Rachid El Kaim Billah
- Science Engineer Laboratory for Energy, ENSAJ, Chouaïb Doukkali University, El Jadida, Morocco.
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique Et Moléculaire, Faculté Poly-Disciplinaire, Université Cadi Ayyad, BP 4162, 46000 Safi, Morocco
| | - Ali Q Alorabi
- Department of Chemistry, Faculty of Science, Al-Baha University, P.O. Box 1988, Albaha 65799, Saudi Arabia
| | - Eid H Alosaimi
- Department of Chemistry, College of Science, University of Bisha, P.O Box 511, Bisha 61922, Saudi Arabia
| | - Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O.Box 90950, Riyadh 11623, Saudi Arabia
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Małgorzata Wasilewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | | |
Collapse
|
2
|
Nguyen TTT, Shoukry AE, Saraji S. Investigating reactive transport and precipitation patterns of calcium carbonate in fractured porous media. J Colloid Interface Sci 2024; 679:467-480. [PMID: 39490265 DOI: 10.1016/j.jcis.2024.10.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
HYPOTHESIS Understanding calcium carbonate (CaCO3) precipitation in various polymorphs from nanoparticle size (amorphous calcium carbonate) to microparticle size (vaterite, aragonite, dendrite, calcite) is important for practical applications, including carbon geo-storage (e.g., basalt formations), hydrogen storage, groundwater management, and soil stabilization. Our hypothesis suggests that the interplay of Péclet numbers (Pe), Damköhler numbers (Da), and Supersaturation Index (SI) significantly impacts the evolution of CaCO3 precipitation in fractured porous media in terms of mixing patterns, spatiotemporal evolution, crystal morphology, crystal size, and clogging behavior. EXPERIMENTS This study takes a novel approach to explore the colloidal formation and precipitation dynamics of CaCO3 within a fractured microfluidic system. Here, calcium chloride (CaCl2) and sodium bicarbonate (NaHCO3) solutions were injected and reacted under varied Pe (0-11), Da (0-1), and SI (2-5). FINDINGS Our analysis revealed distinct precipitation patterns and mixing types, such as transverse, longitudinal, and incomplete mixing, providing insights into the behavior in fractured porous media. We systematically analyzed the temporal and spatial evolution of precipitation, demonstrating how Pe, Da, and SI dictate precipitation rates and spatial distribution. Additionally, the study uncovered a range of CaCO3 polymorphic forms, illustrating their evolution and coexistence. Morphological changes and crystal sizes were examined to decode nucleation and growth processes. Significantly, our findings highlight the relationship between precipitation and clogging in the fractured medium, offering a deeper understanding of reactive transport in complex porous environments. These insights are crucial for enhancing carbon containment security and storage efficiency in underground formations, improving groundwater remediation techniques, and developing novel construction materials through controlled precipitation processes.
Collapse
Affiliation(s)
- Trang T T Nguyen
- Subsurface Energy and Digital Innovation Center, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Aktham E Shoukry
- Subsurface Energy and Digital Innovation Center, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Soheil Saraji
- Subsurface Energy and Digital Innovation Center, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
3
|
Cui L, Wang J, Zhou H, Shao S, Kang J, Yu X, Zhao H, Shen L. Insights of using microbial material in fluoride removal from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122867. [PMID: 39423626 DOI: 10.1016/j.jenvman.2024.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Fluoride is an essential trace element for the human body, but excessive fluoride can cause serious environmental and health problems. Therefore, developing efficient fluoride removal technologies is crucial. This review summarizes the progress made in using microbial materials to remove fluoride from wastewater, covering strategies that involve pure cultures of bacteria, fungi, and algae, as well as modified microbial materials and bioreactors. Live microorganisms exhibit high efficiency in adsorbing low concentrations of fluoride, while modified microbial materials are more suitable for treating high concentrations of fluoride. The review discusses the adsorption mechanisms and influencing factors of these technologies, and evaluates their practical application potential through techno-economic analysis. Finally, future research directions are proposed, including the optimization of modification technologies and the selection of effective microbial species, providing theoretical guidance and a basis for future microbial defluoridation technologies.
Collapse
Affiliation(s)
- Linlin Cui
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Shiyu Shao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Hongbo Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
4
|
Omoregie AI, Ong DEL, Alhassan M, Basri HF, Muda K, Ojuri OO, Ouahbi T. Two decades of research trends in microbial-induced carbonate precipitation for heavy metal removal: a bibliometric review and literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52658-52687. [PMID: 39180660 DOI: 10.1007/s11356-024-34722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Amidst the increasing significance of innovative solutions for bioremediation of heavy metal removal, this paper offers a thorough bibliometric analysis of microbial-induced carbonate precipitation (MICP) for heavy metal removal, as a promising technology to tackle this urgent environmental issue. This study focused on articles published from 1999 to 2022 in the Scopus database. It assesses trends, participation, and key players within the MICP for heavy metal sequestration. Among the 930 identified articles, 74 countries participated in the field, with China being the most productive. Varenyam Achal, the Chinese Academy of Sciences, and Chemosphere are leaders in the research landscape. Using VOSviewer and R-Studio, keyword hotspots like "MICP", "urease", and "heavy metals" underscore the interdisciplinary nature of MICP research and its focus on addressing a wide array of environmental and soil-related challenges. VOSviewer emphasises essential terms like "calcium carbonate crystal", while R-Studio highlights ongoing themes such as "soil" and "organic" aspects. These analyses further showcase the interdisciplinary nature of MICP research, addressing a wide range of environmental challenges and indicating evolving trends in the field. This review also discusses the literature concerning the potential of MICP to immobilise contaminants, the evolution of the research outcome in the last two decades, MICP treatment techniques for heavy metal removal, and critical challenges when scaling from laboratory to field. Readers will find this analysis beneficial in gaining valuable insights into the evolving field and providing a solid foundation for future research and practical implementation.
Collapse
Affiliation(s)
- Armstrong Ighodalo Omoregie
- Centre for Borneo Regionalism and Conservation, School of Built Environment, University of Technology Sarawak, No. 1 Jalan University, 96000, Sibu, Sarawak, Malaysia
| | - Dominic Ek Leong Ong
- School of Engineering and Built Environment, Griffith University, 170 Kessels Rd Nathan, South East Queensland, QLD, 4111, Australia
| | - Mansur Alhassan
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Hazlami Fikri Basri
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Khalida Muda
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Oluwapelumi Olumide Ojuri
- Built Environment and Sustainable Technologies (BEST), Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Tariq Ouahbi
- LOMC, UMR 6294 CNRS, Université Le Havre Normandie, Normandie Université, 53 Rue de Prony, 76058, Le Havre Cedex, France
| |
Collapse
|
5
|
Cao S, Li Y, Wu X, Li W, Yang X. Efficient recovery of highly pure CaF 2 from fluorine-containing wastewater using an icy lime solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:32-44. [PMID: 39007305 DOI: 10.2166/wst.2024.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Developing a feasible and low-cost strategy for the recovery of calcium fluoride efficiently from fluoride-containing wastewater is very essential for the recycle of fluoride resources. Herein, a modified lime precipitation method was employed to recover CaF2 from fluorinated wastewater using a special icy lime solution. Intriguingly, the highest F- removal was greater than 95% under the optimal condition, leaving a fluoride concentration from 200 to 8.64 mg/L, while the lime dosage was much lower than that of industry. Importantly, spherical-shaped CaF2 particles with a 93.47% purity and size smaller than 600 nm were recovered, which has a high potential for the production of hydrofluoric acid. Besides, the precipitation was significantly affected by Ca/F molar ratio, stirring time, temperature, and solution pH. Furthermore, the thermodynamics and kinetics were investigated in detail to reveal the crystallization process. As a result, the defluorination reaction followed the pseudo-second order reaction kinetics model. Also, CO2 in the air adversely influenced the CaF2 purity. Based on this facile method, a high lime utilization efficiency was applied to defluorination, which contributed to protecting the environment and saving costs. This study, therefore, provides a feasible approach for the green recovery of fluorine resources and has significance for related research.
Collapse
Affiliation(s)
- Shuqin Cao
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yubiao Li
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China E-mail:
| | - Xiaoyong Wu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Wanqing Li
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xu Yang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
6
|
Stockbridge RB, Wackett LP. The link between ancient microbial fluoride resistance mechanisms and bioengineering organofluorine degradation or synthesis. Nat Commun 2024; 15:4593. [PMID: 38816380 PMCID: PMC11139923 DOI: 10.1038/s41467-024-49018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Fluorinated organic chemicals, such as per- and polyfluorinated alkyl substances (PFAS) and fluorinated pesticides, are both broadly useful and unusually long-lived. To combat problems related to the accumulation of these compounds, microbial PFAS and organofluorine degradation and biosynthesis of less-fluorinated replacement chemicals are under intense study. Both efforts are undermined by the substantial toxicity of fluoride, an anion that powerfully inhibits metabolism. Microorganisms have contended with environmental mineral fluoride over evolutionary time, evolving a suite of detoxification mechanisms. In this perspective, we synthesize emerging ideas on microbial defluorination/fluorination and fluoride resistance mechanisms and identify best approaches for bioengineering new approaches for degrading and making organofluorine compounds.
Collapse
Affiliation(s)
- Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Lawrence P Wackett
- Department of Biochemistry, Biophysics & Molecular Biology and Biotechnology Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Wang D, Guo L, Qiao Z, Liu H, Zhang Y, Wang Y. Portable hydroxyl-functionalized coal gangue-based cordierite porous ceramics sheets for effective adsorption of fluorine-containing wastewater. RSC Adv 2024; 14:15155-15166. [PMID: 38725563 PMCID: PMC11079754 DOI: 10.1039/d4ra01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Monolithic adsorbent removal of fluoride from water is considered an effective and non-secondary pollution method. Here, a portable hydroxyl-functionalized coal gangue-based cordierite porous ceramic sheet (ACGC-Fe) is prepared by using coal gangue solid waste with a specific silicon-aluminum-rich composition ratio and a small amount of magnesium oxide as a raw material through powder compression molding and mild chemical modification. The prepared ACGC-Fe can be used to treat fluorine-containing wastewater and the maximum adsorption of fluorine can reach 18.69 mg g-1. The Langmuir (Freundlich) adsorption isotherm model and pseudo-second-order kinetic model here provided a satisfactory description of the fluoride removal operating mechanism, and it is confirmed that the adsorption mechanism of ACGC-Fe is mainly attributed to the chemisorption of hydrogen bonds (with hydroxyl group) and ionic bonds (with metal), and physical adsorption based on cordierite porous ceramic pores. This research will provide a new idea for designing high-performance materials by mining and analyzing the composition and structure characteristics of coal gangue solid waste itself and broaden the application range of high-value-added coal gangue solid waste.
Collapse
Affiliation(s)
- Deyin Wang
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
- Shanxi Joint Laboratory of Coal based Solid Waste Resource Utilization and Green Ecological Development Taiyuan 030024 China
| | - Liming Guo
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
- Shanxi Joint Laboratory of Coal based Solid Waste Resource Utilization and Green Ecological Development Taiyuan 030024 China
| | - Zhennan Qiao
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
- Shanxi Joint Laboratory of Coal based Solid Waste Resource Utilization and Green Ecological Development Taiyuan 030024 China
| | - Hongwei Liu
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
- Shanxi Joint Laboratory of Coal based Solid Waste Resource Utilization and Green Ecological Development Taiyuan 030024 China
| | - Yanlan Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
- Shanxi Joint Laboratory of Coal based Solid Waste Resource Utilization and Green Ecological Development Taiyuan 030024 China
| | - Yongzhen Wang
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
- Shanxi Joint Laboratory of Coal based Solid Waste Resource Utilization and Green Ecological Development Taiyuan 030024 China
| |
Collapse
|
8
|
Sinharoy A, Lee GY, Chung CM. Process Intensification for Enhanced Fluoride Removal and Recovery as Calcium Fluoride Using a Fluidized Bed Reactor. Int J Mol Sci 2024; 25:4646. [PMID: 38731865 PMCID: PMC11083762 DOI: 10.3390/ijms25094646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
This study explored the feasibility of fluoride removal from simulated semiconductor industry wastewater and its recovery as calcium fluoride using fluidized bed crystallization. The continuous reactor showed the best performance (>90% fluoride removal and >95% crystallization efficiency) at a calcium-to-fluoride ratio of 0.6 within the first 40 days of continuous operation. The resulting particle size increased by more than double during this time, along with a 36% increase in the seed bed height, indicating the deposition of CaF2 onto the silica seed. The SEM-EDX analysis showed the size and shape of the crystals formed, along with the presence of a high amount of Ca-F ions. The purity of the CaF2 crystals was determined to be 91.1% though ICP-OES analysis. Following the continuous experiment, different process improvement strategies were explored. The addition of an excess amount of calcium resulted in the removal of an additional 6% of the fluoride; however, compared to this single-stage process, a two-stage approach was found to be a better strategy to achieve a low effluent concentration of fluoride. The fluoride removal reached 94% with this two-stage approach under the optimum conditions of 4 + 1 h HRT combinations and a [Ca2+]/[F-] ratio of 0.55 and 0.7 for the two reactors, respectively. CFD simulation showed the impact of the inlet diameter, bottom-angle shape, and width-to-height ratio of the reactor on the mixing inside the reactor and the possibility of further improvement in the reactor performance by optimizing the FBR configuration.
Collapse
Affiliation(s)
| | | | - Chong-Min Chung
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea; (A.S.); (G.-Y.L.)
| |
Collapse
|
9
|
Sinharoy A, Lee GY, Chung CM. Optimization of Calcium Fluoride Crystallization Process for Treatment of High-Concentration Fluoride-Containing Semiconductor Industry Wastewater. Int J Mol Sci 2024; 25:3960. [PMID: 38612770 PMCID: PMC11011877 DOI: 10.3390/ijms25073960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
This study utilized a fluidized bed reactor (FBR) for fluoride removal from high-concentration fluoride-ion-containing simulated semiconductor industry wastewater and recovered high-purity CaF2 crystals. The effects of hydraulic retention time (HRT), pH, Ca2+ to F- ratio, upflow velocity, seed size and seed bed height were investigated by performing lab-scale batch experiments. Considering fluoride removal and CaF2 crystallization efficiency, 5 h HRT, pH 6, seed height of 50 cm and [Ca2+]/[F-] ratio of 0.55 (mol/mol) were found to be optimum. The effect of the interaction between the important process parameters on fluoride removal was further analyzed using response surface methodology (RSM) experimental design. The results showed that all the individual parameters have a significant impact (p = 0.0001) on fluoride removal. SEM-EDX and FTIR analysis showed the composition of the crystals formed inside FBR. HR-XRD analysis confirmed that the crystalline structure of samples was mainly CaF2. The results clearly demonstrated the feasibility of silica seed material containing FBR for efficient removal and recovery of fluoride as high-purity calcium fluoride crystals.
Collapse
Affiliation(s)
| | | | - Chong-Min Chung
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea; (A.S.); (G.-Y.L.)
| |
Collapse
|
10
|
Wackett LP. Evolutionary obstacles and not C-F bond strength make PFAS persistent. Microb Biotechnol 2024; 17:e14463. [PMID: 38593328 PMCID: PMC11003709 DOI: 10.1111/1751-7915.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
The fate of organic matter in the environment, including anthropogenic chemicals, is largely predicated on the enzymatic capabilities of microorganisms. Microbes readily degrade, and thus recycle, most of the ~100,000 commercial chemicals used in modern society. Per- and polyfluorinated compounds (PFAS) are different. Many research papers posit that the general resistance of PFAS to microbial degradation is based in chemistry and that argument relates to the strength of the C-F bond. Here, I advance the opinion that the low biodegradability of PFAS is best formulated as a biological optimization problem, hence evolution. The framing of the problem is important. If it is framed around C-F bond strength, the major effort should focus on finding and engineering new C-F cleaving enzymes. The alternative, and preferred approach suggested here, is to focus on the directed evolution of biological systems containing known C-F cleaving systems. There are now reports of bacteria degrading and/or growing on multiply fluorinated arenes, alkenoic and alkanoic acids. The impediment to more efficient and widespread biodegradation in these systems is biological, not chemical. The rationale for this argument is made in the five sections below that follow the Introduction.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
11
|
Yang J, Jiang L, Guo Z, Sarkodie EK, Li K, Shi J, Peng Y, Liu H, Liu X. The Cd immobilization mechanisms in paddy soil through ureolysis-based microbial induced carbonate precipitation: Emphasis on the coexisting cations and metatranscriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133174. [PMID: 38086299 DOI: 10.1016/j.jhazmat.2023.133174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Microbial induced carbonate precipitation (MICP) can immobilize metals and reduce their bioavailability. However, little is known about the immobilization mechanism of Cd in the presence of soil cations and the triggered gene expression and metabolic pathways in paddy soil. Thus, microcosmic experiments were conducted to study the fractionation transformation of Cd and metatranscriptome analysis. Results showed that bioavailable Cd decreased from 0.62 to 0.29 mg/kg after 330 d due to the MICP immobilization. This was ascribed to the increase in carbonate bound, Fe-Mn oxides bound, and residual Cd. The underlying immobilization mechanisms could be attributed to the formation of insoluble Cd-containing precipitates, the complexation and lattice substitution with carbonate and Fe, Mn and Al (hydr)oxides, and the adsorption on functional group on extracellular polymers of cell. During the MICP immobilization process, up-regulated differential expression urease genes were significantly enriched in the paddy soil, corresponding to the arginine biosynthesis, purine metabolism and atrazine degradation. The metabolic pathway of bacterial chemotaxis, flagellum assembly, and peptidoglycan biosynthesis and the expression of cadA gene related to Cd excretion enhanced Cd resistance of soil microbiome. Therefore, this study provided new insights into the immobilization mechanisms of Cd in paddy soils through ureolysis-based MICP process.
Collapse
Affiliation(s)
- Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
12
|
Taharia M, Dey D, Das K, Sukul U, Chen JS, Banerjee P, Dey G, Sharma RK, Lin PY, Chen CY. Microbial induced carbonate precipitation for remediation of heavy metals, ions and radioactive elements: A comprehensive exploration of prospective applications in water and soil treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115990. [PMID: 38262090 DOI: 10.1016/j.ecoenv.2024.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Improper disposal practices have caused environmental disruptions, possessing by heavy metal ions and radioactive elements in water and soil, where the innovative and sustainable remediation strategies are significantly imperative in last few decades. Microbially induced carbonate precipitation (MICP) has emerged as a pioneering technology for remediating contaminated soil and water. Generally, MICP employs urease-producing microorganisms to decompose urea (NH2CONH2) into ammonium (NH4+and carbon dioxide (CO2), thereby increasing pH levels and inducing carbonate precipitation (CO32-), and effectively removing remove contaminants. Nonetheless, the intricate mechanism underlying heavy metal mineralization poses a significant challenge, constraining its application in contaminants engineering, particularly in the context of prolonged heavy metal leaching over time and its efficacy in adverse environmental conditions. This review provides a comprehensive idea of recent development of MICP and its application in environmental engineering, examining metabolic pathways, mineral precipitation mechanisms, and environmental factors as well as providing future perspectives for commercial utilization. The use of ureolytic bacteria in MICP demonstrates cost-efficiency, environmental compatibility, and successful pollutant abatement over tradition bioremediation techniques, and bio-synthesis of nanoparticles. limitations such as large-scale application, elevated Ca2+levels in groundwater, and gradual contaminant release need to be overcome. The possible future research directions for MICP technology, emphasizing its potential in conventional remediation, CO2 sequestration, bio-material synthesis, and its role in reducing environmental impact for long-term economic benefits.
Collapse
Affiliation(s)
- Md Taharia
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Debanjan Dey
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC campus, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Uttara Sukul
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Pritam Banerjee
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pin-Yun Lin
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
13
|
Wang X, Li J, Xu L, Su J, Wang Z, Li X. Simultaneous removal of calcium, cadmium and tetracycline from reverse osmosis wastewater by sycamore deciduous biochar, shell powder and polyurethane sponge combined with biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 394:130215. [PMID: 38122995 DOI: 10.1016/j.biortech.2023.130215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The treatment of reverse osmosis concentrate generated from urban industrial sewage for resource recovery has been hot. In this research, a biofilm reactor was constructed by combining sycamore deciduous biochar, shell powder, and polyurethane sponge loaded with Zobellella denitrificans sp. LX16. For ammonia nitrogen (NH4+-N), calcium (Ca2+), chemical oxygen demand (COD), cadmium (Cd2+), and tetracycline (TC), the removal efficiencies were 98.69 %, 83.95 %, 97.26 %, 98.34 %, and 69.12 % at a hydraulic retention time (HRT) of 4 h, pH of 7.0, and influent salinity, Ca2+, and TC concentrations of 1.0, 180.0, and 3.0 mg/L, respectively. The biofilm reactor packing has a three-dimensional structure to ensure good loading of microorganisms while promoting electron transfer and metabolic activity of microorganisms and increasing the pollutant tolerance and removal efficiency. The reactor provides a practical reference for the sedimentation of reverse osmosis concentrate to remove Cd2+ and TC by microbial induced calcium precipitation (MICP).
Collapse
Affiliation(s)
- Xinjie Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
14
|
Li P, Li J, Chen W, Guan X, Tang B, Bin L, Huang S. Removal and recovery of phosphate by modified oyster shell and its fertilizer application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168432. [PMID: 37951256 DOI: 10.1016/j.scitotenv.2023.168432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The resource utilization of oyster shell (OS) is essential for environmental and human health because its random disposal can induce the environmental pollution and disease spread. Herein, MnFe2O4 loaded-oyster shell (OMFs) was prepared by co-precipitation method for phosphate removal and recovery. The salt etching and MnFe2O4 (MF) loading improved the adsorption performance of OS, and the maximum adsorption capacity of OMF0.02 reached 87.39 mg P/g. Phosphate adsorption was dominated by chemisorption and its rate was limited by membrane diffusion and intra-particle diffusion. Phosphate adsorption by OMF0.02 was involved with electrostatic attraction, surface precipitation and ligand exchange. 98.95 % phosphate on saturated adsorbent could be desorbed by 0.1 mol/L malic acid and 92.31 % adsorbed phosphate was released by 0.5 mol/L NaHCO3. Furthermore, phosphate adsorbed on OMF0.02 was plant-available basing on the results of water spinach growth trial. All the results implied the bright prospect of OMF0.02 in phosphate removal and recovery from wastewater.
Collapse
Affiliation(s)
- Ping Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianxu Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Weirui Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiujuan Guan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Bing Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Liying Bin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shaosong Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Zhao L, Li Q, Wang H, Zhou Z, Li N, Pan H, Liu Y, Liu X. Enhanced Adsorptive Removal of Tetracycline by Phosphomolybdic Acid-Modified Low-Temperature Sludge Biochar. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:751-760. [PMID: 38109683 DOI: 10.1021/acs.langmuir.3c02973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Increasing the adsorption capacity and reducing the energy consumption of sludge biochar during preparation is important. In this study, a new modification method was developed to prepare phosphomolybdic acid-modified sludge biochar through the low-temperature pyrolysis of sewage sludge using phosphomolybdic acid as a modifier. Tetracycline was used to assess the adsorption performance of sludge biochar, and phosphomolybdic acid-modified sludge biochar was prepared at different temperatures. The results showed that the adsorption capacity of sludge biochar improved from 84.49 to 120.86 mg/g through modification with phosphomolybdic acid at 200 °C. The maximum adsorption capacities of phosphomolybdic acid-modified sludge biochar (200 °C pyrolysis temperature) at 298, 308, and 318 K were 283.87, 421.39, and 545.48 mg/g, respectively. Both liquid film and intraparticle diffusion were the main rate-limiting steps of tetracycline adsorption by phosphomolybdic acid-modified sludge biochar. Furthermore, the adsorption of tetracycline by phosphomolybdic acid-modified sludge biochar was mainly attributed to π-π interactions, electrostatic interactions, hydrogen bonding, and pore filling.
Collapse
Affiliation(s)
- Liyang Zhao
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China
- Research Center for Soil and Groundwater Environment, Guangxi Minzu University, Nanning 530006, China
| | - Qian Li
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China
- Research Center for Soil and Groundwater Environment, Guangxi Minzu University, Nanning 530006, China
| | - Hengyi Wang
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China
- Research Center for Soil and Groundwater Environment, Guangxi Minzu University, Nanning 530006, China
| | - Zheng Zhou
- Huahong Water Group Co. Ltd., Nanning 530000, China
| | - Nan Li
- Huahong Water Group Co. Ltd., Nanning 530000, China
| | - Honghui Pan
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China
- Research Center for Soil and Groundwater Environment, Guangxi Minzu University, Nanning 530006, China
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Yan Liu
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China
- Research Center for Soil and Groundwater Environment, Guangxi Minzu University, Nanning 530006, China
| | - Xixiang Liu
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China
- Research Center for Soil and Groundwater Environment, Guangxi Minzu University, Nanning 530006, China
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| |
Collapse
|
16
|
Fan Y, Su J, Xu L, Liu S, Hou C, Liu Y, Cao S. Removal of oxytetracycline from wastewater by biochar modified with biosynthesized iron oxide nanoparticles and carbon nanotubes: Modification performance and adsorption mechanism. ENVIRONMENTAL RESEARCH 2023; 231:116307. [PMID: 37268205 DOI: 10.1016/j.envres.2023.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
The pollution problem of oxytetracycline (OTC) from wastewater becomes more serious, so an efficient, economical, and green adsorption material is urgently explored. In this study, the multilayer porous biochar (OBC) was prepared by coupling carbon nanotubes with iron oxide nanoparticles synthesized by Aquabacterium sp. XL4 to modify corncobs under medium temperature (600 °C) conditions. The adsorption capacity of OBC could reach 72.59 mg g-1 after preparation and operation parameters were optimized. In addition, various adsorption models suggested that OTC removal resulted from the combined effect of chemisorption, multilayer interaction, and disordered diffusion. Meanwhile, the OBC was fully characterized and exhibited a large specific surface area (237.51 m2 g-1), abundant functional groups, stable crystal structure, high graphitization, and mild magnetic properties (0.8 emu g-1). The OTC removal mechanisms mainly included electrostatic interactions, ligand exchange, π-π bonding reactions, hydrogen bonds, and complexation. pH and coexistence substance experiments revealed that the OBC possesses a wide pH adaptation range and excellent anti-interference ability. Finally, the safety and reusability of OBC were confirmed by repeated experiments. In summary, OBC as a biosynthetic material shows considerable potential for application in the field of purifying new pollution from wastewater.
Collapse
Affiliation(s)
- Yong Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
17
|
Ke F, Pan A, Liu J, Liu X, Yuan T, Zhang C, Fu G, Peng C, Zhu J, Wan X. Hierarchical camellia-like metal–organic frameworks via a bimetal competitive coordination combined with alkaline-assisted strategy for boosting selective fluoride removal from brick tea. J Colloid Interface Sci 2023; 642:61-68. [PMID: 37001458 DOI: 10.1016/j.jcis.2023.03.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Developing an efficient and easy scale-up adsorbent with excellent fluoride adsorption and selectivity from brick tea is urgently desired. However, the separation of fluoride from tea is particularly challenging due to it contains abundant active compounds. Herein, we report ultrahigh fluoride adsorption from brick tea by a hierarchical camellia-like bimetallic metal-organic frameworks (MOFs). The hierarchical camellia-like Ca2Al1Fu is fabricated via a Ca/Al competitive coordination combined with alkaline-assisted strategy to tailor the morphology and porous structure. Subsequently, we systematically explore how the kinetic, thermodynamic, pH, and coexisting ions parameters employed during fluoride adsorption influence the resulting uptake behavior of Ca2Al1Fu. Further, sensory evaluation of the tea after adsorption is explored to determine the optimal dose that makes Ca2Al1Fu as a practical adsorbent for application. Importantly, the fluoride adsorption capacity of optical CaAlFu with mixed CaAl metals molar ratio of 2:1 is 3.15 and 2.11 times higher than that of pristine CaFu and AlFu, respectively. Theoretical results reveal that the boosting selective fluoride removal can be ascribed to the specific interactions between fluoride and CaAl coordinatively unsaturated bimetallic centers. These results present an effective design strategy for the construction of bimetallic MOFs with hierarchically porous structures for broad prospect in adsorption-based applications.
Collapse
|
18
|
Zhou Z, Ali A, Su J, Wang Z, Huang T, Li T. In-situ modified biosynthetic crystals with lanthanum for fluoride removal based on microbially induced calcium precipitation: Characterization, kinetics, and mechanism. CHEMOSPHERE 2023; 327:138472. [PMID: 36963578 DOI: 10.1016/j.chemosphere.2023.138472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
In this research, in-situ modified biosynthetic crystals with lanthanum (BC-La) were synthesized based on anaerobic microbially induced calcium precipitation (MICP) and investigated its capacity for groundwater defluoridation under various operational conditions. The kinetic and thermodynamic models were simulated to explore the effect of the material on the removal of fluoride ion (F-) under various parameters (pH, initial concentration of F-, and temperature). BC-La had the maximum F- adsorption capacity of 10.92 mg g-1 and 96.66% removal efficiency. The pseudo-second-order kinetic model and Langmuir isotherm model were the best kinetic and isotherm models for F- removal from BC-La, which indicated that F- were mainly spontaneously removed through chemisorption and adsorption processes. The specific surface area was 54.26 m2 g-1 and the average pore size was 9.0670 nm. BC-La mainly contained LaCO3OH, LaPO4, CaCO3, Ca5 (PO4)3OH, and F- was mainly removed through ion exchange with the material surface. Moreover, OH-, PO43-, and CO32- significantly influenced the F- removal. This work suggested a novel method for in-situ modification of anaerobic biosynthetic crystals, which improved the defluoridation effect of traditional biosynthetic crystals, increased the stability of the BC-La and allowed to remove F- from groundwater consistently.
Collapse
Affiliation(s)
- Zhennan Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tianmeng Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
19
|
Mei L, Wei J, Yang R, Ke F, Peng C, Hou R, Liu J, Wan X, Cai H. Zirconium/lanthanum-modified chitosan/polyvinyl alcohol composite adsorbent for rapid removal of fluoride. Int J Biol Macromol 2023:125155. [PMID: 37268075 DOI: 10.1016/j.ijbiomac.2023.125155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
A novel and easily separable adsorbent in the shape of a membrane for the rapid removal of fluoride from water was prepared after testing Zr, La and LaZr to modify a chitosan/polyvinyl alcohol composite adsorbent (CS/PVA-Zr, CS/PVA-La, CS/PVA-LA-Zr). The CS/PVA-La-Zr composite adsorbent can remove a large amount of fluoride within 1 min of contact time, and the adsorption equilibrium can be reached within 15 min. The fluoride adsorption behavior of the CS/PVA-La-Zr composite can be described by pseudo-second-order kinetics and Langmuir isotherms models. The morphology and structure of the adsorbents were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adsorption mechanism was studied using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and which showed that ion exchange occurred mainly with hydroxide and fluoride ions. This study showed that an easily operable, low-cost and environmentally friendly CS/PVA-La-Zr has the potential to remove fluoride effectively from drinking water in a short time.
Collapse
Affiliation(s)
- Liping Mei
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jiao Wei
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruirui Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Fei Ke
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Chuanyi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Junsheng Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei 230601, PR China.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
20
|
He Z, Xu Y, Yang Y, Zhu P, Jin Z, Zhang D, Pan X. Efficient bio-cementation between silicate tailings and biogenic calcium carbonate: Nano-scale structure and mechanism of the interface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121665. [PMID: 37080520 DOI: 10.1016/j.envpol.2023.121665] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Biogenic calcium carbonate (bio-CaCO3) cementing tailings is an efficient technology to immobilize heavy metals in waste tailings. However, the underlying mechanism of interface cementation has not yet been clearly established, which limits the technological development. In this study, we used advanced techniques, including atomic force microscopy-based Lorentz contact resonance (AFM-LCR) spectroscopy, AFM-based nanoscale infrared (AFM-IR) spectroscopy, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy, to reveal the structural, mechanical, and chemical properties of the interface on the nanoscale. Ureolytic bacteria produced bio-CaCO3 to fill in pore space and to bind cement tailings particles, which prevented the formation of leachate containing heavy metals. After cementation, a strong 40-300 nm thin interface was formed between the taillings and bio-CaCO3 particles. Unlike chemically synthesized CaCO3, bio-CaCO3 is strongly negatively charged, which gives it better adhesion ability. Fourier transform infrared (FTIR), AFM-IR, and 29Si ssNMR spectra indicated that the Si-OH and Si-O-Si groups on the silicate surface were converted to deprotonated silanol groups (≡Si-O-) at a high pH and they formed strong chemical bonds of Si-O-Ca on the interface through a Ca ion bridge. In addition, hydrogen bonding with Si-OH also played a role at the cementation interface. These findings provide the nano-scale interfacial structure and mechanism of bio-CaCO3 cementing silicate tailings and accelerate the development of tailings disposal technology.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yiting Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yingli Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhengzhong Jin
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
21
|
Jeyaseelan A, Viswanathan N, Kumar IA, Naushad M. Design of hydrotalcite and biopolymers entrapped tunable cerium organic cubic hybrid material for superior fluoride adsorption. Colloids Surf B Biointerfaces 2023; 224:113190. [PMID: 36764205 DOI: 10.1016/j.colsurfb.2023.113190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
The excess fluoride in drinking water is serious risk which leads to fluorosis. The adsorption method is facile route for defluoridation studies. Hybrid adsorbent possesses unique advantages like high surface area and high stability has been employed for water treatment. In the present work, hydrotalcite (HT) fabricated Ce-metal organic frameworks (MOFs) bridged with biopolymers (alginate and chitosan) namely HT-CeMOFs@Alg-CS cubic hybrid beads was developed and employed towards fluoride removal in batch mode. The fabricated HT-CeMOFs@Alg-CS beads were analyzed by DTA, FTIR, SEM, EDAX, TGA and XRD studies. Besides, FTIR and EDAX proved the affinity of HT-CeMOFs@Alg-CS cubic hybrid beads on fluoride was majorly attributed by electrostatic interaction, ion-exchange and complexation mechanism. To include detail insight into adsorption route; the kinetics, thermodynamic and isotherm studies were investigated for fluoride adsorption. The equilibrium data of HT-CeMOFs@Alg-CS cubic hybrid beads for fluoride adsorption was fitted with Langmuir isotherm model. Thermodynamic investigation results demonstrated that the fluoride adsorption was spontaneous with endothermic nature. The regeneration and field investigation results revealed that the developed HT-CeMOFs@Alg-CS cubic hybrid beads are reusable and more apt at field environment.
Collapse
Affiliation(s)
- Antonysamy Jeyaseelan
- Department of Chemistry, Anna University, University College of Engineering, Dindigul, Reddiyarchatram, Dindigul 624 622, Tamilnadu, India
| | - Natrayasamy Viswanathan
- Department of Chemistry, Anna University, University College of Engineering, Dindigul, Reddiyarchatram, Dindigul 624 622, Tamilnadu, India.
| | - Ilango Aswin Kumar
- Faculty of Civil Engineering, Department of Landscape and Water Conservation, Czech Technical University in Prague, Thakurova 7, 166 29 Prague 6, Czech Republic
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Liu Y, Ji X, Wang Y, Zhang Y, Zhang Y, Li W, Yuan J, Ma D, Sun H, Duan J. A Stable Fe-Zn Modified Sludge-Derived Biochar for Diuron Removal: Kinetics, Isotherms, Mechanism, and Practical Research. Molecules 2023; 28:molecules28062868. [PMID: 36985840 PMCID: PMC10058066 DOI: 10.3390/molecules28062868] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
To remove typical herbicide diuron effectively, a novel sludge-derived modified biochar (SDMBC600) was prepared using sludge-derived biochar (SDBC600) as raw material and Fe-Zn as an activator and modifier in this study. The physico-chemical properties of SDMBC600 and the adsorption behavior of diuron on the SDMBC600 were studied systematically. The adsorption mechanisms as well as practical applications of SDMBC600 were also investigated and examined. The results showed that the SDMBC600 was chemically loaded with Fe-Zn and SDMBC600 had a larger specific surface area (204 m2/g) and pore volume (0.0985 cm3/g). The adsorption of diuron on SDMBC600 followed pseudo-second-order kinetics and the Langmuir isotherm model, with a maximum diuron adsorption capacity of 17.7 mg/g. The biochar could maintain a good adsorption performance (8.88-12.9 mg/g) under wide water quality conditions, in the pH of 2-10 and with the presence of humic acid and six typical metallic ions of 0-20 mg/L. The adsorption mechanisms of SDMBC600 for diuron were found to include surface complexation, π-π binding, hydrogen bonding, as well as pore filling. Additionally, the SDMBC600 was tested to be very stable with very low Fe and Zn leaching concentration ≤0.203 mg/L in the wide pH range. In addition, the SDMBC600 could maintain a high adsorption capacity (99.6%) after four times of regeneration and therefore, SDMBC600 could have a promising application for diuron removal in water treatment.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Ying Wang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yan Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yanxiang Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiang Yuan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dong Ma
- Rural Environmental Engineering Center of Qingdao, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongwei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
23
|
Zhang L, Ali A, Su J, Wang Z, Huang T, Zhang R, Liu Y. Microencapsulated reactor for simultaneous removal of calcium, fluoride and phenol using microbially induced calcium precipitation: Mechanism and functional characterization. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130704. [PMID: 36603427 DOI: 10.1016/j.jhazmat.2022.130704] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Fluoride ions (F-) and phenol in groundwater have become a great hurdle to the pursuit of a healthy drinking water source. This study established a microencapsulated immobilization reactor with Aquabacterium sp. CZ3 for the simultaneous removal of nitrate (NO3--N), calcium (Ca2+), F-, and phenol from groundwater with 100%, 67.84%, 88.67%, and 100% removal efficiencies, respectively. The three-dimensional mesh structure of microcapsules facilitated the transport and metabolism of substances, while their synergistic effect with bacteria promoted the removal of contaminants. F- was removed by co-precipitation to generate Ca5(PO4)3F and CaF2 and adsorption. On one hand, the phenol toxicity promoted the production of extracellular polymers and improved the tolerance of bacteria; on the other hand, the degradation of phenol provided a carbon source for bacteria and promoted the denitrification. The development of microencapsulated immobilized reactor provided a clear mechanism for phenol and F- removal under the microbially induced calcium precipitation (MICP) technique, while providing a valuable solution for the treatment of complex groundwater resources.
Collapse
Affiliation(s)
- Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
24
|
Liu Y, Ali A, Su JF, Li K, Hu RZ, Wang Z. Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160439. [PMID: 36574549 DOI: 10.1016/j.scitotenv.2022.160439] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Microbial-induced calcium carbonate precipitation (MICP) is a technique that uses the metabolic action of microorganisms to produce CO32- which combines with free Ca2+ to form CaCO3 precipitation. It has gained widespread attention in water treatment, aimed with the advantages of simultaneous removal of multiple pollutants, environmental protection, and ecological sustainability. This article reviewed the mechanism of MICP at both intra- and extra-cellular levels. It summarized the parameters affecting the MICP process in terms of bacterial concentration, ambient temperature, etc. The current status of MICP application in practical engineering is discussed. Based on this, the current technical difficulties faced in the use of MICP technology were outlined, and future research directions for MICP technology were highlighted. This review helps to improve the design of existing water treatment facilities for the simultaneous removal of multiple pollutants using the MICP and provides theoretical reference and innovative thinking for related research.
Collapse
Affiliation(s)
- Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Kai Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rui-Zhu Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
25
|
Ultra-high adsorption of CR from aqueous solution using LDHs decorated magnetic hydrochar: Selectivity and Anti-interference exploration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
26
|
Zeng Y, Chen Z, Lyu Q, Cheng Y, Huan C, Jiang X, Yan Z, Tan Z. Microbiologically induced calcite precipitation for in situ stabilization of heavy metals contributes to land application of sewage sludge. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129866. [PMID: 36063711 DOI: 10.1016/j.jhazmat.2022.129866] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Microbiologically induced calcite precipitation (MICP) has shed new light on solving the problem of in situ stabilization of heavy metals (HMs) in sewage sludge before land disposal. In this study, we examined whether MICP treatment can be integrated into a sewage sludge anaerobic digestion-land application process. Our results showed that MICP treatment not only prevented the transfer of ionic-state Cd from the sludge to the supernatant (98.46 % immobilization efficiency) but also reduced the soluble exchangeable Pb and Cd fractions by up to 100 % and 48.54 % and increased the residual fractions by 22.54 % and 81.77 %, respectively. In addition, the analysis of the stability of HMs in MICP-treated sludge revealed maximum reductions of 100 % and 89.56 % for TCLP-extractable Pb and Cd, respectively. Three-dimensional fluorescence, scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy analyses confirmed the excellent performance of the ureolytic bacteria Sporosarcina ureilytica ML-2 in the sludge system. High-throughput sequencing showed that the relative abundance of Sporosarcina sp. reached 53.18 % in MICP-treated sludge, and the urease metabolism functional genes unit increased by a maximum of 239.3 %. The MICP technology may be a feasible method for permanently stabilizing HMs in sewage sludge before land disposal.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yapeng Cheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xinru Jiang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| |
Collapse
|
27
|
Microbial mediated synthesis of lanthanum-modified seed crystals and their application for removal of phosphorus and calcium from domestic wastewater. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Sha Q, Xie H, Liu W, Yang D, He Y, Yang C, Wang N, Ge C. Removal of fluoride using platanus acerifoli leaves biochar - an efficient and low-cost application in wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2023; 44:93-107. [PMID: 34334106 DOI: 10.1080/09593330.2021.1964002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The fluoride with high-concentration in industrial wastewater will cause great harm to the environment and calcium-modified biochar is an effective adsorbent for the removal of fluoride. Biochar composites were prepared from mature and dried dead leaves and eggshell to remove fluoride from the aqueous solution. The effects of raw material ratio, pH, contact time, adsorbent dosage, temperature, initial concentration of fluoride, and the coexisting ions on the removal efficiency of fluoride were explored. The biochar composites before and after fluoride removal were characterized by the SEM, FTIR, XRD, and XPS, which showed CaF2 precipitation was formed during the adsorption. The kinetics and isotherm study showed that chemical adsorption was the primary step for the fluoride adsorption of the biochar composites. The removal efficiency of fluoride can reach 98.53% when the amount of adsorbent was 1.6 g/L and the fluoride concentration was 500 mg/L. The BET-specific surface area of platanus acerifoli leaves biochar was 410.14 m2/g, which was suitable for the adsorption carrier. The adsorption capacity of the biochar composite materials was as high as 308 mg/g. The platanus acerifoli leaves-eggshell biochar composite with large pore size and high removal efficiency may be used as an efficient and low-cost adsorbent for treating high-concentration fluoride-containing wastewater.
Collapse
Affiliation(s)
- Qi Sha
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Huidong Xie
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Wei Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Dewei Yang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Yingying He
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Chang Yang
- Division of Laboratory and Equipment Management, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Na Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, People's Republic of China
| | - Chengmin Ge
- Shandong Dongyuan New Material Technology Co., Ltd., Dongying, People's Republic of China
| |
Collapse
|
29
|
Removal of fluoroquinolone antibiotics by adsorption of dopamine-modified biochar aerogel. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Zeng Y, Chen Z, Lyu Q, Wang X, Du Y, Huan C, Liu Y, Yan Z. Mechanism of microbiologically induced calcite precipitation for cadmium mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158465. [PMID: 36063935 DOI: 10.1016/j.scitotenv.2022.158465] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Microbiologically induced calcite precipitation (MICP) technology shows potential for remediating heavy metal pollution; however, the underlying mechanism of heavy metal mineralization is not well-understood, limiting the application of this technology. In this study, we targeted Cd contamination (using 15:1, 25:1, and 50:1 Ca2+/Cd2+ molar ratios) and showed that the ureolytic bacteria Sporosarcina ureilytica ML-2 removed >99.7 % Cd2+ with a maximum fixation capacity of 75.61 mg-Cd/g-CaCO3 and maximum precipitation production capacity of 135.99 mg-CaCO3/mg-cells. Quantitative PCR analysis showed that Cd2+ inhibited the expression of urease genes (ureC, ureE, ureF, and ureG) by 70 % in the ML-2 strain. Additionally, the pseudo-first-order kinetics model (R2 = 0.9886), intraparticle diffusion model (R2 = 0.9972), and Temkin isotherm model (R2 = 0.9828) described the immobilization process of Cd2+ by bio calcite in MICP-Cd system. The three Cd2+ mineralization products generated by MICP were attributed to surface precipitation (Cd2+ → Cd(OH)2), direct binding with the CO32-/substitution calcium site of calcite (Cd2+ → CdCO3, otavite), and calcite lattice vacancy anchors (Cd2+ → (CaxCd1-x)CO3). Our findings improve the understanding of the mechanisms by which MICP can achieve in situ stabilization of heavy metals.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xiuxiu Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yaling Du
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
31
|
Li Y, Su J, Ali A, Hao Z, Li M, Yang W, Wang Z. Simultaneous removal of nitrate and heavy metals in a biofilm reactor filled with modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158175. [PMID: 35995173 DOI: 10.1016/j.scitotenv.2022.158175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
A biofilm reactor filled with chia seeds gum modified biochar was set up for the simultaneous removal of nitrate, cadmium and zinc from calcium-containing wastewater via denitrification and microbially-induced (calcium) carbonate precipitation. The reactor performance was studied under different conditions of pH, Cd concentration, and hydraulic retention time. The optimal removal efficiency of the reactor for NO3--N, Ca2+, Cd2+, and Zn2+ were 99.98, 79.89, 100, and 99.84 %, respectively. 3D-EEM indicated the aromatic compounds confirming the stability of the reactor. FTIR illustrated the presence of -OH, CaCO3, C-O-C, and C-O-H indicating the precipitation and role of gum in MICP. SEM confirmed that the seed crystal induced the repeated crystallization of free metal ions. XRD showed that heavy metals were removed in the form of CaCO3, CdCO3, ZnCO3, Ca3(PO3)2, Cd3(PO3)2, and Zn3(PO3)2 co-crystallization. SEM-EDS showed the composition and distribution of elements. High-throughput sequencing showed that Curpriavidus sp. GMF1 and Ochrobactrum sp. GMC12 were the dominant bacterial species, with powerful denitrification and MICP mineralization capabilities.
Collapse
Affiliation(s)
- Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhenle Hao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
32
|
Omoregie AI, Muda K, Ojuri OO, Hong CY, Pauzi FM, Ali NSBA. The global research trend on microbially induced carbonate precipitation during 2001-2021: a bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89899-89922. [PMID: 36369439 DOI: 10.1007/s11356-022-24046-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Microbially induced carbonate precipitation (MICP) is a remarkable method that creates sustainable cementitious binding material for use in geotechnical/structural engineering and environmental engineering. This is due to the increasing demand for alternative environmentally friendly technologies and materials that result in minimal or zero carbon footprint. In contrast to the previously published literature, through bibliometric analysis, this review paper focuses on the current prospects and future research trends of MICP technology via the Scopus database and VOSviewer analysis. The objective of the study was to determine the annual publications and citations trend, most contributing countries, the leading journals, prolific authors, productive institutions, funding sponsors, trending author keywords, and research directions of MICP. There were a total of 1058 articles published from 2001 to 2021 on MICP. The result demonstrated that the volume of publications is increasing. China, Construction and Building Materials, Satoru Kawasaki, Nanyang Technological University, and the National Natural Science Foundation of China are the leading country, journal, author, institution, and funding sponsor in terms of total publications. Through the co-occurrence analysis of the author keywords, MICP was revealed to be the most frequently used author keyword with 121 occurrences, a total link strength of 213, and 152 links to other author keywords. Furthermore, co-occurrence analysis of text data revealed that researchers are concentrating on four important research areas: precipitation, MICP, compressive strength, and biomineralization. This review can provide information to researchers that can lead to novel ideas and research collaboration or engagement on MICP technology.
Collapse
Affiliation(s)
- Armstrong Ighodalo Omoregie
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Khalida Muda
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Oluwapelumi Olumide Ojuri
- Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Ching Yi Hong
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Farhan Mohd Pauzi
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nur Shahidah Binti Aftar Ali
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
33
|
Yapo NS, Aw S, Briton BGH, Drogui P, Yao KB, Adouby K. Removal of fluoride in groundwater by adsorption using hydroxyapatite modified Corbula trigona shell powder. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
34
|
Kumar R, Sharma P, Yang W, Sillanpää M, Shang J, Bhattacharya P, Vithanage M, Maity JP. State-of-the-art of research progress on adsorptive removal of fluoride-contaminated water using biochar-based materials: Practical feasibility through reusability and column transport studies. ENVIRONMENTAL RESEARCH 2022; 214:114043. [PMID: 36029838 DOI: 10.1016/j.envres.2022.114043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Fluoride (F-) is one of the essential elements found in soil and water released from geogenic sources and several anthropogenic activities. Fluoride causes fluorosis, dental and skeletal growth problems, teeth mottling, and neurological damage due to prolonged consumption, affecting millions worldwide. Adsorption is an extensively implemented technique in water and wastewater treatment for fluoride, with significant potential due to efficiency, cost-effectiveness, ease of operation, and reusability. This review highlights the current state of knowledge for fluoride adsorption using biochar-based materials and the limitations of biochar for fluoride-contaminated groundwater and industrial wastewater treatment. Biochar materials have shown significant adsorption capacities for fluoride under the influence of low pH, biochar dose, initial concentration, temperature, and co-existing ions. Modified biochar possesses various functional groups (-OH, -CC, -C-O, -CONH, -C-OH, X-OH), in which enhanced hydroxyl (-OH) groups onto the surface plays a significant role in fluoride adsorption via electrostatic attraction and ion exchange. Regeneration and reusability of biochar sorbents need to be performed to a greater extent to improve removal efficiency and reusability in field conditions. Furthermore, the present investigation identifies the limitations of biochar materials in treating fluoride-contaminated drinking groundwater and industrial effluents. The fluoride removal using biochar-based materials at an industrial scale for understanding the practical feasibility is yet to be documented. This review work recommend the feasibility of biochar-based materials in column studies for fluoride remediation in the future.
Collapse
Affiliation(s)
- Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803116, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803116, India.
| | - Wen Yang
- Agronomy College, Shenyang Agricultural University, Shenyang, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Jianying Shang
- Department of Soil and Water Science, China Agricultural University, Beijing, 100083, China
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen, 10B SE-100 44, Stockholm, Sweden
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
35
|
Li Y, Xin H, Zong Y, Jin X, Wang Y, Shang Y, Jin P, Wang X. A novel nucleation-induced crystallization process towards simultaneous removal of hardness and organics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Ashraf I, Li R, Chen B, Al-Ansari N, Rizwan Aslam M, Altaf AR, Elbeltagi A. Nanoarchitectonics and Kinetics Insights into Fluoride Removal from Drinking Water Using Magnetic Tea Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13092. [PMID: 36293670 PMCID: PMC9603494 DOI: 10.3390/ijerph192013092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Fluoride contamination in water is a key problem facing the world, leading to health problems such as dental and skeletal fluorosis. So, we used low-cost multifunctional tea biochar (TBC) and magnetic tea biochar (MTBC) prepared by facile one-step pyrolysis of waste tea leaves. The TBC and MTBC were characterized by XRD, SEM, FTIR, and VSM. Both TBC and MTBC contain high carbon contents of 63.45 and 63.75%, respectively. The surface area of MTBC (115.65 m2/g) was higher than TBC (81.64 m2/g). The modified biochar MTBC was further used to remediate the fluoride-contaminated water. The fluoride adsorption testing was conducted using the batch method at 298, 308, and 318 K. The maximum fluoride removal efficiency (E%) using MTBC was 98% when the adsorbent dosage was 0.5 g/L and the fluoride concentration was 50 mg/L. The experiment data for fluoride adsorption on MTBC best fit the pseudo 2nd order, rather than the pseudo 1st order. In addition, the intraparticle diffusion model predicts the boundary diffusion. Langmuir, Freundlich, Temkin, and Dubnin-Radushkevich isotherm models were fitted to explain the fluoride adsorption on MTBC. The Langmuir adsorption capacity of MTBC = 18.78 mg/g was recorded at 298 K and decreased as the temperature increased. The MTBC biochar was reused in ten cycles, and the E% was still 85%. The obtained biochar with a large pore size and high removal efficiency may be an effective and low-cost adsorbent for treating fluoride-containing water.
Collapse
Affiliation(s)
- Imtiaz Ashraf
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Rong Li
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Bin Chen
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Muhammad Rizwan Aslam
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310027, China
| | - Adnan Raza Altaf
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Ahmed Elbeltagi
- Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
37
|
Li X, Xu J, Luo X, Shi J. Efficient adsorption of dyes from aqueous solution using a novel functionalized magnetic biochar: Synthesis, kinetics, isotherms, adsorption mechanism, and reusability. BIORESOURCE TECHNOLOGY 2022; 360:127526. [PMID: 35772720 DOI: 10.1016/j.biortech.2022.127526] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel adsorbent, dodecylbenzene sulfonic acid (DBSA) functionalized magnetic biochar (DBSA-Fe3O4@BC), was synthesized and used to efficiently remove dyes from aqueous solution. The results indicated that DBSA-Fe3O4@BC exhibited an excellent adsorption capacity for Rhodamine B (RhB), and the maximum adsorption capacity for RhB at 298 K was 367.67 mg/g, which was approximately 2.3-1.2 folds than that of BC, dodecylsulfonic acid functionalized biochar (DSA@BC), DBSA@BC, Fe3O4@BC, and DSA-Fe3O4@BC. The possible adsorption mechanisms for RhB adsorption by DBSA-Fe3O4@BC included pore filling, electrostatic attraction, H bond, and surface complexation. Importantly, structural control presented that the simultaneous introduction of alkyl and phenyl groups significantly enhanced RhB adsorption by DBSA-Fe3O4@BC through hydrophobic and π-π interaction. Combined ethanol (EtOH) desorption and H2O2 oxidation regeneration, DBSA-Fe3O4@BC remained high-performance for RhB adsorption after six cycles (97.44%), indicating its outstanding reusability. In summary, DBSA-Fe3O4@BC exhibited a prospective application for dyeing wastewater treatment.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Xianxin Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
38
|
Huang L, Luo Z, Huang X, Wang Y, Yan J, Liu W, Guo Y, Babu Arulmani SR, Shao M, Zhang H. Applications of biomass-based materials to remove fluoride from wastewater: A review. CHEMOSPHERE 2022; 301:134679. [PMID: 35469899 DOI: 10.1016/j.chemosphere.2022.134679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Fluoride is one of the essential trace elements for the human body, but excessive fluoride will cause serious environmental and health problems. This paper summarizes researches on the removal of fluoride from aqueous solutions using newly developed or improved biomass materials and biomass-like organic materials in recent years. These biomass materials are classified into chitosan, microorganisms, lignocellulose plant materials, animal attribute materials, biological carbonized materials and biomass-like organic materials, which are explained and analyzed. By comparing adsorption performance and mechanism of adsorbents for removing fluoride, it is found that carbonizing materials and modifying adsorbents with metal ions are more beneficial to improving adsorption efficiency and the adsorption mechanisms are various. The adsorption capacities are still considerable after regeneration. This paper not only reviews the properties of these materials for fluoride removal, but also focuses on the comparison of materials performance and fluoride removal mechanism. Herein, by discussing the improved adsorption performance and research technology development of biomass materials and biomass-like organic materials, various innovative ideas are provided for adsorbing and removing contaminants.
Collapse
Affiliation(s)
- Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Zhixuan Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Yian Wang
- Department of Chemical and Biological Engineering, Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Wei Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Yufang Guo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | | | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China.
| |
Collapse
|
39
|
Microbially induced calcium precipitation based anaerobic biosynthetic crystals for removal of F− and Ca2+ in groundwater: Performance optimization, kinetics, and reactor operation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Ma B, Zhang H, Huang T, Chen S, Sun W, Yang W, Liu H, Liu X, Niu L, Yang F, Yu J. Cooperation triggers nitrogen removal and algal inhibition by actinomycetes during landscape water treatment: Performance and metabolic activity. BIORESOURCE TECHNOLOGY 2022; 356:127313. [PMID: 35577220 DOI: 10.1016/j.biortech.2022.127313] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The actinomycetes strain Streptomyces sp. XD-11-9-3 and Streptomyces sp. 5 were isolated and presented poor denitrification performance. Co-culture of actinomycetes triggers nitrogen removal capacity under aerobic conditions (reduced 96% of total nitrogen). Nitrogen balance analysis presented that 71% of initial nitrogen converted as gaseous nitrogen. Moreover, co-culture increased the concentrations of adenosine triphosphate (>2.1 folds) and electron-transmission system activity (>1.5 folds) significantly. The co-culture presented excellent carbon source metabolism activity (especially amines and carboxylic acids) compared with monoculture. The removal efficiency of total nitrogen in the micro-polluted landscape water water reached 61% in the co-culture system, and the algal survival could be inhibited significantly. However, the dominant niche of the co-culture system restrained the diversity of the indigenous nirS-type denitrifying bacterial community. This study provided a novel pathway to the research of co-culture inefficiency aerobic denitrifier and further application in the restoration of polluted water.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jimeng Yu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
41
|
Li M, Ali A, Li Y, Su J, Zhang S. The performance and mechanism of simultaneous removal of calcium and heavy metals by Ochrobactrum sp. GMC12 with the chia seed (Salvia hispanica) gum as a synergist. CHEMOSPHERE 2022; 297:134061. [PMID: 35192851 DOI: 10.1016/j.chemosphere.2022.134061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
A bacterium Ochrobactrum sp. GMC12, capable of biomineralization and denitrification, was employed to investigate the performance and mechanism of heavy metals removal. A chia seeds (Salvia hispanica) gum was proposed as a synergist for the first time. The results showed that strain GMC12 reduced Ca2+, Cd2+, Zn2+, and nitrate by 83.38, 98.89, 98.95, and 100% (2.09, 0.29, 0.55, and 0.79 mg L-1 h-1), respectively, over 96 h continuous determination experiments. The concentration gradient test revealed that strain GMC12 would effectively remove Cd2+ and Zn2+ by 99.80 and 99.91% (0.67 and 1.35 mg L-1 h-1), respectively, under the synergistic effect of gum (1.0%, w/v). The SEM-EDS and XRD manifested that Ca2+, HMs ions, and anionic groups coated on the bacteria surface to form CaCO3, Ca5(PO4)3OH, CdCO3, Cd5(PO4)3OH, ZnCO3, and Zn2(PO4)OH. The fluorescence spectrometry and fourier transform infrared (FTIR) spectra illustrated that extracellular polymeric substance (EPS) was the key product for the nucleation site of bacteria, and the gum promoted the accumulation of bio-precipitates and accelerated the removal of HMs. In this research, Ochrobactrum sp. GMC12 exhibited great potential in wastewater treatment and chia seeds gum would go deep into material preparation and wastewater treatment due to its non-toxic nature, high viscosity, and advantageous morphology.
Collapse
Affiliation(s)
- Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
42
|
Yang Y, Ali A, Su J, Chang Q, Xu L, Su L, Qi Z. Phenol and 17β-estradiol removal by Zoogloea sp. MFQ7 and in-situ generated biogenic manganese oxides: Performance, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128281. [PMID: 35066225 DOI: 10.1016/j.jhazmat.2022.128281] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The pollution of multifarious pollutants such as heavy metal, organic compounds, and nitrate are a hot research topic at present. In this study, the functions of Zoogloea sp. MFQ7 and its biological precipitation formed during bacterial manganese oxidation on the removal of phenol and 17β-estradiol (E2) were investigated. Strain MFQ7, a manganese-oxidizing bacteria, can remove 98.34% of phenol under pH of 7.1, a temperature of 30 ℃ and Mn2+ concentration of 24.34 mg L-1, additionally, the optimum E2 removal by strain MFQ7 was 100.00% at pH of 7.1, temperature of 28 ℃ and Mn2+ concentration of 28.45 mg L-1 by using response surface methodology (RSM) based on Box-Behnken design (BBD) model. The maximum adsorption capacity of bio-precipitation for phenol and E2 was 201.15 mg g-1 and 65.90 mg g-1, respectively. Furthermore, adsorption kinetics and isotherms analysis, XPS, FTIR spectra, Mn(III) trapping experiments elucidated chemical adsorption and Mn(III) oxidation contribute to the removal of phenol and E2 by biogenic manganese oxides. These findings indicated that the adsorption and oxidation of manganese are expected to be one of the effective means to remove these typical organic pollutants containing phenol and E2.
Collapse
Affiliation(s)
- Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lindong Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| | - Zening Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| |
Collapse
|
43
|
Fabrication of hydroxyapatite embedded cerium-organic frameworks for fluoride capture from water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Li X, Shi J. Simultaneous adsorption of tetracycline, ammonium and phosphate from wastewater by iron and nitrogen modified biochar: Kinetics, isotherm, thermodynamic and mechanism. CHEMOSPHERE 2022; 293:133574. [PMID: 35016962 DOI: 10.1016/j.chemosphere.2022.133574] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
The simultaneous removal of various pollutants in wastewater is increasingly deserved attention. In this study, an efficient adsorbent Fe/N@BC was synthesized by Fe-N co-modification. The adsorbability of Fe/N@BC was evaluated using a mixture with tetracycline (TC), NH4+-N and PO43-P. In comparison to BC, N@BC and Fe@BC, Fe/N@BC exhibited an excellent performance for simultaneously absorbing TC, NH4+-N and PO43-P. The pseudo-first-order was used to describe the adsorption process of NH4+-N and PO43-P, while the pseudo-second-order could be well fitted to TC adsorption data. The adsorption isotherms of TC, NH4+-N and PO43-P were more in line with Sips model (Adj.R2 > 0.97). The maximum adsorption capacities of Fe/N@BC towards TC, NH4+-N and PO43-P were 238.94, 111.87 and 165.02 mg g-1, respectively, which were 1.31-1.91 times than that of BC, N@BC and Fe@BC. The simultaneous adsorption mechanism mainly involved pore filling, electrostatic interaction, ion exchange, surface complexation, surface precipitation, H bond and π-π interaction. Furthermore, after six cycles, the removal efficiencies of TC, NH4+-N and PO43-P were 75.3, 66.1 and 64.5% by Fe/N@BC, highlighting its promising potential to adsorb multi-pollutants from aqueous solution.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China
| | - Jingxin Shi
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin, 150090, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
45
|
Ali A, Li M, Su J, Li Y, Wang Z, Bai Y, Ali EF, Shaheen SM. Brevundimonas diminuta isolated from mines polluted soil immobilized cadmium (Cd 2+) and zinc (Zn 2+) through calcium carbonate precipitation: Microscopic and spectroscopic investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152668. [PMID: 34963589 DOI: 10.1016/j.scitotenv.2021.152668] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The toxic metal(loid)s TMs resistant bacterium Brevundimonas diminuta was isolated for the first time from mines polluted soil in Fengxian, China, and assessed for its potential for Cd and Zn precipitation in Cd and Zn co-contaminated aqueous solution at various Cd and Zn levels (20, 40, 80, 160, and 200 mg L-1), pH values (5, 6, 7, 8, and 9), and temperatures (20, 25, 30, and 35 °C). B. diminuta showed a high resistance to both Cd and Zn and was able to precipitate up to 99.2 and 99.7% of dissolved Cd and Zn respectively, at a pH of 7 and temperature of 30 °C. B. diminuta reduced the dissolved concentrations of Cd and Zn below the threshold levels in water. The 3D-EEM analysis revealed the presence of extracellular polymeric substances (EPS) such as tryptophan indicating bacterial growth under Cd/Zn stress. FTIR showed polysaccharides, CO32-, CaCO3, PO43-, and proteins, which may enhance bacterial growth and metal precipitation. SEM-EDS confirmed the leaf-like and granular shape of the biological precipitation and reduction in the percent weight of TMs, which promoted the adhesion/adsorption of Cd2+, Zn2+, and Ca2+. Moreover, XRD analysis confirmed the precipitation of Cd, Zn, and Ca in the form of CdCO3/Cd3(PO4)2, ZnCO3/ZnHPO4/Zn2(OH)PO4/Zn3(PO4)2, and CaCO3/Ca5(PO3)4OH, respectively. These findings indicate that Brevundimonas diminuta can be used for the bioremediation of TMs-contaminated aquatic environments.
Collapse
Affiliation(s)
- Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, 11099, Taif 21944, Saudi Arabia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| |
Collapse
|
46
|
Li X, Xu J, Shi J, Luo X. Rapid and efficient adsorption of tetracycline from aqueous solution in a wide pH range by using iron and aminoacetic acid sequentially modified hierarchical porous biochar. BIORESOURCE TECHNOLOGY 2022; 346:126672. [PMID: 34998926 DOI: 10.1016/j.biortech.2022.126672] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 05/27/2023]
Abstract
The object of this work was to synthesize an iron and aminoacetic acid sequentially modified hierarchical porous biochar (AC-Fe@HPBC) for tetracycline (TC) removal from aqueous solution. Results showed that AC-Fe@HPBC had a larger surface area (362.5370 m2/g), developed microporous structure (0.1802 cm3/g), and numerous functional groups, which provided more adsorption sites. The maximum adsorption capacity towards TC by AC-Fe@HPBC was 457.85 mg/g, 1.43, 1.29 and 1.20-fold than that of HPBC, AC@PHBC and Fe@HPBC, respectively, and the super-fast adsorptive equilibrium was achieved within 10 min. Additionally, introducing amino and carboxyl functional groups on the AC-Fe@HPBC surface significantly broadened the operation pH range (3-11). Site energy analysis indicated TC and AC-Fe@HPBC had stronger adsorption affinity at a higher temperature. The adsorption mechanism involved pore filling, surface complexation, H-bond and π-π interaction. Moreover, the reusability experiments proved AC-Fe@HPBC as an effective adsorbent for TC removal from aqueous solution.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, PR China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, PR China; Key Laboratory of Environmental Engineering, Shaanxi Province, PR China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, PR China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, PR China; Key Laboratory of Environmental Engineering, Shaanxi Province, PR China.
| | - Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, PR China; State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Xianxin Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
47
|
Wang Z, Su J, Ali A, Zhang R, Yang W, Xu L, Shi J, Gao Z. Synergistic removal of fluoride from groundwater by seed crystals and bacteria based on microbially induced calcium precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150341. [PMID: 34563912 DOI: 10.1016/j.scitotenv.2021.150341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A new hypothesis that seed crystals (SC) and bacteria based on microbially induced calcium precipitation (MICP) synergistically remove fluoride (F-) from groundwater was proposed, with a focus on evaluating the defluoridation potential of this method and revealing its F- removal mechanism. The crucial conditions were optimized to reduce preparation and operation costs. SC furnished more available binding sites due to the existence of bacteria, and the reuse experiments showed that the defluoridation efficiency of SC still remained a high level after 14 cycles (70.10%), with a residual F- concentration of 0.96 mg L-1. The SEM-EDS, FTIR and XRD analyses indicated the predominant F- removal mechanism of SC could be ascribed to the chemisorption, ion exchange, and co-precipitation. Moreover, ion exchange and co-precipitation (PO43- involvement) were validated more contributive than chemisorption (CaCO3 and CaSO4 involvement). As a feasible, reusable, and eco-friendly technique, SC suggests promising applications in the treatment of fluoride-contaminated groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
48
|
Yanchatuña Aguayo OP, Mouheb L, Villota Revelo K, Vásquez-Ucho PA, Pawar PP, Rahman A, Jeffryes C, Terencio T, Dahoumane SA. Biogenic Sulfur-Based Chalcogenide Nanocrystals: Methods of Fabrication, Mechanistic Aspects, and Bio-Applications. Molecules 2022; 27:458. [PMID: 35056773 PMCID: PMC8779671 DOI: 10.3390/molecules27020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Bio-nanotechnology has emerged as an efficient and competitive methodology for the production of added-value nanomaterials (NMs). This review article gathers knowledge gleaned from the literature regarding the biosynthesis of sulfur-based chalcogenide nanoparticles (S-NPs), such as CdS, ZnS and PbS NPs, using various biological resources, namely bacteria, fungi including yeast, algae, plant extracts, single biomolecules, and viruses. In addition, this work sheds light onto the hypothetical mechanistic aspects, and discusses the impact of varying the experimental parameters, such as the employed bio-entity, time, pH, and biomass concentration, on the obtained S-NPs and, consequently, on their properties. Furthermore, various bio-applications of these NMs are described. Finally, key elements regarding the whole process are summed up and some hints are provided to overcome encountered bottlenecks towards the improved and scalable production of biogenic S-NPs.
Collapse
Affiliation(s)
- Oscar P. Yanchatuña Aguayo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri B.P.17 RP, Tizi-Ouzou 15000, Algeria;
| | - Katherine Villota Revelo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Paola A. Vásquez-Ucho
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Prasad P. Pawar
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10051, Beaumont, TX 77710, USA; (P.P.P.); (C.J.)
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., P.O. Box 10888, Beaumont, TX 77710, USA;
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., P.O. Box 10888, Beaumont, TX 77710, USA;
| | - Clayton Jeffryes
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10051, Beaumont, TX 77710, USA; (P.P.P.); (C.J.)
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
| | - Thibault Terencio
- School of Chemical Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Si Amar Dahoumane
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
49
|
Li X, Shi J, Luo X. Enhanced adsorption of rhodamine B from water by Fe-N co-modified biochar: Preparation, performance, mechanism and reusability. BIORESOURCE TECHNOLOGY 2022; 343:126103. [PMID: 34634463 DOI: 10.1016/j.biortech.2021.126103] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
To adsorb rhodamine B (RhB) in wastewater by pristine biochar was limited, while the modified biochar has shown great potential adsorption performance. Here, coconut shell mixed with FeSO4·7H2O and urea was prepared to synthesize Fe-N co-modified biochar by once pyrolysis method at 500℃. The results showed Fe-N-BC had larger surface area (972.8714 m2·g-1), higher developed porous structure (0.65016 cm3·g-1), and more oxygen-containing groups, which collectively contributed to significantly improve the adsorption performance of the Fe-N-BC towards RhB. The maximum adsorption capacity of RhB reached 12.41 mg·g-1 by Fe-N-BC which was 1.58, 1.43 and 1.26 folds than that of BC, N-BC and Fe-BC, respectively. The mechanism of adsorption for Fe-N-BC towards RhB including ion exchange, pore filling, surface complexation, H-bond and π-π interaction. This study indicates that Fe-N-BC is an excellent adsorbent for RhB removal from wastewater.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, PR China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, PR China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, PR China; State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Xianxin Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
50
|
Li W, Dai R, Al-shiaani NHA, Li J, Sun C, Wang K, Chen K, Guo A, Liu H. High-efficiency N-doped activated carbon-based defluoridation adsorbent prepared from itaconic acid fermentation waste liquid. NEW J CHEM 2022. [DOI: 10.1039/d2nj03699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Excessive amounts of fluoride in water cause irreversible harm to people and seriously threaten human health.
Collapse
Affiliation(s)
- Weining Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Renwei Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Nabil. H. A. Al-shiaani
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Jiakang Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Chengyu Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Kunyin Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Kun Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - Aijun Guo
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| | - He Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, China
| |
Collapse
|