1
|
Jiang Y, Yang X, Jiang S, Cao H, Wang M, Li Z. Influence of biochar derived from Cd polluted silkworm excrement on the phytoavailability of Cd in a paddy soil and its accumulation in mulberry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117455. [PMID: 39632327 DOI: 10.1016/j.ecoenv.2024.117455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Developing sericulture industry is a promising model for the utilization of soils heavily contaminated with cadmium (Cd), but the management of polluted silkworm excrement (SE) becomes challenging. This study aimed to evaluate the effects of the SE biochar (SB) with Cd (SB-Cd) and without Cd (SB-Cd free) on the chemical properties of paddy soil, the mulberry leaf quality and the accumulation of Cd in mulberry. The soil incubation experiments showed that the two SBs all raised the acidic soil pH (20.24 %∼49.97 %) significantly (P < 0.05) with the increasing SB addition rates. The two SBs increased the soil cation exchange capacity (CEC) and played an essential role in reducing the phytoavailability of Cd. The pot experiment elucidated the two SBs all promoted the growth of mulberry, increased the crude protein content and the chlorophyll content, reduced the total sugar content in leaves. The Cd concentrations in root, stem, leaf were decreased with the increase of SB respectively, but no significant differences were found between the same additions of SB-Cd free and SB-Cd. The use of SB-Cd for remediation of the Cd polluted soils could be a reasonable method to address the Cd polluted SE.
Collapse
Affiliation(s)
- Yongbing Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; The Sericultural Research Institute of Hunan Province, Changsha 410127, PR China.
| | - Xiyun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Shimeng Jiang
- The Sericultural Research Institute of Hunan Province, Changsha 410127, PR China
| | - Hui Cao
- The Sericultural Research Institute of Hunan Province, Changsha 410127, PR China
| | - Ming Wang
- The Sericultural Research Institute of Hunan Province, Changsha 410127, PR China
| | - Zhangbao Li
- The Sericultural Research Institute of Hunan Province, Changsha 410127, PR China
| |
Collapse
|
2
|
Muzaffar U, Naveed M, Naseem Z, Abid I, Amir KZ, Alamri S, Siddique M, Brtnicky M, Mustafa A. Enhanced cadmium immobilization in soil using Fe- and Zn-doped biochar: Mechanisms and safety implications for Cicer arietinum L. CHEMOSPHERE 2024; 368:143797. [PMID: 39580087 DOI: 10.1016/j.chemosphere.2024.143797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Cd toxicity emerges as a major environmental concern with detrimental impacts on global agricultural systems and food safety. Therefore, there is an urgent need to cope with the high concentration of Cd in the soil and crops. This study elucidates the potential of iron (FeBC) and zinc doped biochar (ZnBC) on the growth and yield of chickpea (Cicer arietinum L.) in Cd-contaminated soil. The parallels of biochemical attributes and Cd absorption of Cicer arietinum L. were investigated after a 120-day pot trial under 1% (w/w) biochar doses and two Cd concentrations (25 and 50 mg kg-1). The results demonstrated that FeBC was more effective in promoting plant growth by reducing Cd mobility in soil than ZnBC and normal biochar (NBC). Additionally, the application of FeBC resulted in significant improvement in photosynthesis rate (53.98%), transpiration rate (91.53%), stomatal conductance (197%), and sub-stomatal conductance (213.33%) compared to other applied treatments. Cd uptake in roots, shoots, and grains was reduced by 44.19%, 56.89%, and 88.25% respectively with the application of FeBC. Notably, the highest decrease in Cd bioaccumulation factor (99.72% and 99.65%) and Cd translocation factor (99.89% and 99.85%) were recorded under FeBC application in 25 and 50 mg kg-1 Cd-contaminated soils, respectively. The improved plant growth and reduced Cd buildup with FeBC under Cd stress suggest that FeBC is a promising strategy to remediate Cd-contaminated soil and simultaneously promote sustainable production of legume crops in Cd-contaminated soils.
Collapse
Affiliation(s)
- Uzma Muzaffar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Zainab Naseem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Iqra Abid
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kashif Zulfiqar Amir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Siddique
- Department of Botany, Govt. College University, Jhang Road, 38000, Faisalabad, Pakistan
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Adnan Mustafa
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
3
|
Abbasi Q, Pourakbar L, Siavash Moghaddam S. Potential role of apple wood biochar in mitigating mercury toxicity in corn (Zea mays L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115619. [PMID: 37890246 DOI: 10.1016/j.ecoenv.2023.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Mercury (Hg) is a very toxic decomposition-resistant metal that can cause plant toxicity through bioaccumulation and oxidative damage. Biochar, derived from organic waste and agricultural garbage, is an on-site modification technique that can improve soil health in heavy metals-polluted regions. The present experiment was designed to explore the role of apple biochar in the management of mercury toxicity in corn (Zea mays cv. 'PL535'). Different levels of biochar derived from apple wood (0%, 2.5%, 5.0%, and 7.5% w/w) along with different Hg concentrations (0, 20, 40, and 60 mg/L) were used in the experiment that was based on a completely randomized design. Based on the results, HgCl2 at all rates reduced root and shoot dry weight and length, tolerance index, chlorophyll a and b content, the Hill reaction, and dissolved proteins and increased shoot and root Hg content (up to 72.57 and 717.56 times, respectively), cell death (up to 58.36%), MDA level (up to 47.82%), H2O2 (up to 66.33%), dissolved sugars, and proline. The results regarding enzymatic and non-enzymatic antioxidants revealed increases in total phenol and flavonoids content (up to 71.27% and 86.71%, respectively), DPPH free radical scavenging percentage, and catalase (CAT) and ascorbate peroxidase (APX) activity (up to 185.93% and 176.87%, respectively), in corn leaves with the increase in the Hg rate applied to the culture medium. The application of biochar to the substrate of the Hg-treated corns reduced Hg bioavailability, thereby reducing Hg accumulation in the roots (up to 76.88%) and shoots (up to 71.79%). It also reduced the adverse effect of Hg on the plants by increasing their shoot and root dry weight, photosynthesizing pigments, Hill reaction, and APX activity and reducing cell death, H2O2 content, and MDA content. The results reflected the capability of apple wood biochar at all rates in reducing Hg bioavailability and increasing Hg fixation in Hg-polluted soils. However, it was most effective at the rate of 7.5%.
Collapse
Affiliation(s)
- Qahreman Abbasi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Latifeh Pourakbar
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Sina Siavash Moghaddam
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
| |
Collapse
|
4
|
Li Y, Shi X, Chen Y, Luo S, Qin Z, Chen S, Wu Y, Yu F. Quantitative proteomic analysis of the mechanism of Cd toxicity in Enterobacter sp. FM-1: Comparison of different growth stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122513. [PMID: 37673320 DOI: 10.1016/j.envpol.2023.122513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Enterobacter sp. are widely used in bioremediation, but the mechanism of Cadmium (Cd) toxicity in Enterobacter sp. has been poorly studied. In the present study, we determined the tolerance of Enterobacter sp. FM-1 to Cd by analyzing the physiological and biochemical responses of FM-1 induced under Cd stress. Differentially expressed proteins (DEPs) under exposure to different Cd environments were analyzed by 4D-label-free proteomics to provide a comprehensive understanding of Cd toxicity in FM-1. The greatest total number of DEPs, 1148, was found in the High concentration vs. Control comparison group at 10 h. When protein expression was compared after different incubation times, FM-1 showed the highest Cd tolerance at 48 h. Additionally, with an increasing incubation time, different comparison groups gradually began to show similar growth patterns, which was reflected in the GO enrichment analysis. Notably, only 815 proteins were identified in the High concentration vs. Control group, and KEGG enrichment analysis revealed that these proteins were significantly enriched in the pyruvate metabolism, oxidative phosphorylation, peroxisome, glyoxylate and dicarboxylate metabolism, and citrate cycle pathways. These results suggested that an increased incubation time allows FM-1 adapt and survive in an environment with Cd toxicity, and protein expression significantly increased in response to oxidative stress in a Cd-contaminated environment during the pre-growth period. This study provides new perspectives on bacterial participation in bioremediation and expands our understanding of the mechanism of bacterial resistance under Cd exposure.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yuyuan Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Zhongkai Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shuairen Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yamei Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
5
|
Sarwar MJ, Zahir ZA, Asghar HN, Shabaan M, Ayyub M. Co-application of organic amendments and Cd-tolerant rhizobacteria for suppression of cadmium uptake and regulation of antioxidants in tomato. CHEMOSPHERE 2023; 327:138478. [PMID: 36972870 DOI: 10.1016/j.chemosphere.2023.138478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) contamination is a major environmental concern with well-reported adverse impacts on environment and living entities. It limits the productivity of agricultural crops due to its excessive entry to plant tissues, and subsequent toxic effects on their growth and physiology. Application of metal tolerant rhizobacteria in combination with organic amendments has shown beneficial impacts in sustaining plant growth, on account of amendments mediated decreased metal mobility via different functional groups, as well as provision of carbon to microorganisms. We evaluated the effect of organic amendments (compost and biochar) and Cd-tolerant rhizobacteria on growth, physiology, and Cd uptake in tomato (Solanum lycopersicum). Plants were grown under Cd contamination (2 mg kg-1), and were supplemented with 0.5% w/w of compost and biochar along with rhizobacterial inoculation in pot culture. We observed a significant reduction in shoot length, fresh and dry biomass (37, 49 and 31%) and root attributes such as root length, fresh and dry weights (35, 38 and 43%). However, Cd tolerant PGPR strain 'J-62' along with compost and biochar (0.5% w/w) mitigated the Cd induced adverse impacts on different plant attributes and improved these attributes such as root and shoot lengths (112 and 72%), fresh (130 and 146%) and dry weights (119 and 162%) of tomato roots and shoots as compared to relative control treatment. Furthermore, we observed significant increments in different antioxidant activities such as SOD (54%), CAT (49%) and APX (50%) under Cd contamination. Combined application of 'J-62' strain and organic amendments also decreased Cd translocation towards different above-ground plant parts as was pragmatic in terms of bioconcentration and translocation factors of Cd, which indicated phyto-stabilization ability of our inoculated strain for Cd. Hence, Cd tolerant PGPR in combination with organic amendments can immobilize Cd in soil and thereby, can alleviate Cd induced adverse impacts on tomato growth.
Collapse
Affiliation(s)
- Muhammad Junaid Sarwar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shabaan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Zhang B, Du H, Yang S, Wu X, Liu W, Guo J, Xiao Y, Peng F. Physiological and Transcriptomic Analyses of the Effects of Exogenous Lauric Acid on Drought Resistance in Peach ( Prunus persica (L.) Batsch). PLANTS (BASEL, SWITZERLAND) 2023; 12:1492. [PMID: 37050118 PMCID: PMC10097042 DOI: 10.3390/plants12071492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Peach (Prunus persica (L.) Batsch) is a fruit tree of economic and nutritional importance, but it is very sensitive to drought stress, which affects its growth to a great extent. Lauric acid (LA) is a fatty acid produced in plants and associated with the response to abiotic stress, but the underlying mechanism remains unclear. In this study, physiological analysis showed that 50 ppm LA pretreatment under drought stress could alleviate the growth of peach seedlings. LA inhibits the degradation of photosynthetic pigments and the closing of pores under drought stress, increasing the photosynthetic rate. LA also reduces the content of O2-, H2O2, and MDA under drought stress; our results were confirmed by Evans Blue, nitroblue tetrazolium (NBT), and DAB(3,3-diaminobenzidine) staining experiments. It may be that, by directly removing reactive oxygen species (ROS) and improving enzyme activity, i.e., catalase (CAT) activity, peroxidase (POD) activity, superoxide dismutase (SOD) activity, and ascorbate peroxidase (APX) activity, the damage caused by reactive oxygen species to peach seedlings is reduced. Peach seedlings treated with LA showed a significant increase in osmoregulatory substances compared with those subjected to drought stress, thereby regulating osmoregulatory balance and reducing damage. RNA-Seq analysis identified 1876 DEGs (differentially expressed genes) in untreated and LA-pretreated plants under drought stress. In-depth analysis of these DEGs showed that, under drought stress, LA regulates the expression of genes related to plant-pathogen interaction, phenylpropanoid biosynthesis, the MAPK signaling pathway, cyanoamino acid metabolism, and sesquiterpenoid and triterpenoid biosynthesis. In addition, LA may activate the Ca2+ signaling pathway by increasing the expressions of CNGC, CAM/CML, and CPDK family genes, thereby improving the drought resistance of peaches. In summary, via physiological and transcriptome analyses, the mechanism of action of LA in drought resistance has been revealed. Our research results provide new insights into the molecular regulatory mechanism of the LA-mediated drought resistance of peach trees.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuansong Xiao
- Correspondence: (Y.X.); (F.P.); Tel.: +86-151-6387-3786 (Y.X.); +86-135-6382-1651 (F.P.)
| | - Futian Peng
- Correspondence: (Y.X.); (F.P.); Tel.: +86-151-6387-3786 (Y.X.); +86-135-6382-1651 (F.P.)
| |
Collapse
|
7
|
Mumivand H, Izadi Z, Amirizadeh F, Maggi F, Morshedloo MR. Biochar amendment improves growth and the essential oil quality and quantity of peppermint (Mentha × piperita L.) grown under waste water and reduces environmental contamination from waste water disposal. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130674. [PMID: 36603422 DOI: 10.1016/j.jhazmat.2022.130674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The reuse of waste water (WW) in agriculture is challenging as a potential strategy for sustainable agriculture development. However, its high content of heavy metals may cause damage to ecosystems. The property of biochar (BC) to minimize heavy metals accumulation into the soil was studied taking as a case study peppermint (Mentha x piperita L., Lamiaceae) irrigated with WW. Application of BC and WW, separately, promoted height, shoot number, crown diameter, internode length, leaf number, leaf length, leaf width, fresh (FW) and dry aerial parts weights (DW), root FW and root DW of peppermint. Also an increment in canopy diameter was observed. BC application considerably increased N, Mg, Mn, Fe and Zn, while WW increased N, P, K and Fe levels. Irrigation of peppermint with WW led to an increase of chlorophyll (Chl) a, Chl b, Chl a+b, carotenoids, anthocyanins, photosynthetic rate, transpiration, stomatal conductance, relative water content (RWC), and crop yield. On the other hand, BC application led to a decrease of Cd and Pb accumulation in plants. BC and WW application, separately, increased the essential oil content, the total phenol content, and the antioxidant capacity. Regardless of BC levels, irrigation of plants with WW decreased the percentage of menthone, menthofuran, isomenthone and pulegone in the essential oil, and increased the percentage of menthol and carvone. Similarly, BC application raised the percentage of menthol, and decreased that of pulegone. Overall, the application of BC in the culture medium is able to decrease the heavy metal concentration and improves the essential oil quality and quantity of peppermint under WW irrigation.
Collapse
Affiliation(s)
- Hasan Mumivand
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran.
| | - Zeinab Izadi
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Fatemeh Amirizadeh
- Department of Water Engineering, Faculty of Agriculture, Lorestan University, Lorestan, Iran
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy.
| | - Mohamad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
8
|
Zhou X, Zhang X, Ma C, Wu F, Jin X, Dini-Andreote F, Wei Z. Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere. CHEMOSPHERE 2022; 307:136138. [PMID: 36002065 DOI: 10.1016/j.chemosphere.2022.136138] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Biochar amendment in the soil can exert a positive effect in reducing heavy metal toxicity in plants. However, it remains unclear the extent to which this effect is associated with the modulation of plant growth-promoting rhizobacteria (PGPR). Here, we initially conducted a pot experiment using tomato (Solanum lycopersicum L.) as a model plant grown in soil spiked with cadmium. First, we found biochar amendment to result in reduced cadmium uptake in tomato plants and trackable changes in the tomato rhizosphere microbiome. Then, a rhizosphere transplant experiment validated the importance of this microbiome modulation for cadmium-toxicity amelioration. Sequence-based analyses targeted the isolation of representative isolates of PGPR, including Bacillus and Flavisolibacter spp. that displayed in vitro cadmium tolerance and biosorption capabilities (in addition to abilities to solubilize phosphate and produce indole acetic acid). Last, we performed a soil inoculation experiment and confirmed the effectiveness of these isolates in reducing cadmium toxicity in tomato plants. Besides, we found the inoculation of these taxa as single inoculant and in combination to result in increased activities of specific antioxidant enzymes in tomato tissues. Taken together, this study revealed the ecological and physiological mechanisms by which biochar amendment indirectly alleviate cadmium toxicity in tomato plants, in this case, via the modulation and activity of specific PGPR populations. This study provides new insights into strategies able to promote beneficial PGPR in the rhizosphere with potential application to ameliorate heavy metal toxicity in plants.
Collapse
Affiliation(s)
- Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xianhong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Changli Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
9
|
Zhang M, Liu Y, Wei Q, Gu X, Liu L, Gou J. Biochar application ameliorated the nutrient content and fungal community structure in different yellow soil depths in the karst area of Southwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:1020832. [PMID: 36352867 PMCID: PMC9638009 DOI: 10.3389/fpls.2022.1020832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The influence of biochar on the change of nutrient content and fungal community structure is still not clear, especially in different yellow soil depths in karst areas. A soil column leaching simulation experiment was conducted to investigate the influence of biochar on soil content, enzymatic activity, and fungal community diversity and structural composition. Three biochar amounts were studied, namely, 0%(NB, no biochar), 1.0%(LB, low-application-rate biochar), and 4.0% (HB, high-application-rate biochar). The results showed that biochar increased the pH value and the contents of soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK) but reduced the microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN). Furthermore, this effect was enhanced with increasing biochar amount. Biochar was conducive to improving the nutrient availability in topsoil (0-20 cm), especially TN, AK, and MBN. Meanwhile, biochar affected the enzymatic activity, especially the sucrase activity. Biochar affected the diversity and structure of the fungal community, of which HB treatment had the most obvious effect. Among these treatments, Aspergillus, unclassified_Chaetomiaceae, Mortierella, Spizellomyces, Penicillium, Fusarium, and unclassified_Chromista fungal genera were the highest. Moreover, biochar inhibited the growth of harmful pathogens and increased the abundance of beneficial fungi in soil, and the effect was enhanced with increasing biochar amount and soil depth. Redundancy analysis (RDA) showed that AK was an important factor in yellow soil, although the main environmental factors affecting the fungal community structure were different in different soil depths. Overall, biochar had a positive effect on improving the land productivity and micro-ecological environment of yellow soil in the karst area.
Collapse
|
10
|
Zhang B, Du H, Sun M, Wu X, Li Y, Wang Z, Xiao Y, Peng F. Comparison of lauric acid and 12-hydroxylauric acid in the alleviation of drought stress in peach ( Prunus persica (L.) Batsch). FRONTIERS IN PLANT SCIENCE 2022; 13:1025569. [PMID: 36340368 PMCID: PMC9635926 DOI: 10.3389/fpls.2022.1025569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Water shortage is a key factor that can restrict peach tree growth. Plants produce fatty acids and the fatty acid derivatives lauric acid (LA) and 12-hydroxylauric acid (LA-OH), which are involved in abiotic stress responses, but the underlying stress response mechanisms remain unclear. In this study, physiological examination revealed that in Prunus persica (L.) Batsch, pretreatment with 50 ppm LA-OH and LA reduced drought stress, efficiently maintained the leaf relative water content, and controlled the relative conductivity increase. Under drought stress, LA-OH and LA treatments prevented the degradation of photosynthetic pigments, increased the degree of leaf stomatal opening and enhanced the net photosynthetic rate. Compared with drought stress, LA-OH and LA treatment effectively increased the net photosynthetic rate by 204.55% and 115.91%, respectively, while increasing the Fv/Fm by 2.75% and 7.75%, respectively, but NPQ decreased by 7.67% and 37.54%, respectively. In addition, the level of reactive oxygen species increased under drought stress. The content of O2 - in LA-OH and LA treatment decreased by 12.91% and 11.24% compared to CK-D, respectively, and the content of H2O2 decreased by 13.73% and 19.94%, respectively. At the same time, the content of malondialdehyde (MDA) decreased by 55.56% and 58.48%, respectively. We believe that the main reason is that LA-OH and LA treatment have improved the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). The application of exogenous LA increased the levels of soluble sugars, soluble proteins, proline and free amino acids under drought stress, and maintained the osmotic balance of cells. Compared with CK-D treatment, it increased by 24.11%, 16.89%, 29.3% and 15.04%, respectively. At the same time, the application of exogenous LA-OH also obtained similar results. In conclusion, exogenous LA-OH and LA can alleviate the damage to peach seedlings caused by drought stress by enhancing the photosynthetic and antioxidant capacities, increasing the activities of protective enzymes and regulating the contents of osmotic regulators, but the molecular mechanism is still in need of further exploration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Futian Peng
- *Correspondence: Futian Peng, ; Yuansong Xiao,
| |
Collapse
|
11
|
Liu Q, Chen Z, Wu Y, Huang L, Munir MAM, Zhou Q, Wen Z, Jiang Y, Tao Y, Feng Y. Inconsistent effects of a composite soil amendment on cadmium accumulation and consumption risk of 14 vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71810-71825. [PMID: 35604595 DOI: 10.1007/s11356-022-20939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Organic and inorganic mixtures can be developed as immobilizing agents that could reduce heavy metal accumulation in crops and contribute to food safety. Here, inorganic materials (lime, L; zeolite, Z; and sepiolite, S) and organic materials (biochar, B, and compost, C) were selectively mixed to produce six composite soil amendments (LZBC, LSBC, LZC, LZB, LSC, and LSB). Given the fact that LZBC showed the best performance in decreasing soil Cd availability in the incubation experiment, it was further applied in the field condition with 14 vegetables as the test crops to investigate its effects on crop safety production in polluted greenhouse. The results showed that LZBC addition elevated rhizosphere soil pH by 0.1-2.0 units and reduced soil Cd availability by 1.85-37.99%. Both the biomass and the yields of edible parts of all vegetables were improved by LZBC addition. However, LZBC addition differently affected Cd accumulation in edible parts of the experimental vegetables, with the observation that Cd contents were significantly reduced in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., but increased in the three species of Lactuca sativa. Further health risk assessment showed that LZBC application significantly decreased daily intake of metal (DIM), health risk index (HRI), and target hazard quotient (THQ) for Cd in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., whereas increased all the indexes in Lactuca sativa. Our results showed that the effect of a composite amendment on Cd accumulation in different vegetables could be divergent and species-dependent, which suggested that it is essential to conduct a pre-experiment to verify applicable species for a specific soil amendment designed for heavy metal immobilization.
Collapse
Affiliation(s)
- Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mehr Ahmed Mujtaba Munir
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiyao Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yugen Jiang
- Hangzhou Fuyang Agricultural Technology Extension Center, Fuyang, 311400, People's Republic of China
| | - Yi Tao
- Huzhou Ruibosi Testing Technology Co., Ltb, Huzhou, 313000, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
12
|
Li A, Ge W, Liu L, Qiu G. Preparation, adsorption performance and mechanism of MgO-loaded biochar in wastewater treatment: A review. ENVIRONMENTAL RESEARCH 2022; 212:113341. [PMID: 35460638 DOI: 10.1016/j.envres.2022.113341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/04/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Biochar is a low cost, porous and solid material with an extremely high carbon content, various types of functional groups, a large specific surface area and many other desirable characteristics. Thus, it is often used as an adsorbent or a loading matrix. Nano-magnesium oxide is a crystalline material with small particles and strong ion exchangeability. However, due to the high surface chemical energy, it easily forms agglomerates of particles. Therefore, to combine the advantages of biochar and magnesium, metal magnesium nanoparticles can be loaded onto the surface of biochar with different modification techniques, resulting in biochars with low cost and high adsorption performance to be used as an adsorption matrix (collectively referred to as Mg@BC). This review presents the effects of different Mg@BC preparation methods and synthesis conditions and summarizes the removal capabilities and adsorption mechanisms of Mg@BC for different types of pollutants in water. In addition, the review proposes the prospects for the development of Mg@BC to solve various problems in the future.
Collapse
Affiliation(s)
- Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenzhan Ge
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
13
|
Kováčik J. Biochemistry in toxicological studies also needs precision. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128079. [PMID: 34952506 DOI: 10.1016/j.jhazmat.2021.128079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Mehdizadeh et al. (2021) reported the impact of biochar on cadmium toxicity in Ocimum ciliatum. As far as the conclusions may be correct (and the positive impact of various biochars is known in numerous experimental setups/species), several numerical mistakes reported in results are not acceptable in any scientific journal. It seems that reviewers and handling editor overlooked these problems and biochemical aspects of this work (along with the impact of biochar on Cd accumulation) can be cited only with great doubts about the correctness of the results. Generally, it is a challenge for reviewers and publishers, mainly in the actual time of a huge load of submissions, not to overlook basic technical mistakes. It is also a challenge for the authors to study literature and to verify uncertain data.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic.
| |
Collapse
|
14
|
Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU, Farooq N, Naveed M, Kucerik J, Brtnicky M, Mustafa A. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2022; 13:773815. [PMID: 35371142 PMCID: PMC8965506 DOI: 10.3389/fpls.2022.773815] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/02/2022] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Wenting Jiang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Nauman Ali
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Naila Farooq
- Department of Soil and Environmental Science, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
15
|
Tang T, Kang W, Shen M, Chen L, Zhao X, Wang Y, Xu S, Ming A, Feng T, Deng H, Zheng S. Accumulation Mechanism and Risk Assessment of Artemisia selengensis Seedling In Vitro with the Hydroponic Culture under Cadmium Pressure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031183. [PMID: 35162204 PMCID: PMC8834386 DOI: 10.3390/ijerph19031183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Artemisia selengensis is a perennial herb of the Compositae with therapeutic and economic value in China. The cadmium (Cd) accumulation mechanism and healthy risk evaluation of A. selengensis were investigated in this study. Tissue culture seedlings were obtained by plant tissue culture in vitro, and the effect of Cd stress (Cd concentration of 0.5, 1, 5, 10, 25, 50 and 100 μM) on A. selengensis was studied under hydroponic conditions. The results showed that low-Cd (0.5–1 μM) stress caused a rare effect on the growth of A. selengensis seedlings, which regularly grew below the 10 μM Cd treatment concentration. The biomass growth rate of the 0.5, 1, and 5 μM treatment groups reached 105.8%, 96.6%, and 84.8% after 40 days of cultivation, respectively. In addition, when the concentration of Cd was greater than 10 μM, the plant growth was obviously inhibited, i.e., chlorosis of leaves, blackening roots, destroyed cell ultrastructure, and increased malondialdehyde (MDA) content. The root could be the main location of metal uptake, 57.8–70.8% of the Cd was concentrated in the root after 40 days of cultivation. Furthermore, the root cell wall was involved in the fixation of 49–71% Cd by subcellular extraction, and the involvement of the participating functional groups of the cell wall, such as -COOH, -OH, and -NH2, in metal uptake was assessed by FTIR analysis. Target hazard quotient (THQ) was used to assess the health risk of A. selengensis, and it was found that the edible part had no health risk only under low-Cd stress (0.5 to 1 μM) and short-term treatment (less than 20 days).
Collapse
Affiliation(s)
- Tao Tang
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Wei Kang
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
- College of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
- Correspondence: ; Tel.: +86-15072077233
| | - Mi Shen
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Lin Chen
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Xude Zhao
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Yongkui Wang
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Shunwen Xu
- Huangshi Vegetable Industry Development Center, Huangshi 435003, China; (S.X.); (A.M.)
| | - Anhuai Ming
- Huangshi Vegetable Industry Development Center, Huangshi 435003, China; (S.X.); (A.M.)
| | - Tao Feng
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
| | - Haiyan Deng
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Shuqi Zheng
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| |
Collapse
|
16
|
Han D, Tu S, Dai Z, Huang W, Jia W, Xu Z, Shao H. Comparison of selenite and selenate in alleviation of drought stress in Nicotiana tabacum L. CHEMOSPHERE 2022; 287:132136. [PMID: 34492417 DOI: 10.1016/j.chemosphere.2021.132136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Exogenous selenium (Se) improves the tolerance of plants to abiotic stress. However, the effects and mechanisms of different Se species on drought stress alleviation are poorly understood. This study aims to evaluate and compare the different effects and mechanisms of sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3) on the growth, photosynthesis, antioxidant system, osmotic substances and stress-responsive gene expression of Nicotiana tabacum L. under drought stress. The results revealed that drought stress could significantly inhibit growth, whereas both Na2SeO4 and Na2SeO3 could significantly facilitate the growth of N. tabacum under drought stress. However, compared to Na2SeO3, Se application as Na2SeO4 induced a significant increase in the root tip number and number of bifurcations under drought stress. Furthermore, both Na2SeO4 and Na2SeO3 displayed higher levels of photosynthetic pigments, better photosynthesis, and higher concentrations of osmotic substances, antioxidant enzymes, and stress-responsive gene (NtCDPK2, NtP5CS, NtAREB and NtLEA5) expression than drought stress alone. However, the application of Na2SeO4 showed higher expression levels of the NtP5CS and NtAREB genes than Na2SeO3. Both Na2SeO4 and Na2SeO3 alleviated many of the deleterious effects of drought in leaves, which was achieved by reducing stress-induced lipid peroxidation (MDA) and H2O2 content by enhancing the activity of antioxidant enzymes, while Na2SeO4 application showed lower H2O2 and MDA content than Na2SeO3 application. Overall, the results confirm the positive effects of Se application, especially Na2SeO4 application, which is markedly superior to Na2SeO3 in the role of resistance towards abiotic stress in N. tabacum.
Collapse
Affiliation(s)
- Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihua Dai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huifang Shao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
17
|
Jia H, Wu Y, Daolin D, Yuan B, Zhou Z. Effects of different order spiking on bioavailability and ecological risk of phenanthrene in mangrove sediment-biochar system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112951. [PMID: 34739933 DOI: 10.1016/j.ecoenv.2021.112951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Biochar shows unique advantage in decreasing the bioavailability of phenanthrene and has huge potential into the in-situ remediation of contaminated sediment. The different order spiking influences the bioavailability and ecological risk of phenanthrene, this study provides a comprehensive investigation of biochar (derived from mangrove Kandelia obovata -sediment system under three conditions: I) co-addition of biochar and sediment; II) biochar and subsequently sediment addition (after biochar adsorption reached equilibrium); III) sediment and subsequently biochar addition (after sediment adsorption reached equilibrium). It was observed that the adsorption capability under model I and III was much smaller than that under model II (p < 0.05). Regardless of time, K. obovate - biochar significantly (p < 0.05) increase the sorption of phenanthrene in sediment -water system. The results provide valuable studies for further in-situ remediation of phenanthrene and engineering applications.
Collapse
Affiliation(s)
- Hui Jia
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yifan Wu
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Du Daolin
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bo Yuan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Zhengkun Zhou
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
18
|
Zulfiqar F, Chen J, Younis A, Abideen Z, Naveed M, Koyro HW, Siddique KHM. Biochar, Compost, and Biochar-Compost Blend Applications Modulate Growth, Photosynthesis, Osmolytes, and Antioxidant System of Medicinal Plant Alpinia zerumbet. FRONTIERS IN PLANT SCIENCE 2021; 12:707061. [PMID: 34497622 PMCID: PMC8419328 DOI: 10.3389/fpls.2021.707061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Alpinia zerumbet (Zingiberaceae) is a unique ornamental and medicinal plant primarily used in food ingredients and traditional medicine. While organic amendments such as biochar (BC) and compost (Co) have been demonstrated to improve plant productivity, no studies have examined their effects on the growth, physiology, and secondary metabolites of A. zerumbet. This study evaluated the impact of the amendment of BC, Co, or a biochar and compost mixture (BC+Co) on modifying and improving the growth, photosynthesis, antioxidant status, and secondary metabolism of A. zerumbet grown on sandy loam soil. The morpho-physiological and biochemical investigation revealed variation in the response of A. zerumbet to organic amendments. The amendment of BC and BC+Co significantly increased net photosynthetic rates of plants by more than 28%, chlorophyll a and b contents by 92 and 78%, respectively, and carboxylation efficiency by 50% compared with those grown in the sandy loam soil without amendment. Furthermore, the amendment significantly decreased plant oxidative stress, measured as leaf free proline and glycine betaine. Enzymatic antioxidant activity, total phenols, and flavonoids also varied in their response to the organic amendments. In conclusion, this study shows that BC and/or Co amendments are an efficient and sustainable method for improving the metabolite contents and reducing oxidative stress in A. zerumbet.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zainul Abideen
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Muhammad Naveed
- Institute of Soil Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Justus-Liebig-University Giessen, Giessen, Germany
| | | |
Collapse
|
19
|
Supplemental Effects of Biochar and Foliar Application of Ascorbic Acid on Physio-Biochemical Attributes of Barley (Hordeum vulgare L.) under Cadmium-Contaminated Soil. SUSTAINABILITY 2021. [DOI: 10.3390/su13169128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biochar, prepared from organic waste materials, can improve the quality of contaminated soil areas. Biochar can be used as an economic centerpiece over other available resources and can properly utilize large amounts of waste. Soil contaminated with cadmium (Cd) is a worldwide problem that poses potential agricultural and human health hazards. Moreover, Cd toxicity causes serious problems for sustainable food production, especially in food crops like barley. High cadmium concentration in soil is phytotoxic and decreases plant growth and ultimately yields. Biochar and ascorbic acid in ameliorating Cd stress are economically compatible and consistent approaches in agriculture. The present study aimed to evaluate biochar’s and foliar-applied ascorbic acid’s influence on some growth and biochemical characteristics of barley (Hordeum vulgare L.) to Cd stress. The soil was supplemented with biochar 2% w/w and 20 mg Cd kg−1. The foliar application of 30 mM ascorbic acid was done on plants. The results revealed that Cd stress decreased chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids. It also increased oxidative stress indicators, i.e., APX, COD, POD, flavonoids, anthocyanin, phenolics, and electrolyte leakage, in barley with Cd-contamination. A significant enhancement in root and shoot length, gas exchange attributes, and chlorophyll contents validated the effectiveness of Bio + Asa treatments over all other treatments under Cd contamination. In conclusion, the sole applications of biochar and Asa in Cd contamination are also effective, but Bio + Asa is a better amendment for Cd stress alleviation in barley plants.
Collapse
|