1
|
Xiong X, Li Y, Zhang C. Enhanced phosphorus removal from anoxic water using oxygen-carrying iron-rich biochar: Combined roles of adsorption and keystone taxa. WATER RESEARCH 2024; 266:122433. [PMID: 39276477 DOI: 10.1016/j.watres.2024.122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Anthropogenic enrichment of phosphorus (P) in water environment can cause eutrophication, harmful algal blooms, and water quality deterioration. Adsorbents are often used for the removal and recovery of P from water, however, P is highly susceptible to re-release in anoxic benthic environments. As a response, this study prepared oxygen-carrying iron-rich biochar (O-Fe-BC) as an effective oxygen micro-nanobubble carrier (Q = 8.7024 cm³/g STP at 1.5 MPa) and P adsorbent (qm = 16.7097 mg P/g, q0.1 = 3.1974 mg P/g). Over the 90-day experimental period with O-Fe-BC, dissolved oxygen (DO) levels in the overlying water could maintain at ∼4 mg/L (peaking at ∼9.5 mg/L), and total phosphorus (TP) and soluble reactive phosphorus (SRP) levels decreased by over 96 %. The higher inorganic phosphorus content in the surface sediment-biochar mixture, along with the lower labile P and Fe concentration in the sediment pore water in the O-Fe-BC group compared to other groups, suggested the enhanced P immobilization. Further mechanism exploration revealed the combined roles of adsorption and microbial response, in which O-Fe-BC achieved efficient phosphate adsorption primarily through inner-sphere complexation via ligand exchange and keystone taxa (particularly Candidatus Electronema) played a crucial role in driving water chemistry divergence. Specially, these cable bacteria could provide large pools of Fe oxides in the surface sediment, binding with P to prevent its release, as supported by significant correlations between Ca. Electronema abundance and oxidation-reduction potential (ORP), TP, SRP, and sediment Fe-P variations. Additionally, a pot experiment with mung bean seedlings showed that the recovered O-Fe-BC significantly promoted the seed germination and growth, indicating its potential as a novel material for removing and recovering P from eutrophic waters. Taken together, our work provided a promising strategy for sustainable anoxia and P pollution mitigation, and also highlighted the indispensable roles of inner-sphere adsorption in P recovery and microbial keystone taxa in P cycling regulation.
Collapse
Affiliation(s)
- Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China.
| | - Chi Zhang
- College of Materials Science and Engineering, Hohai University, Changzhou 213200, PR China.
| |
Collapse
|
2
|
Abd-Rabboh HSM, Kamel AH. Aminated reduced graphene oxide-CuFe 2O 4 nanohybride adsorbent for efficient removal of imidacloprid pesticide. RSC Adv 2024; 14:31683-31693. [PMID: 39376530 PMCID: PMC11457006 DOI: 10.1039/d4ra03720k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
To remove organic and inorganic agrochemicals from contaminated soil and water, adsorption has been regarded as a viable remediation approach. For the removal of organic pollutants, such as pesticides, cost-effective adsorbents have garnered a lot of interest. These include waste-derived materials, clay composites, metal-organic frameworks (MOFs), nanocomposites, and biochar-modified materials. In this study, copper ferrite (CuFe2O4) was prepared, characterized, and modified with aminated reduced graphene oxide (Am-rGO) to form a CuFe2O4/Am-rGO nanocomposite for the effective removal of imidacloprid (IMD) from water. The Langmuir isotherm model was used to determine the maximum adsorption capacity of the adsorbent (CuFe2O4/Am-rGO), which was estimated to be 13.1 (±1.5) mg g-1. At 0.5 mg L-1 IMD, the adsorbents were able to extract up to 97.8% of the IMD from the aqueous solution. The Freundlich model and the pseudo second-order model agreed well with the experimental data, proving that physisorption and chemosorption both played a role in the sorption process. CuFe2O4/Am-rGO nanocomposite offers high stability and improved reusability due to its improved removal efficiency. After five adsorption-desorption cycles, there was no appreciable reduction in elimination. Additionally, after adsorption tests, IMD can be easily removed after adsorption by an external magnetic field. These showed that Am-rGO had changed the surface of CuFe2O4 to make it easier for IMD to stick to it in aqueous solutions. When used adsorbent is co-processed with ethanol extraction and ultrasound cavitation, it can be regenerated and still work well as an adsorbent. Furthermore, CuFe2O4/Am-rGO demonstrated its environmental safety and ability to continue absorbing IMD across a variety of diverse matrices. As a result, this study demonstrates that CuFe2O4/Am-rGO is a long-lasting, easily prepared, and efficient adsorbent for the removal of IMD as one of the neonicotinoids.
Collapse
Affiliation(s)
- Hisham S M Abd-Rabboh
- Chemistry Department, College of Science, King Khalid University Abha 62223 Saudi Arabia
| | - Ayman H Kamel
- Chemistry Department, Faculty of Science, Ain Shams University PO Box 11655 Cairo Egypt +201000361328
- Chemistry Department, College of Science, University of Bahrain Sakhir 32038 Bahrain +97332085874
| |
Collapse
|
3
|
Arabzadeh Nosratabad N, Yan Q, Cai Z, Wan C. Exploring nanomaterial-modified biochar for environmental remediation applications. Heliyon 2024; 10:e37123. [PMID: 39315228 PMCID: PMC11417198 DOI: 10.1016/j.heliyon.2024.e37123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Environmental pollution, particularly from heavy metals and toxic elements, poses a significant threat to both human health and ecological systems. While various remediation technologies exist, there is an urgent need for cost-effective and sustainable solutions. Biochar, a carbon-rich product derived from the pyrolysis of organic matter, has emerged as a promising material for environmental remediation. However, its pristine form has limitations, such as low adsorption capacities, a relatively narrow range of pH adaptability which can limit its effectiveness in diverse environmental conditions, and a tendency to lose adsorption capacity rapidly in the presence of competing ions or organic matters. This review aims to explore the burgeoning field of nanomaterial-modified biochar, which seeks to overcome the limitations of pristine biochar. By incorporating nanomaterials, the adsorptive and reactive properties of biochar can be significantly enhanced. Such modifications, especially biochar supported with metal nanoparticles (biochar-MNPs), have shown promise in various applications, including the removal of heavy metals, organic contaminants, and other inorganic pollutants from aqueous environments, soil, and air. This review provides a comprehensive overview of the synthesis techniques, characterization methods, and applications of biochar-MNPs, as well as discusses their underlying mechanisms for contaminant removal. It also offers insights into the advantages and challenges of using nanomaterial-modified biochar for environmental remediation and suggests directions for future research.
Collapse
Affiliation(s)
- Neda Arabzadeh Nosratabad
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Qiangu Yan
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Zhiyong Cai
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
Cheng Y, Wang H, Wu Y, Ding Y, Peng C, Qi C, Xu A, Liu Y. Light-powered biodegradation of Imidacloprid by Scenedesmus sp. TXH202001: Assessing complete removal, metabolic pathways, and toxicity verification. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135345. [PMID: 39084013 DOI: 10.1016/j.jhazmat.2024.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Imidacloprid (IMI) is used extensively as an insecticide and poses a significant risk to both the ecological environment and human health. Biological methods are currently gaining recognition among the different strategies tested for wastewater treatment. This study focused on evaluating a recently discovered green alga, Scenedesmus sp. TXH202001, isolated from a municipal wastewater treatment plant (WWTP), exhibited notable capacity for IMI removal. After an 18-day evaluation, medium IMI concentrations (50 and 100 mg/L) facilitated the growth of microalgae whereas low (5 and 20 mg/L) and high (150 mg/L) concentrations had no discernible impact. No statistically significant disparities were detected in Fv/Fm, Malonaldehyde or Superoxide dismutase across all concentrations, suggesting Scenedesmus sp. TXH202001 exhibited notable resilience and adaptability to IMI conditions. Most notably, Scenedesmus sp. TXH202001 successfully eliminated > 99 % of IMI within 18 days subjected to IMI concentrations as high as 150 mg/L, which was contingent on the environmental factor of illumination. Molecular docking was used to identify the chemical reaction sites between IMI and typical degrading enzyme CYP450. Furthermore, the study revealed that the primary path for IMI removal was biodegradation and verified that the toxicity of the degraded product was lower than parent IMI in Caenorhabditis elegans. The efficacy of Scenedesmus sp. TXH202001 in wastewater was exceptional, thereby validating its practical utility.
Collapse
Affiliation(s)
- Yongtao Cheng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Hongyu Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430072, China
| | - Yuanyuan Wu
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yuting Ding
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chuanyue Peng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Cuicui Qi
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei 230061, China
| | - An Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Ying Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| |
Collapse
|
5
|
Hamid Y, Chen Y, Lin Q, Haris M, Usman M, Saqib Rashid M, Anastopoulos I, Hussain B, Ali HM, Hannan F, Yin X, Yang X. Functionality of wheat straw-derived biochar enhanced its efficiency for actively capping Cd and Pb in contaminated water and soil matrices: Insights through batch adsorption and flow-through experiments. CHEMOSPHERE 2024; 362:142770. [PMID: 38969230 DOI: 10.1016/j.chemosphere.2024.142770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The impact of functionality of biochar on pressing environmental issue of cadmium (Cd) and lead (Pb) co-contamination in simultaneous soil and water systems has not sufficiently reported. This study investigated the impact of Fe- and Mg-functionalized wheat straw biochar (Fe-WSBC and Mg-WSBC) on Cd and Pb adsorption/immobilization through batch sorption and column leaching trials. Importantly, Fe-WSBC was more effective in adsorbing Cd and Pb (82.84 and 111.24 mg g-1), regeneration ability (removal efficiency 94.32 and 92.365), and competitive ability under competing cations (83.15 and 84.36%) compared to other materials (WSBC and Mg-WSBC). The practical feasibility of Fe-WSBC for spiked river water verified the 92.57% removal of Cd and 85.73% for Pb in 50 mg L-1 and 100 mg L-1 contamination, respectively. Besides, the leaching of Cd and Pb with Fe-WSBC under flow-through conditions was lowered to (0.326 and 17.62 mg L-1), respectively as compared to control (CK) (0.836 and 40.40 mg L-1). In short, this study presents the applicable approach for simultaneous remediation of contaminated water and soil matrices, offering insights into environmentally friendly green remediation strategies for heavy metals co-contaminated matrices.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonglong Chen
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47100, Arta, Greece
| | - Bilal Hussain
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Xianyuan Yin
- Beautiful Village Construction Center of Quzhou Agriculture and Rural Affairs Bureau, Quzhou, 324002, China.
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Cui S, Lv J, Hough R, Fu Q, Zhang Z, Dong X, Fan X, Li YF. Imidacloprid removal by modified graphitic biochar with Fe/Zn bimetallic oxides. ENVIRONMENTAL RESEARCH 2024; 258:119444. [PMID: 38914251 DOI: 10.1016/j.envres.2024.119444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Coping with the critical challenge of imidacloprid (IMI) contamination in sewage treatment and farmland drainage purification, this study presents a pioneering development of an advanced modified graphitic white melon seed shells biochar (Fe/Zn@WBC). The Fe/Zn@WBC demonstrates a substantial enhancement in adsorption efficiency for IMI, achieving a remarkable removal rate of 87.69% within 30 min and a significantly higher initial adsorption rate parameter h = 4.176 mg g-1·min-1. This significant improvement outperforms WBC (12.22%, h = 0.115 mg g-1·min-1) and highlights the influence of optimized adsorption conditions at 900 °C and the graphitization degree resulting from Fe/Zn bimetallic oxide modification. Characterization analysis and batch sorption experiments including kinetics, isotherms, thermodynamics and pH factors illustrate that chemical adsorption is the main type of adsorption mechanism responsible for this superior ability to remove IMI through pore filling, hydrogen bonding, hydrophobic interaction, electrostatics interaction, π-π interactions as well as complexation processes. Furthermore, we demonstrate exceptional stability of Fe/Zn@WBC across a broad pH range (pH = 3-11), co-existing ions presence along with humic acid under various real water conditions while maintaining high removal efficiency. This study presents an advanced biochar adsorbent, Fe/Zn@WBC, with efficient adsorption capacity and easy preparation. Through three regeneration cycles via pyrolysis method, it demonstrates excellent pyrolysis regeneration capabilities with an average removal efficiency of 92.02%. The magnetic properties enable rapid separation facilitated by magnetic analysis. By elucidating the efficacy and mechanistic foundations of Fe/Zn@WBC, this research significantly contributes to the field of environmental remediation by providing a scalable solution for IMI removal and enhancing scientific understanding of bimetallic oxides-hydrophilic organic pollutant interactions.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Jialin Lv
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zulin Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Xiaolong Dong
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiaohu Fan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
7
|
Cheng Y, Quan L, Vadiveloo A, Yang L, Saber AA, Lan S, A Alsaif SS, Wang Z, Wu L. Optimizing the algae-bacteria biofilm reactor for imidacloprid wastewater treatment: An evaluation of hydraulic retention times for enhanced efficiency and energy savings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120420. [PMID: 38387358 DOI: 10.1016/j.jenvman.2024.120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Recent observations have highlighted the rapidly growing prevalence of emerging contaminants such as Imidacloprid (IMI) within our environment. These insecticidal pollutants, coexisting with more traditional contaminants, have become predominant in aquatic systems, posing risks to both human and ecological well-being. Among the various wastewater treatment approaches tested, biofilm reactors are currently gaining prominence. In this study, we employed an Algae-Bacteria Biofilm Reactor (ABBR) to concurrently address both conventional and emergent contaminants, specifically IMI, over an extended timeframe. Following a 60-day assessment, the ABBR consistently demonstrated removal efficiencies exceeding 85% for total dissolved nitrogen, ammonia nitrogen, and total dissolved phosphorus, and also achieved removal efficacy for the soluble chemical oxygen demand (sCOD). Despite the removal efficiency of IMI (with initial concentration is 1.0 mg/L) in ABBR showed a gradual decline over the extended period, it remained consistently effective over 50% due to the microalgae-mediated free radical reactions, indicating the ABBR's sustained efficiency in long-duration operations. Additionally, applying some non-conventional modifications, like aeration removal and reducing light exposure, demonstrated minimal impact on the reactor's pollutant removal efficiencies, achieving comparable results to the control group (which utilized aeration with a 14:10 light/dark ratio), 0.92 kW h/L/d of electricity can be saved economically, which accentuated the potential for energy conservation. An in-depth analysis of the treated effluents from the ABBRs, using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique, uncovered four potential transformation pathways for IMI. Overall, our findings suggest that these optimized processes did not influence the transformation products of IMI, thereby reaffirming the viability of our proposed optimization.
Collapse
Affiliation(s)
- Yongtao Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, 130117, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Linghui Quan
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Lie Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Abdullah A Saber
- Botany Department, Faculty of Science, Ain Shams University, Abbassia Square, Cairo, 11566, Egypt
| | - Shubin Lan
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science/School of Environment, Northeast Normal University, Changchun, 130024, China
| | - Sara S A Alsaif
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zhaojun Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, 130117, China.
| | - Li Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, 130117, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China.
| |
Collapse
|
8
|
Camparotto NG, de Figueiredo Neves T, de Souza Vendemiatti J, Dos Santos BT, Vieira MGA, Prediger P. Adsorption of contaminants by nanomaterials synthesized by green and conventional routes: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12683-12721. [PMID: 38253828 DOI: 10.1007/s11356-024-31922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Nanomaterials, due to their large surface area and selectivity, have stood out as an alternative for the adsorption of contaminants from water and effluents. Synthesized from green or traditional protocols, the main advantages and disadvantages of green nanomaterials are the elimination of the use of toxic chemicals and difficulty of reproducing the preparation of nanomaterials, respectively, while traditional nanomaterials have the main advantage of being able to prepare nanomaterials with well-defined morphological properties and the disadvantage of using potentially toxic chemicals. Thus, based on the particularities of green and conventional nanomaterials, this review aims to fill a gap in the literature on the comparison of the synthesis, morphology, and application of these nanomaterials in the adsorption of contaminants in water. Focusing on the adsorption of heavy metals, pesticides, pharmaceuticals, dyes, polyaromatic hydrocarbons, and phenol derivatives in water, for the first time, a review article explored and compared how chemical and morphological changes in nanoadsorbents synthesized by green and conventional protocols affect performance in the adsorption of contaminants in water. Despite advances in the area, there is still a lack of review articles on the topic.
Collapse
Affiliation(s)
| | | | | | - Bruna Toledo Dos Santos
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Patrícia Prediger
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil.
| |
Collapse
|
9
|
Davtalab M, Byčenkienė S, Uogintė I. Global research hotspots and trends on microplastics: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107403-107418. [PMID: 37199843 DOI: 10.1007/s11356-023-27647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
In recent years, microplastics have become an integral part of the terrestrial and aquatic environments, which is one of the major concerns of communities around the world. Therefore, it is necessary to know the current status of studies and feasible potentials in the future. This study, conducted an in-depth bibliometric analysis of publications from 1990 to 2022 to present the influential countries, authors, institutes, papers, and journals on microplastics. Findings reveal that there has been a steady increase in microplastic publications and citations in recent years. And, the number of publications and citations has increased 19 and 35 times since 2015. Besides, we performed a comprehensive keyword analysis to show the significant keywords and clusters in this field. In particular, this study used the TF-IDF method as a text-mining analysis to extract the new keywords used in recent years (i.e., 2020-2022). New keywords can draw the attention of scholars to important issues and provide a basis for future research directions.
Collapse
Affiliation(s)
- Mehri Davtalab
- Centre for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257, Vilnius, Lithuania.
| | - Steigvilė Byčenkienė
- Centre for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Ieva Uogintė
- Centre for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257, Vilnius, Lithuania
| |
Collapse
|
10
|
Shin J, Kwak J, Kim S, Son C, Kang B, Lee YG, Chon K. Enhanced selectivity and recovery of phosphate and nitrate ions onto coffee ground waste biochars via co-precipitation of Mg/Al layered double hydroxides: A potential slow-release fertilizer. ENVIRONMENTAL RESEARCH 2023; 231:116266. [PMID: 37257744 DOI: 10.1016/j.envres.2023.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
In this study, the feasibility of Mg/Al layered double hydroxides (LDH) functionalized coffee ground waste biochars (LDHMgAl@CWGB) as a potential adsorbent to selectively recover phosphate (PO43-) and nitrate (NO3-) ions in aqueous phases and their consecutive uses as a slow-release fertilizer for stimulating the plant growth were identified. The higher adsorption capacity of PO43- and NO3- ions by LDHMgAl@CWGB (PO43- = 6.98 mgP/g, NO3- = 2.82 mgN/g) compared with pristine coffee ground waste biochars (CWGB; PO43- = 0.19 mgP/g, NO3- = 0.32 mgN/g) was mainly due to the incorporation of Mg/Al mixed oxides and Cl contents. Chemisorption and intra-particle mainly controlled the adsorptive recovery of PO43- and NO3- ions by CWGB and LDHMgAl@CWGB in aqueous phases and their adsorption toward CWGB and LDHMgAl@CWGB proceeded endothermically and spontaneously. The changes in the major adsorption mechanisms of PO43- and NO3- ions from ligand exchange (CWGB) to electrostatic surface complexation and anion-exchange (LDHMgAl@CWGB) supported the conclusion that the alternation of the surface features through Mg/Al LDH functionalization might improve selectivity and adsorption capacity of PO43- and NO3- ions onto CWGB under the co-existence of Cl-, SO42-, and HCO3- ions. Since PO43-- and NO3--loaded LDHMgAl@CWGB exhibited much higher seed germination, root and shoot growth rates of garden cress seeds (Lepidium sativum L) than other liquid and solid matrices, including 5 mgP/L PO43- and 5 mgN/L NO3-, 10 mgP/L PO43- and 10 mgN/L NO3-, and LDHMgAl@CWGB, it can be postulated that PO43-- and NO3--loaded LDHMgAl@CWGB could be practically applicable to the agricultural field as a slow-release fertilizer to facilitate the seed germination, root and shoot growth of the plants.
Collapse
Affiliation(s)
- Jaegwan Shin
- Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| | - Jinwoo Kwak
- Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sangwon Kim
- Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Changgil Son
- Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Beomseok Kang
- Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
11
|
Srikhaow A, Win EE, Amornsakchai T, Kiatsiriroat T, Kajitvichyanukul P, Smith SM. Biochar Derived from Pineapple Leaf Non-Fibrous Materials and Its Adsorption Capability for Pesticides. ACS OMEGA 2023; 8:26147-26157. [PMID: 37521671 PMCID: PMC10373191 DOI: 10.1021/acsomega.3c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Non-fibrous materials (NFMs) are typically discarded during pineapple leaf fiber processing. The underutilized NFM waste was proposed for use in this work as a raw material for the production of biochar . The removal of pesticides (acetamiprid, imidacloprid, or methomyl) from water was then investigated using the NFM derived biochar (NFMBC). The pseudo-second-order kinetic data suggested chemisorption of pesticide on NFMBC. While acetamiprid or imidacloprid adsorption on NFMBC occurred primarily via multi-layered adsorption (best fitted with the Freundlich isotherms), the Sips adsorption isotherms matched with the experimental data, implying heterogeneous adsorption of methomyl on the biochar surface. The adsorption capacities for acetamiprid, methomyl, and imidacloprid are 82.18, 36.16, and 28.98 mg g-1, respectively, which are in agreement with the order of the polarity (low to high) of pesticides. Adsorption capacities indicated that the NFMBC preferably removed low-polarity pesticides from water sources. Since pineapple leaves provide fibers and NFMs for materials development, this study should promote an extended agro-waste utilization approach and full-cycle resource management in pineapple fields.
Collapse
Affiliation(s)
- Assadawoot Srikhaow
- Center
of Sustainable Energy and Green Materials and Department of Chemistry,
Faculty of Science, Mahidol University, 999 Phuttamonthon Sai 4 Rd, Salaya, Nakhon Pathom 73170, Thailand
| | - Ei Ei Win
- Center
of Sustainable Energy and Green Materials and Department of Chemistry,
Faculty of Science, Mahidol University, 999 Phuttamonthon Sai 4 Rd, Salaya, Nakhon Pathom 73170, Thailand
| | - Taweechai Amornsakchai
- Center
of Sustainable Energy and Green Materials and Department of Chemistry,
Faculty of Science, Mahidol University, 999 Phuttamonthon Sai 4 Rd, Salaya, Nakhon Pathom 73170, Thailand
| | - Tanongkiat Kiatsiriroat
- Department
of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, 239, Huay Kaew Road, Muang District, Chiang
Mai 50200, Thailand
| | - Puangrat Kajitvichyanukul
- Department
of Environmental Engineering, Faculty of Engineering, Chiang Mai University, 239, Huay Kaew Road, Muang District, Chiang
Mai 50200, Thailand
- Sustainable
Engineering Research Center for Pollution and Environmental Management,
Faculty of Engineering, Chiang Mai University, 239, Huay Kaew Road, Muang District, Chiang Mai 50200, Thailand
| | - Siwaporn M. Smith
- Center
of Sustainable Energy and Green Materials and Department of Chemistry,
Faculty of Science, Mahidol University, 999 Phuttamonthon Sai 4 Rd, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
12
|
Bhende RS, Dafale NA. Insights into the ubiquity, persistence and microbial intervention of imidacloprid. Arch Microbiol 2023; 205:215. [PMID: 37129684 DOI: 10.1007/s00203-023-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention. This review concisely outlines the toxicity, long-term environmental repercussions, degradation kinetics, biochemical pathways, and interplay of genes implicated in imidacloprid remediation. The studies have highlighted imidacloprid residue persistence in the environment for up to 3000 days. In view of high persistence, effective intervention is highly required. Bacteria-mediated degradation has been established as a viable approach with Bacillus spp. being among the most efficient at 30 ℃ and pH 7. Further, a comparative metagenomic investigation reveals dominant neonicotinoid degradation genes in agriculture compared to forest soils with distinctive microbial communities. Functional metabolism of carbohydrates, amino acids, fatty acids, and lipids demonstrated a significantly superior relative abundance in forest soil, implying its quality and fertility. The CPM, CYP4C71v2, CYP4C72, and CYP6AY3v2 genes that synthesize cyt p450 monooxygenase enzyme play a leading role in imidacloprid degradation. In the future, a systems biology approach incorporating integrated kinetics should be utilized to come up with innovative strategies for moderating the adverse effects of imidacloprid on the environment.
Collapse
Affiliation(s)
- Rahul S Bhende
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
13
|
He L, Wu L, Shen S, Li Y, Chen S, Xue J, Yang S, Zhang Z, Wu L, Yang L. A novel Fe-PTFE magnetic composite prepared by ball milling for the efficient degradation of imidacloprid: Insights into interaction mechanisms based on ultrasonic piezoelectric catalysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161082. [PMID: 36565875 DOI: 10.1016/j.scitotenv.2022.161082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
In this study, a novel magnetic poly (tetrafluoroethylene, PTFE) (Fe@PTFE) piezoelectric catalytic material was successfully prepared by a simple ball milling treatment. The prepared piezoelectric catalytic material Fe@PTFE exhibited excellent catalytic performance under the activation of ultrasonic (US) and realized the efficient degradation of imidacloprid (IMI) at low concentrations in an aqueous environment. It was demonstrated by various characterization methods that Fe0 was successfully loaded onto PTFE particles (1-15 μm) by ball milling. The US/Fe@PTFE system exhibited superior IMI degradation efficiency (99 %) and degradation rate (7.81× 10-2 min-1) under ultrasonic polarization with high efficiences of IMI degradation after five cycles. In addition, the system maintained excellent removal efficiencies in the real water matrixes. The mechanism study demonstrated that Fe@PTFE generated a variety of reactive oxygen species (•OH, 1O2 and O2•-) and H2O2 under the irradiation of US, and the production of H2O2 provided the conditions for the continuation of the Fenton-like reaction. Furthermore, the presence of O2•- in the system enhanced the recycling efficiency of Fe(III) and Fe(II), which further enhanced the degradation efficiency of the Fenton-like process. This study provides a novel perspective on a PTFE-based ultrasonic piezoelectric catalytic system for the efficient removal of organic pollutants in the environmental field.
Collapse
Affiliation(s)
- Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lijuan Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shitai Shen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Siyu Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch 8440, New Zealand; College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shengmao Yang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, PR China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; The James Hutton Institute, Craigiebuckler, Aberdeen ABI5 8QH, UK
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
14
|
Fan Z, Zhou X, Peng Z, Wan S, Gao ZF, Deng S, Tong L, Han W, Chen X. Co-pyrolysis technology for enhancing the functionality of sewage sludge biochar and immobilizing heavy metals. CHEMOSPHERE 2023; 317:137929. [PMID: 36682641 DOI: 10.1016/j.chemosphere.2023.137929] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Sewage sludge (SS) is a frequent and challenging issue for countries with big populations, due to its massive output, significant hazard potential, and challenging resource utilization. Pyrolysis can simultaneously realize the reduction, harmlessness and recycling of SS. Co-pyrolysis offers a wide range of potential in terms of increasing product quality and immobilizing heavy metals (HMs), thanks to its capacity to use additives to address the mismatch between SS characteristics and pyrolysis. High-value utilization potential of SS biochar is the key to evaluating the advancement of treatment technology. A further requirement for using biochar resources is the immobilization and bioavailability reduction of HMs. Due to the catalytic and synergistic effects in the co-pyrolysis process, co-pyrolysis SS biochar exhibits enhanced functionality and has been applied in soil improvement, pollutant adsorption and catalytic reactions. This review focuses on the research progress of different additives in improving the functionality of biochar and influencing the behavior of HMs. The key limitation and challenges in SS co-pyrolysis are then discussed. Future research prospects are detailed from seven perspectives, including pyrolysis process optimization, co-pyrolysis additive selection, catalytic mechanism research of process and product, biochar performance improvement and application field expansion, cooperative immobilization of HMs, and life cycle assessment. This review will offer recommendations and direction for future research paths, while also assist pertinent researchers in swiftly understanding the current state of SS pyrolysis research field.
Collapse
Affiliation(s)
- Zeyu Fan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China.
| | - Xian Zhou
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Ziling Peng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Sha Wan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Zhuo Fan Gao
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Shanshan Deng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Luling Tong
- Wuhan Planning & Design Institute, Wuhan, 430000, China
| | - Wei Han
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Xia Chen
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China.
| |
Collapse
|
15
|
Li S, Zhang Z, Zhang C, He Y, Yi X, Chen Z, Hassaan MA, Nemr AE, Huang M. Novel hydrophilic straw biochar for the adsorption of neonicotinoids: kinetics, thermodynamics, influencing factors, and reuse performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29143-29153. [PMID: 36414889 DOI: 10.1007/s11356-022-24131-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nitenpyram (NIT) is the most water-soluble neonicotinoid (NEO). It has been shown to pose a serious threat to human health and the environment but was always ignored due to its limited market share. There were few experts who studied NIT's transport behavior on biochar. In this study, two types of biochar were co-activated separately using zinc chloride combined with phosphoric acid and potassium hydroxide combined with acetic acid, marked as ZBC and KBC. Characterizations suggested that hydrophilic ZBC and KBC had more surface functional groups than unmodified biochar (BC), and specific surface areas of ZBC (456.406 m2·g-1) and KBC (750.588 m2·g-1) were significantly higher than of BC (67.181 m2·g-1). The pore structures of KBC and ZBC were hierarchical porous structures with different pore sizes and typical microporous structure, respectively. The adsorption performance of either NIT or IMI on KBC was better than that on ZBC. Only 0.4 g·L-1 of KBC can absorb 89.62% of NIT in just 5 min. The equilibrium adsorption amounts of NIT on ZBC and KBC were 17.995 mg·g-1 and 82.910 mg·g-1. Elovich and Langmuir models were used to evaluate the whole adsorption process, which was attributed to the chemisorption mechanism. In addition, removal rates of NIT were negatively correlated to NIT's initial concentration and positively correlated to the dose of biochar. pH had almost no effect on adsorption, but the presence of salt ions can inhibit the removal of NIT. Long-term stabilities of biochars were also acceptable. These findings will promote the development in the preparation of biochar fields and provide a positive reference value for NEO removal.
Collapse
Affiliation(s)
- Shangzhen Li
- School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, Shaanxi, 710021, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhihong Zhang
- School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Chao Zhang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yutian He
- BASIS International School, Guangzhou, 510663, People's Republic of China
| | - Xiaohui Yi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhenguo Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Mohamed A Hassaan
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556, Alexandria, Egypt
| | - Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556, Alexandria, Egypt
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
- SCNU Qingyuan Institute of Science and Technology Innovation Co, Ltd, Qingyuan, 511517, People's Republic of China.
| |
Collapse
|
16
|
Ma Y, Tang J, Chen S, Yang L, Shen S, Chen X, Zhang Z. Ball milling and acetic acid co-modified sludge biochar enhanced by electrochemistry to activate peroxymonosulfate for sustainable degradation of environmental concentration neonicotinoids. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130336. [PMID: 36403449 DOI: 10.1016/j.jhazmat.2022.130336] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoids pose potential serious risks to human health even at environmental concentration and their removal from water is considered as a great challenge. A novel ball milling and acetic acid co-modified sludge biochar (BASBC) was the first time synthesized, which performed superior physicochemical characteristics including larger surface area, more defect structures and functional groups (e.g., CO and -OH). Electrochemistry was introduced to enhance BASBC for peroxymonosulfate (PMS) activation (E/BASBC/PMS) to degrade environmental concentration neonicotinoids (e.g., imidacloprid (IMI)). The degradation efficiency of IMI was 95.2% within 60 min (C0 (PMS)= 1 mM, E= 25 V, m (BASBC)= 10 mg). Solution pH and anionic species/concentrations were critical affecting factors. The scavenging and electron paramagnetic resonance experiments suggested that •OH and 1O2 were the dominant reactive oxygen species contributing to IMI degradation. Three degradation pathways were proposed and pathway Ⅲ was the main one. 86.1% of IMI were mineralized into non-toxic CO2 and H2O, and others were converted into less toxic intermediates. Also, E/BASBC/PMS system achieved the sustainable degradation of IMI in the cycle experiments. Additionally, it exhibited excellent degradation performance for other three typical neonicotinoids (96.6% of thiacloprid (THI), 96.5% of thiamethoxam (THX) and 82.6% of clothianidin (CLO)) with high mineralization efficiencies (87.8% of THI, 90.5% of THX and 75.4% of CLO).
Collapse
Affiliation(s)
- Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiayi Tang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Siyu Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Shitai Shen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
17
|
Gao Y, Fang Z, Lin W, Chen H, Bhatnagar A, Li J, Xie Y, Bao Y, Chen J, Zhao H, Meng J, Chen W, Wang H. Large-flake graphene-modified biochar for the removal of bisphenol S from water: rapid oxygen escape mechanism for synthesis and improved adsorption performance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120847. [PMID: 36496064 DOI: 10.1016/j.envpol.2022.120847] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The combined effects of graphene and biochar for enhanced adsorption of organic pollutants have not been demonstrated yet. Therefore, the mechanisms of graphene-modified biochar synthesis and its application to adsorption of contaminants remain unclear. In this study, the effect of flake-size graphene on biochar modification and its bisphenol S (BPS) adsorption performance was explored for the first time. Three sizes of graphene oxide were used as the precursor to prepare graphene/biochar composites using pyrolysis. It was found that the graphene with a small flake size was interspersed in the macropores of biochar, while the biochar was completely or mostly wrapped by the large-sized graphene sheet, which effectively prevented the agglomeration and pore blockage of biochar. Large-flake graphene oxide modified biochar (LGB) showed the highest adsorption capacity towards BPS, exhibiting 2.8 times higher adsorption than pristine biochar. Density functional theory (DFT) calculation suggested that the maximum diffusion barrier of O atoms in graphene coated cellulose (most frequently used biochar representative) could be reduced significantly (∼46%) at pyrolysis temperature of 873 K. Taking the advantage of small amount of graphene and enhanced adsorption performance, LGB could be a promising adsorbent for the removal of certain organic pollutants from wastewater and is conducive for the development of high-valued biochar modification.
Collapse
Affiliation(s)
- Yurong Gao
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Zheng Fang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Wenhui Lin
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Hanbo Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Jianhong Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yanhai Xie
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Yanping Bao
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Junfeng Chen
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Hongting Zhao
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Jun Meng
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Wenfu Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Guangdong Green Technologies Co., Ltd., Foshan, 528100, China.
| |
Collapse
|
18
|
Enhancement on Removal of Oxytetracycline in Aqueous Solution by Corn Stover Biochar: Comparison of KOH and KMnO4 Modifications. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Chen Y, Hassan M, Nuruzzaman M, Zhang H, Naidu R, Liu Y, Wang L. Iron-modified biochar derived from sugarcane bagasse for adequate removal of aqueous imidacloprid: sorption mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4754-4768. [PMID: 35974268 PMCID: PMC9892118 DOI: 10.1007/s11356-022-22357-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/28/2022] [Indexed: 06/05/2023]
Abstract
Adsorption has been considered as a promising remediation technology to separate organic and inorganic agrochemicals from contaminated soil and water. Low-cost adsorbents, including waste derived materials, clay composites, biochar, and biochar modified materials, have attracted enormous attention for the removal of organic contaminants, including pesticides. In this study, iron-modified base-activated biochar (FeBBC) was prepared by pyrolysis (at 400 °C for 1 h) of iron-doped base (KOH) activated sugarcane bagasse for the removal of a widely used insecticide, namely imidacloprid (IMI) from water. The maximum adsorption capacity of the adsorbent (FeBBC) was calculated as 10.33 (± 1.57) mg/g from Langmuir isotherm model. The adsorbents could remove up to ~ 92% of IMI from aqueous solution at 23.8 mg/L IMI. Experimental data fitted well with the Freundlich model and pseudo-second-order model, demonstrating physisorption, as well as chemosorption, contributed to the sorption process. Even at highly acidic/basic solution pH, the FeBBC could remove substantial amount of IMI demonstrating hydrophobic interaction and pore diffusion play vital role for removal of IMI. The slight improving of IMI sorption with increasing solution pH indicated the sorption was also facilitated through ionic interaction alongside physical sorption. However, physical sorption including hydrophobic interaction and pore-filling interaction plays a vital role in the sorption of IMI.
Collapse
Affiliation(s)
- Yongliang Chen
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Masud Hassan
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
| | - Md Nuruzzaman
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
- Cooperative Research Centre for High Performance Soil (CRC SOIL), IDB Building, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Huiming Zhang
- Electron Microscope and X-Ray (EMX) Unit, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
- Cooperative Research Centre for High Performance Soil (CRC SOIL), IDB Building, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Ling Wang
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X. Biochar for the removal of contaminants from soil and water: a review. BIOCHAR 2022; 4:19. [DOI: doi.org/10.1007/s42773-022-00146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 06/25/2023]
Abstract
AbstractBiochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil.
Graphical Abstract
Collapse
|
21
|
Miao Z, Miao Z, Liu M, Xu S. Melatonin ameliorates imidacloprid-induced intestinal injury by negatively regulating the PGN/P38MAPK pathway in the common carp (Cyprinuscarpio). FISH & SHELLFISH IMMUNOLOGY 2022; 131:1063-1074. [PMID: 36375784 DOI: 10.1016/j.fsi.2022.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Imidacloprid (IMI), one of the most frequently used neonicotinoid insecticides in agriculture, is resided in surface water worldwide and poses a threat to aquatic organisms. Melatonin (MT) provides effective protection against insecticide-induced toxicity, nevertheless, the toxic effects and whether MT attenuates intestinal injury caused by IMI exposure in the common carps remains poorly explored. Previous studies have reported adverse effects of IMI exposure on intestinal health status. Therefore, we first demonstrated that IMI altered the composition and function of the intestinal microbiota, destroying the integrity of intestinal ultrastructure, increasing intestinal permeability. Meanwhile, metagenomic sequencing and ELISA kits results hypothesized that peptidoglycan (PGN) is an IMI-triggered intestinal microbial metabolite. Subsequently, we thus further elucidated that IMI induced an increase in intestinal tight junction permeability by inducing PGN secretion in vitro model. MT addition dramatically attenuated IMI-induced intestinal toxicity by remitting PGN synthesis and thus resecuring tight junction permeability, thereby reducing intestinal injury. SB203580 was supplied as a P38MAPK inhibitor to alleviate the increased permeability of tight junctions induced by IMI/PGN. Therefore, these findings confirmed that MT protects against IMI-induced intestinal injury by negatively regulating PGN/P38MAPK pathway to antagonize the increased tight junction permeability.
Collapse
Affiliation(s)
- Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
22
|
Kwak J, Lee SH, Shin J, Lee YG, Kim S, Son C, Ren X, Shin JK, Park Y, Chon K. Synthesis and applications of bismuth-impregnated biochars originated from spent coffee grounds for efficient adsorption of radioactive iodine: A mechanism study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120138. [PMID: 36089142 DOI: 10.1016/j.envpol.2022.120138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The adsorption of radioactive iodine, which is capable of presenting high mobility in aquatic ecosystems and generating undesirable health effects in humans (e.g., thyroid gland dysfunction), was comprehensively examined using pristine spent coffee ground biochar (SCGB) and bismuth-impregnated spent coffee ground biochar (Bi@SCGB) to provide valuable insights into the variations in the adsorption capacity and mechanisms after pretreatment with Bi(NO3)3. The greater adsorption of radioactive iodine toward Bi@SCGB (adsorption capacity (Qe) = 253.71 μg/g) compared to that for SCGB (Qe = 23.32 μg/g) and its reduced adsorption capability at higher pH values provide evidence that the adsorption of radioactive iodine with SCGB and Bi@SCGB is strongly influenced by the presence of bismuth materials and the electrostatic repulsion between their negatively charged surfaces and negatively charged radioactive iodine (IO3-). The calculated R2 values for the adsorption kinetics and isotherms support that chemisorption plays a crucial role in the adsorption of radioactive iodine by SCGB and Bi@SCGB in aqueous phases. The adsorption of radioactive iodine onto SCGB was linearly correlated with the contact time (h1/2), and the diffusion of intra-particle predominantly determined the adsorption rate of radioactive iodine onto Bi@SCGB (Cstage II (129.20) > Cstage I (42.33)). Thermodynamic studies revealed that the adsorption of radioactive iodine toward SCGB (ΔG° = -8.47 to -7.83 kJ/mol; ΔH° = -13.93 kJ/mol) occurred exothermically and that for Bi@SCGB (ΔG° = -15.90 to -13.89 kJ/mol; ΔH° = 5.88 kJ/mol) proceeded endothermically and spontaneously. The X-ray photoelectron spectroscopy (XPS) analysis of SCGB and Bi@SCGB before and after the adsorption of radioactive iodine suggest the conclusion that the change in the primary adsorption mechanism from electrostatic attraction to surface precipitation upon the impregnation of bismuth materials on the surfaces of spent coffee ground biochars is beneficial for the adsorption of radioactive iodine in aqueous phases.
Collapse
Affiliation(s)
- Jinwoo Kwak
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Sang-Ho Lee
- Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Sangwon Kim
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Changgil Son
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Xianghao Ren
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jae-Ki Shin
- Office for Busan Region Management of the Nakdong River, Korea Water Resources Corporation (K-water), Busan 49300, Republic of Korea
| | - Yongeun Park
- School of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea.
| |
Collapse
|
23
|
Yan P, Zou Z, Li X, Zhang L, Zhang L, Fu J, Wenyan H. Biochar changed the distribution of imidacloprid in a plant-soil-groundwater system. CHEMOSPHERE 2022; 307:136213. [PMID: 36037941 DOI: 10.1016/j.chemosphere.2022.136213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The use of biochar has increased, as its physicochemical properties reduce the adverse effects of pesticides. However, few studies have comprehensively investigated the effects of biochar on the distribution of pesticides in a plant-soil-groundwater system. In this study, a biochar produced from rice straw at 550 °C was chosen, and column experiments with five rated of biochar application (application rates = 0.0, 1.0, 2.0, 3.0, and 4.0% w/w for B0-B4, respectively) were conducted to investigate the capacity of biochar to immobilize imidacloprid (IMI) in soil, thereby decreasing its uptake by plants and leaching from soil into groundwater. Our results showed that IMI in plants, leached from soil, and detected in soil accounted for 3.78, 1.76, and 36.4% of the total IMI input, respectively, and the biochar treatments dramatically decreased the IMI distribution to 0.57, 0.11, and 13.4%, respectively. By contrast, the percentage of undetected IMI increased from 58.1% in the B0 treatment to an average of 86.0% in the biochar treatments. Biochar treatments increased IMI immobilization in soil, which could be related to the increased soil carbon content, surface area, cation exchange capacity. This study indicates that biochar with characters of high surface area and porosity can stabilize IMI and reduce its potential to harm plants and groundwater.
Collapse
Affiliation(s)
- Peng Yan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zhenhao Zou
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Liping Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jianyu Fu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Han Wenyan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| |
Collapse
|
24
|
Tang J, Ma Y, Cui S, Ding Y, Zhu J, Chen X, Zhang Z. Insights on ball milling enhanced iron magnesium layered double oxides bagasse biochar composite for ciprofloxacin adsorptive removal from water. BIORESOURCE TECHNOLOGY 2022; 359:127468. [PMID: 35710050 DOI: 10.1016/j.biortech.2022.127468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Both ciprofloxacin (CIP) and sugarcane bagasse have brought enormous pressure on environmental safety. Here, an innovative technique combining Fe-Mg-layered double oxides and ball milling was presented for the first time to convert bagasse-waste into a new biochar adsorbent (BM-LDOs-BC) for aqueous CIP removal. The maximum theoretical adsorption capacity of BM-LDOs-BC reached up to 213.1 mg g-1 due to abundant adsorption sites provided by well-developed pores characteristics and enhanced functional groups. The results of characterization, data fitting and environmental parameter revealed that pore filling, electrostatic interactions, H-bonding, complexation and π-π conjugation were the key mechanisms for CIP adsorptive removal. BM-LDOs-BC exhibited satisfactory environmental safety and outstanding adsorption capacity under various environmental situations (pH, inorganic salts, humic acid). Moreover, BM-LDOs-BC possessed excellent reusability. These superiorities illustrated that BM-LDOs-BC was a promising adsorbent and created a new avenue for rational placement of biowaste and high-efficiency synthesis of biochar for antibiotic removal.
Collapse
Affiliation(s)
- Jiayi Tang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Song Cui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
25
|
Niu J, Cui C, Zhang Y, Zhang L, Li H, Zhang Y, Hu H, Zhang J, Xie Y. Magnetic Biochar Composites Modified with Branched Polyethyleneimine for Highly Efficient Cr(VI) Removal from Water. ChemistrySelect 2022. [DOI: 10.1002/slct.202201500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaojiao Niu
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Can Cui
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Yu Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Li Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Hongxiong Li
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Ying Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Hailiang Hu
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Jianhui Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Yadian Xie
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| |
Collapse
|
26
|
Shin J, Choi M, Go CY, Bae S, Kim KC, Chon K. NaOH-assisted H 2O 2 post-modification as a novel approach to enhance adsorption capacity of residual coffee waste biochars toward radioactive strontium: Experimental and theoretical studies. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129081. [PMID: 35650751 DOI: 10.1016/j.jhazmat.2022.129081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, NaOH-assisted H2O2 post-modification was proposed as a novel strategy to enhance the adsorption of radioactive strontium (Sr) onto residual coffee waste biochars (RCWBs). To validate its viability, the adsorption capacities and mechanisms of Sr(II) using pristine (RCWBP), H2O2 post-modified (RCWBHP), and NaOH-assisted H2O2 post-modified residual coffee waste biochars (RCWBNHP) were experimentally and theoretically investigated. The highest adsorption capacity of Sr(II) for RCWBNHP (10.91 mg/g) compared to RCWBHP (5.57 mg/g) and RCWBP (5.07 mg/g) was primarily attributed to higher negative surface zeta potential (RCWBNHP = -5.66 → -30.97 mV; RCWBHP = -0.31 → -11.29 mV; RCWBP = 1.90 → -10.40 mV) and decoration of Na on the surfaces of RCWBP via NaOH-assisted H2O2 post-modification. These findings agree entirely with the theoretical observations that the adsorption of Sr(II) onto RCWBP and RCWBHP was controlled by electrostatic interactions involving carbonyls whereas enriched carboxylic acids and decorated Na on the surfaces of RCWBNHP through the replacement of Mg and K by NaOH-assisted H2O2 modification stimulated electrostatic interactions and cation exchanges governing the adsorption of Sr(II). Hence, NaOH-assisted H2O2 post-modification seemed to be practically applicable for improving the adsorption capacity of Sr(II) using RCWB-based carbonaceous adsorbents in real water matrices.
Collapse
Affiliation(s)
- Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Minhee Choi
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chae Young Go
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ki Chul Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea.
| |
Collapse
|
27
|
Qu J, Shi J, Wang Y, Tong H, Zhu Y, Xu L, Wang Y, Zhang B, Tao Y, Dai X, Zhang H, Zhang Y. Applications of functionalized magnetic biochar in environmental remediation: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128841. [PMID: 35427975 DOI: 10.1016/j.jhazmat.2022.128841] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar (MBC) is extensively applied on contaminants removal from environmental medium for achieving environmental-friendly remediation with reduction of secondary pollution owing to its easy recovery and separation. However, the summary of MBC synthesis methods is still lack of relevant information. Moreover, the adsorption performance for pollutants by MBC is limited, and thus it is imperative to adopt modification techniques to enhance the removal ability of MBC. Unfortunately, there are few reviews to present modification methods of MBC with applications for removing hazardous contaminants. Herein, we critically reviewed (i) MBC synthetic methods with corresponding advantages and limitations; (ii) adsorption mechanisms of MBC for heavy metals and organic pollutants; (iii) various modification methods for MBC such as functional groups grafting, nanoparticles loading and element doping; (iv) applications of modified MBC for hazardous contaminants adsorption with deep insight to relevant removal mechanisms; and (v) key influencing conditions like solution pH, temperature and interfering ions toward contaminants removal. Finally, some constructive suggestions were put forward for the practical applications of MBC in the near future. This review provided a comprehensive understanding of using functionalized MBC as effective adsorbent with low-cost and high-performance characteristics for contaminated environment remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yihui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hua Tong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lishu Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Dai
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Hui Zhang
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
28
|
Ji J, Yuan X, Zhao Y, Jiang L, Wang H. Mechanistic insights of removing pollutant in adsorption and advanced oxidation processes by sludge biochar. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128375. [PMID: 35158240 DOI: 10.1016/j.jhazmat.2022.128375] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/19/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
With the accelerated industrialization, more and more sewage sludge (SS) needs to be treated properly. The conversion of sludge into harmless biochar material with dual utilization value of adsorption and catalysis by pyrolysis is in line with the concept of sustainable development. However, the reaction mechanisms of pristine sludge biochar (SDBC) and its composites (SDBCs) in adsorption, persulfate (PS), and Fenton-like advanced oxidation processes (AOPs) are very closely related to its adsorption performance and catalytic efficiency. In this paper, from the application mechanisms of SDBC in adsorption and AOPs, we review in detail the common methods for synthesizing SDBC and their characteristics. We discuss the synthesis techniques that affect the structural, chemical, and catalytic properties of SDBC, including gasification, pyrolysis, and hydrothermal carbonation (HTC). The pyrolysis temperature, environmental factors, and sludge characteristics have important effects on the properties of SDBC, leading to different mechanisms in adsorption and catalytic processes. Furthermore, this paper systematically generalizes the mechanisms of SDBCs in adsorption, where π-π interactions and electrostatic attractions are the main adsorption mechanisms. Then, activation mechanisms of SDBCs in PS and Fenton-like AOPs systems are discussed, including free radical pathways and non-free radical pathways. Finally, we present several challenges and perspectives for the application of SDBC and SDBCs in the field of adsorption, PS, and Fenton-like AOPs from the mechanistic point of views.
Collapse
Affiliation(s)
- Jingqin Ji
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yanlan Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
29
|
Li J, Su J, Wang Y, Yang Z, Yang Q. Efficient removal of hexavalent chromium by a novel magnetic zirconium-iron composite oxide (MZIO) from aqueous solution: Kinetic, isotherm, and mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Zeghioud H, Fryda L, Mahieu A, Visser R, Kane A. Potential of Flax Shives and Beech Wood-Derived Biochar in Methylene Blue and Carbamazepine Removal from Aqueous Solutions. MATERIALS 2022; 15:ma15082824. [PMID: 35454517 PMCID: PMC9029730 DOI: 10.3390/ma15082824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 01/27/2023]
Abstract
Flax shives and beech wood residues represent biomass streams that are abundant in Northwest Europe. These primary feedstocks were evaluated for their suitability to produce biochar as a low environmental-impact adsorbent. The efficacy of the produced biochars was tested by their adsorption capacity towards methylene blue (MB). A series of adsorption tests with carbamazepine is also presented, focusing on the better performing beech wood biochar. Post treatment of the biochars with citric acid (CA) and oxidation of the surface by heating at 250 °C in a muffle oven were carried out to enhance the adsorption capacities of both flax shives biochar (FSBC) and beech biochar (BBC). The resulting physicochemical characteristics are described. The thermally treated biochars have specific surface areas of 388 m2·g−1 and 272 m2·g−1 compared to the untreated biochars with 368 and 142 m2·g−1 for BBC and FSBC, respectively. CA treatment leads to enhancement of the oxygenated surface functional groups and the adsorption capacities of both studied biochars. The non-linear Langmuir and Freundlich models show the best fit for both the isotherm data for MB and the CMZ adsorption with a good correlation between the experimental and calculated adsorption capacities. The effect of adsorbent dosages and initial concentrations of MB and CMZ on the adsorption efficiency is discussed. It can be concluded that beech biochar is a very promising pollutant adsorbent only requiring a mild, low-cost, and low-environmental impact activation treatment for best performance.
Collapse
Affiliation(s)
- Hicham Zeghioud
- UniLaSalle-Ecole des Métiers de l’Environnement, Cyclann, Campus de Ker Lann, 35170 Bruz, France; (L.F.); (A.M.); (A.K.)
- Correspondence:
| | - Lydia Fryda
- UniLaSalle-Ecole des Métiers de l’Environnement, Cyclann, Campus de Ker Lann, 35170 Bruz, France; (L.F.); (A.M.); (A.K.)
| | - Angélique Mahieu
- UniLaSalle-Ecole des Métiers de l’Environnement, Cyclann, Campus de Ker Lann, 35170 Bruz, France; (L.F.); (A.M.); (A.K.)
| | - Rian Visser
- Department of Energy Transition, Dutch Institute of Applied Research TNO, Westerduinweg 3, 1755 LE Petten, The Netherlands;
| | - Abdoulaye Kane
- UniLaSalle-Ecole des Métiers de l’Environnement, Cyclann, Campus de Ker Lann, 35170 Bruz, France; (L.F.); (A.M.); (A.K.)
| |
Collapse
|
31
|
Khan AH, Khan NA, Zubair M, Azfar Shaida M, Manzar MS, Abutaleb A, Naushad M, Iqbal J. Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review. ENVIRONMENTAL RESEARCH 2022; 204:112243. [PMID: 34688648 DOI: 10.1016/j.envres.2021.112243] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In the last three decades, pharmaceutical research has increased tremendously to offer safe and healthy life. However, the high consumption of these harmful drugs has risen devastating impact on ecosystems. Therefore, it is worldwide paramount concern to effectively clean pharmaceuticals contaminated water streams to ensure safer environment and healthier life. Nanotechnology enables to produce new, high-technical material, such as membranes, adsorbent, nano-catalysts, functional surfaces, coverages and reagents for more effective water and wastewater cleanup processes. Nevertheless, nano-sorbent materials are regarded the most appropriate treatment technology for water and wastewater because of their facile application and a large number of adsorbents. Several conventional techniques have been operational for domestic wastewater treatment but are inefficient for pharmaceuticals removal. Alternatively, adsorption techniques have played a pivotal role in water and wastewater treatment for a long, but their rise in attraction is proportional with the continuous emergence of new micropollutants in the aquatic environment and new discoveries of sustainable and low-cost adsorbents. Recently, advancements in adsorption technique for wastewater treatment through nanoadsorbents has greatly increased due to its low production cost, sustainability, better physicochemical properties and high removal performance for pharmaceuticals. Herein, this review critically evaluates the performance of sustainable green nanoadsorbent for the remediation of pharmaceutical pollutants from water. The influential sorption parameters and interaction mechanism are also discussed. Moreover, the future prospects of nanoadsorbents for the remediation of pharmaceuticals are also presented.
Collapse
Affiliation(s)
- Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia.
| | - Nadeem Ahmad Khan
- Civil Engineering Department, Faculty of Engineering, Jamia Milia Islamia University, New Delhi, India
| | - Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31451, Saudi Arabia
| | - Mohd Azfar Shaida
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, P.O. Box 440020, India
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31451, Saudi Arabia
| | - Ahmed Abutaleb
- Department of Chemical Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, South Korea.
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| |
Collapse
|
32
|
Simultaneous adsorption of cobalt ions, azo dye, and imidacloprid pesticide on the magnetic chitosan/activated carbon@UiO-66 bio-nanocomposite: Optimization, mechanisms, regeneration, and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Ahmad S, Cui D, Zhong G, Liu J. Microbial Technologies Employed for Biodegradation of Neonicotinoids in the Agroecosystem. Front Microbiol 2021; 12:759439. [PMID: 34925268 PMCID: PMC8675359 DOI: 10.3389/fmicb.2021.759439] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Neonicotinoids are synthetic pesticides widely used for the control of various pests in agriculture throughout the world. They mainly attack the nicotinic acetylcholine receptors, generate nervous stimulation, receptor clot, paralysis and finally cause death. They are low volatile, highly soluble and have a long half-life in soil and water. Due to their extensive use, the environmental residues have immensely increased in the last two decades and caused many hazardous effects on non-target organisms, including humans. Hence, for the protection of the environment and diversity of living organism's the degradation of neonicotinoids has received widespread attention. Compared to the other methods, biological methods are considered cost-effective, eco-friendly and most efficient. In particular, the use of microbial species makes the degradation of xenobiotics more accessible fast and active due to their smaller size. Since this degradation also converts xenobiotics into less toxic substances, the various metabolic pathways for the microbial degradation of neonicotinoids have been systematically discussed. Additionally, different enzymes, genes, plasmids and proteins are also investigated here. At last, this review highlights the implementation of innovative tools, databases, multi-omics strategies and immobilization techniques of microbial cells to detect and degrade neonicotinoids in the environment.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Dongming Cui
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Mrozik W, Minofar B, Thongsamer T, Wiriyaphong N, Khawkomol S, Plaimart J, Vakros J, Karapanagioti H, Vinitnantharat S, Werner D. Valorisation of agricultural waste derived biochars in aquaculture to remove organic micropollutants from water - experimental study and molecular dynamics simulations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113717. [PMID: 34547568 PMCID: PMC8542888 DOI: 10.1016/j.jenvman.2021.113717] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
In this work, we evaluated the valorisation of agricultural waste materials by transforming coconut husks and shells, corncobs and rice straw into biochar for water treatment in aquaculture. We compared the biochars' suitability for removal of organic micropollutants (acetaminophen, oxytetracycline, tetracycline, enrofloxacin, atrazine, diuron and diclofenac) from surface water needed for aquaculture. The biochars were prepared by three methods ranging from inexpensive drum kilns (200 °C) to pyrolysis with biogasfication (350-750 °C). Overall, antibiotics tetracycline and enrofloxacin were the most strongly sorbed micropollutants, and coconut husk biochar prepared at 750 °C was the best sorbent material. Molecular Dynamics simulations indicated that the major sorption mechanism is via π-π stacking interactions and there is a possibility of multilayer sorption for some of the micropollutants. We observed, a strong impact of ionic strength (salinity), which is an important consideration in coastal aquaculture applications. High salinity decreased the sorption for antibiotics oxytetracycline, tetracycline and enrofloxacin but increased diclofenac, atrazine and diuron sorption. We considered coconut husk biochar produced in drum kilns the most practical option for biochar applications in small-scale coastal aquacultures in South Asia. Pilot trials of canal water filtration at an aquaculture farm revealed that micropollutant sorption by coconut husk biochar under real-world conditions might be 10-500 times less than observed in the laboratory studies. Even so, biochar amendment of sand enhanced the micropollutant retention, which may facilitate subsequent biodegradation and improve the quality of brackish surface water used for food production in coastal aquaculture.
Collapse
Affiliation(s)
- Wojciech Mrozik
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Babak Minofar
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333, Nové Hrady, Czech Republic.
| | - Thunchanok Thongsamer
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha-uthit road, Bangmod, Bangkok, 10140, Thailand
| | - Nathacha Wiriyaphong
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha-uthit road, Bangmod, Bangkok, 10140, Thailand
| | - Sasiwimol Khawkomol
- Energy and Environmental Engineering Center, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Jidapa Plaimart
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - John Vakros
- Department of Chemistry, University of Patras, Patras, 26504, Greece
| | | | - Soydoa Vinitnantharat
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha-uthit road, Bangmod, Bangkok, 10140, Thailand
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
35
|
Lu ZH, Lv DZ, Zhou DD, Yang ZH, Wang MY, Abdelhai Senosy I, Liu X, Chen M, Zhuang LY. Enhanced removal efficiency towards azole fungicides from environmental water using a metal organic framework functionalized magnetic lignosulfonate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
36
|
Shin J, Kwak J, Lee YG, Kim S, Son C, Cho KH, Lee SH, Park Y, Ren X, Chon K. Changes in adsorption mechanisms of radioactive barium, cobalt, and strontium ions using spent coffee waste biochars via alkaline chemical activation: Enrichment effects of O-containing functional groups. ENVIRONMENTAL RESEARCH 2021; 199:111346. [PMID: 34019898 DOI: 10.1016/j.envres.2021.111346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The single adsorption of radioactive barium (Ba(II)), cobalt (Co(II)), and strontium (Sr(II)) ions using pristine (SCWB-P) and chemically activated spent coffee waste biochars with NaOH (SCWB-A) were thoroughly explored in order to provide deeper insights into the changes in their adsorption mechanisms through alkaline chemical activation. The greater removal efficiencies of SCWB-A (76.6-97.3%) than SCWB-P (45.6-75.2%) and the consistency between the adsorptive removal patterns (Ba(II) > Sr(II) > Co(II)) and oxygen bond dissociation enthalpies (BaO (562 kJ/mol) > SrO (426 kJ/mol) > CoO (397 kJ/mol)) of radioactive species supported the assumption that the adsorption removal of radioactive species with spent coffee waste biochars highly depended on the abundances of O-containing functional groups. The calculated R2 values of the pseudo-first-order (SCWB-P = 0.998-0.999; SCWB-A = 0.850-0.921) and pseudo-second-order kinetic models (SCWB-P = 0.988-0.998; SCWB-A = 0.935-0.966) are evident that the physisorption mainly controlled the adsorption of radioactive species toward SCWB-P and the chemisorption played a crucial role in their adsorptive removal with SCWB-A. From the calculated intra-particle diffusion, isotherm, thermodynamic parameters, it can be concluded that the intra-particle diffusion and monolayer adsorption primarily governed the adsorption of radioactive species using SCWB-P and SCWB-A, and their adsorption processes occurred spontaneously and endothermically. The dominant adsorption mechanism of spent coffee waste biochars was changed from physisorption (ΔH° of SCWB-P = 21.6-29.8 kJ/mol) to chemisorption (ΔH° of SCWB-A = 42.4-81.3 kJ/mol) through alkaline chemical activation. The distinctive M-OH peak in the O1s XPS spectra of SCWB-A directly corresponding to the decrease in the abundances of O-containing functional groups confirms again that the enrichment of O-containing functional groups markedly facilitated the adsorption removal of radioactive species by chemisorption occurred at the inner and outer surfaces of spent coffee waste biochars.
Collapse
Affiliation(s)
- Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jinwoo Kwak
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sangwon Kim
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Changgil Son
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798, Republic of Korea
| | - Sang-Ho Lee
- Korea Hydro and Nuclear Power (KHNP) Central Research Institute, 50, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon, 34101, Republic of Korea
| | - Yongeun Park
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Xianghao Ren
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|