1
|
Alcala CS, Lane JM, Midya V, Eggers S, Wright RO, Rosa MJ. Exploring the link between the pediatric exposome, respiratory health, and executive function in children: a narrative review. Front Public Health 2024; 12:1383851. [PMID: 39478741 PMCID: PMC11521889 DOI: 10.3389/fpubh.2024.1383851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Asthma is a highly prevalent inflammatory condition, significantly affecting nearly six million U.S. children and impacting various facets of their developmental trajectories including neurodevelopment. Evidence supports a link between pediatric environmental exposures in two key areas: asthma and executive function (E.F.). E.F.s are a collective of higher-order cognitive processes facilitating goal-oriented behaviors. Studies also identify asthma-associated E.F. impairments in children. However, limited research has evaluated the inter-relationships among environmental exposures, asthma, and E.F. in children. This review explored relevant research to identify and connect the potential mechanisms and pathways underlying these dynamic associations. The review suggests that the role of the pediatric exposome may function through (1) several underlying biological pathways (i.e., the lung-brain axis, neuroendocrine system, and hypoxia), which could drive asthma and maladaptive E.F. in children and (2) the relationships between the exposome, asthma, and E.F. is a bidirectional linkage. The review reveals essential synergistic links between asthma and E.F. deficits, highlighting the potential role of the pediatric exposome.
Collapse
Affiliation(s)
- Cecilia S. Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jamil M. Lane
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shoshannah Eggers
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Lu S, Zhu X, Zeng P, Hu L, Huang Y, Guo X, Chen Q, Wang Y, Lai L, Xue A, Wang Y, Wang Z, Song W, Liu Q, Bian G, Li J, Bu Q, Cen X. Exposure to PFOA, PFOS, and PFHxS induces Alzheimer's disease-like neuropathology in cerebral organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125098. [PMID: 39389246 DOI: 10.1016/j.envpol.2024.125098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), a class of ubiquitous synthetic organic chemicals, are widely utilized across various industrial applications. However, the long-term neurological health effects of PFAS mixture exposure in humans remain poorly understood. To address this gap, we have designed a comprehensive study to predict and validate cell-type-specific neurotoxicity of PFASs using single-cell RNA sequencing (scRNA-seq) and cerebral organoids. Cerebral organoids were exposed to a PFAS mixture at concentrations of 1 × (10 ng/ml PFOS and PFOA, and 1 ng/ml PFHxS), 30 × , and 900 × over 35 days, with a follow-up analysis at day 70. Pathological alterations and lipidomic profiles were analyzed to identify disrupted molecular pathways and mechanisms. The scRNA-seq data revealed a significant impact of PFASs on neurons, suggesting a potential role in Alzheimer's Disease (AD) pathology, as well as intellectual and cognitive impairments. PFAS-treated cerebral organoids exhibited Aβ accumulation and tau phosphorylation. Lipidomic analyses further revealed lipid disturbances in response to PFAS mixture exposure, linking PFAS-induced AD-like neuropathology to sphingolipid metabolism disruption. Collectively, our findings provide novel insights into the PFAS-induced neurotoxicity, highlighting the significance of sphingolipid metabolism in the development of AD-like neuropathology. The use of cerebral organoids and scRNA-seq offers a powerful methodology for evaluating the health risks associated with environmental contaminants, particularly those with neurotoxic potential.
Collapse
Affiliation(s)
- Shiya Lu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xizhi Zhu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Pinli Zeng
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Linxia Hu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yan Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xinhua Guo
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiqi Chen
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yantang Wang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Li Lai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Aiqin Xue
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yanli Wang
- Jinniu Maternity and Child Health Hospital of Chengdu, Chengdu, 610036, China
| | - Zhiqiu Wang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wenbo Song
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qian Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Guohui Bian
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jiayuan Li
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qian Bu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wu LY, Zhang JL, Zeeshan M, Zhou Y, Zhang YT, He WT, Jin N, Dai Y, Chi W, Ou Z, Dong GH, Lin LZ. Caspase-8 promotes NLRP3 inflammasome activation mediates eye development defects in zebrafish larvae exposed to perfulorooctane sulfonate (PFOS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124252. [PMID: 38815886 DOI: 10.1016/j.envpol.2024.124252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Epidemiological evidence showed that serum high perfluorooctane sulfonate (PFOS) levels are associated with multiple eye related diseases, but the potential underlying molecular mechanisms remain poorly understood. Zebrafish and photoreceptor cell (661w) models were used to investigate the molecular mechanism of PFOS induced eye development defects. Our results showed a novel molecular mechanism of PFOS-induced inflammation response-mediated photoreceptor cell death associated with eye development defects. Inhibition of Caspase-8 activation significantly decreased photoreceptor cell death in PFOS exposure. Mechanistically, Toll-like receptor 4 (TLR4) mediates activation of Caspase-8 promote activation of NLR family pyrin domain-containing 3 (NLRP3) inflammasome to elicit maturation of interleukin-1 beta (IL-1β) via Caspase-1 activation, facilitating photoreceptor cell inflammation damage in PFOS exposure. In addition, we also made a novel finding that Caspase-3 activation was increased via Caspase-8 activation and directly intensified cell death. Our results show the important role of Caspase-8 activation in PFOS induced eye development defects and highlight Caspase-8 mediated activation of the NLRP3 inflammation triggers activation of Caspase-1 and promote the maturation of IL-1β in retinal inflammatory injury.
Collapse
Affiliation(s)
- Lu-Yin Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing-Lin Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Nanxiang Jin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70210, Kuopio, Finland
| | - Ye Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Zejin Ou
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Ning J, Ding C, Xu H, Liu Z, Guan Q, Xia Y, Xu Q. Effect of per- and polyfluoroalkyl substances on neurodevelopment: Evidence-based risk assessment in the TRAEC strategy context. ENVIRONMENT INTERNATIONAL 2024; 191:109003. [PMID: 39276591 DOI: 10.1016/j.envint.2024.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Although emerging evidence on the association between per- and polyfluoroalkyl substances (PFASs) and neurodevelopment have been investigated, there is no consensus on the effect of maternal PFASs on neurodevelopment in offspring. Here, we assessed the risk of maternal PFASs exposure on the neurodevelopment of offspring using a novel Targeted Risk Assessment of Environmental Chemicals (TRAEC) strategy based on multiple evidence. The evidence from five online databases were analyzed the effect of PFASs on neurodevelopment. The potential neurodevelopment risk of PFASs was evaluated by the TRAEC strategy, which was conducted on a comprehensive scoring system with reliability, correlation, outcome fitness and integrity. The studies from five databases and additional researchers' experiments were included the present study to proceed following risk assessment. Based on the framework with TRAEC strategy, the comprehensive evaluation of health risks was classified as low (absolute value 0-4), medium (absolute value 4-8), high (absolute value 8-10). In the present study, the effect of PFASs exposure on neurodevelopment was a medium-risk level with 5.61 overall risk-score. The population-attributable risk (PAR) was 8.26 % for maternal PFASs exposure. The study identified a low-risk effect of prenatal PFASs exposure on ASD and behavioral disabilities. The chain length, type of PFASs and neurodevelopmental trajectories contributed to the risk of maternal PFASs on the neurodevelopment of offspring. Consistent with results of four criteria-based tools (ToxRTool, SciRAP, OHAT and IRIS), health risk assessment based on the TRAEC strategy demonstrated robustness and reliability in the present study. These results illustrated a medium-risk effect of maternal PFASs exposure on neurodevelopmental disorders of offspring. In addition, the TRAEC strategy provided a scientific and structured method for effect evaluation between prenatal PFASs and neurodevelopmental disorders, promoting the consistency and validation in risk assessment.
Collapse
Affiliation(s)
- Jie Ning
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaoshun Ding
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haoyi Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhaofeng Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yankai Xia
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Qing Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Barrea C, Dufour P, Catherine P, Charlier C, Brevers F, Rousselle L, Parent AS. Impact of antenatal exposure to a mixture of persistent organic pollutants on intellectual development. Int J Hyg Environ Health 2024; 261:114422. [PMID: 38981323 DOI: 10.1016/j.ijheh.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Strong experimental evidence exists that several endocrine disrupting chemicals (EDCs) have neurobehavioral toxicity. However, evidence of associations between prenatal exposure and child's cognitive development is inconsistent. Moreover, toxicants are generally analyzed one by one without considering aggregate effects. We examined here the impact of a prenatal exposure to a mixture of persistent organic pollutants (POPs) on intellectual abilities in preschool children, and compared their effects to those described in the literature. METHODS Sixty-two children were included in a longitudinal cohort. Four organochlorine pesticides, four polychlorinated biphenyls (PCBs) and seven perfluorinated compounds (PFCs) were measured in cord blood. Intellectual abilities were assessed at 6 years of age using the Wechsler Preschool and Primary Scale of Intelligence 4th ed. (WPPSI-IV). We examined the associations between a mixture of POPs and cognitive performances using principal components approach (PCA) and weighted quantile sum (WQS) regression taking sex difference into account. RESULTS No negative correlation was found when analyses were performed on boys and girls together. In sex-stratified analyses, lower scores in full scale intelligence quotient (FSIQ) and fluid reasoning index (FRI) were observed in boys most exposed to a mixture of POPs. Increase of the WQS index was also associated with lower verbal comprehension index (VCI) scores in girls only. No other negative correlation was found using both WQS and PCA models. CONCLUSION Our study suggests deleterious associations between antenatal exposure to a mixture of POPs and sex-specific cognitive level, clarifying some trends described in the literature.
Collapse
Affiliation(s)
- Christophe Barrea
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium.
| | - Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Pirard Catherine
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Fanny Brevers
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Laurence Rousselle
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Anne-Simone Parent
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium
| |
Collapse
|
6
|
Yang Z, Zhang J, Wang M, Wang X, Liu H, Zhang F, Fan H. Prenatal endocrine-disrupting chemicals exposure and impact on offspring neurodevelopment: A systematic review and meta-analysis. Neurotoxicology 2024; 103:335-357. [PMID: 39013523 DOI: 10.1016/j.neuro.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Considering that endocrine disruptors have certain effects on fetal growth, we conducted a systematic review of epidemiological literature to elucidate the correlation between exposure to endocrine-disrupting chemicals during pregnancy and the neurodevelopment of offspring. METHOD We systematically explored PubMed, Web of Science, and CINAHL databases from inception to April 4, 2023. References from pertinent studies were reviewed, and data regarding the link between maternal prenatal EDC exposure and offspring neurological development were compiled. A domain-based approach was used to evaluate studies of neurodevelopmental effects in children ≤3 years old by two reviewers, including cognition, motor, behavior, language, and non-verbal ability. RESULTS A comprehensive search yielded 45,373 articles, from which 48 articles, involving 26,005 mother-child pairs, met the criteria and were subsequently included in our analysis. The results revealed that EDC exposure during pregnancy had a significant impact on offspring neurobehavior development, especially in cognition, motor, and language. Our findings indicated adverse associations between prenatal exposure to metals and offspring cognition (before 12 months: β coefficient: -0.28; 95 % CI, -0.50 to -0.06; 1-3 years old: β coefficient: -0.55; 95 % CI: -1.08 to -0.02). Furthermore, metals (β coefficient: -0.71; 95 % CI: -1.23 to -0.19) and phthalates (β coefficient: -0.69; 95 % CI: -1.05 to -0.33) exposure exhibited detrimental effects on motor development from1-3 years old, while poly-fluoroalkyl substances were linked to the disruption of offspring language development (β coefficient: -1.01; 95 % CI: -1.90 to -0.11) within this timeframe. Additionally, exposure to EDCs during pregnancy had a negative impact on cognition development among girls from 12 to 36 months of age (β coefficient: -0.53; 95 % CI: -1.01 to -0.06). CONCLUSION Prenatal exposure to EDCs, especially metals, phthalates and, poly-fluoroalkyl substances, was associated with disrupting the development of offspring neurobehavior in the short and long term. Additionally, cognitive development showed gender differences due to prenatal endocrine-disrupting chemicals exposure.
Collapse
Affiliation(s)
- Ziyi Yang
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, China
| | - Jie Zhang
- Medical School of Nantong University, Nantong, Jiangsu 226007, China
| | - Mingbo Wang
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, China
| | - Xin Wang
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, China
| | - Huahua Liu
- Nantong Maternity and Child Health Care Hospital Affiliated to Nantong University, Nantong, Jiangsu 226018, China
| | - Feng Zhang
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, China.
| | - Hong Fan
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
7
|
Morales-Grahl E, Hilz EN, Gore AC. Regrettable Substitutes and the Brain: What Animal Models and Human Studies Tell Us about the Neurodevelopmental Effects of Bisphenol, Per- and Polyfluoroalkyl Substances, and Phthalate Replacements. Int J Mol Sci 2024; 25:6887. [PMID: 38999997 PMCID: PMC11241431 DOI: 10.3390/ijms25136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.
Collapse
Affiliation(s)
- Elena Morales-Grahl
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Gao Y, Zhang Y, Luo J, Mao D, Lei X, Liu C, Zhang S, Yao Q, Li J, Zhang J, Yu X, Tian Y. Effect modification by maternal vitamin D status in the association between prenatal exposure to per- and polyfluoroalkyl substances and neurodevelopment in 2-year-old children. ENVIRONMENT INTERNATIONAL 2024; 185:108563. [PMID: 38461776 DOI: 10.1016/j.envint.2024.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Pregnant women in the Shanghai Birth Cohort (SBC) of China faced dual threats of per- and polyfluoroalkyl substances (PFAS) exposure and vitamin D (VD) insufficiency, potentially impacting offspring neurodevelopment. However, little is known about whether maternal VD status modifies PFAS-related neurodevelopment effect. OBJECTIVES To explore the modifying role of maternal VD status in the effect of prenatal PFAS exposure on childhood neurodevelopment. METHODS We included 746 mother-child pairs from the SBC. Ten PFAS congeners and VD levels were measured in maternal blood samples collected during the first and second trimester respectively. At 2 years of age, toddlers underwent neurodevelopment assessments using Bayley-III Scales. Multivariate linear, logistic regression, and weighted quantile sum approach were used to estimate associations of Bayley-III scores with individual and mixture PFAS. We stratified participants into VD sufficient and insufficient groups and further balanced PFAS differences between these groups by matching all PFAS levels. We fitted the same statistical models in each VD group before and after matching. RESULTS Nearly half (46.5 %) of pregnant women were VD insufficient (<30 ng/mL). In the overall population, PFAS exposure was associated with lower language scores and an increased risk for neurodevelopmental delay, but higher cognitive scores. However, adverse associations with PFAS were mainly observed in the VD sufficient group, while the VD insufficient group showed positive cognitive score associations. Higher PFAS concentrations were found in the VD sufficient group compared to the VD insufficient group. Post-matching, adverse associations in the VD sufficient group were nullified, whereas in the VD insufficient group, positive associations disappeared and adverse associations becoming more pronounced. CONCLUSION In this Chinese birth cohort, high prenatal PFAS exposure and low maternal VD levels collectively heighten the risk of adverse childhood neurodevelopment. However, disentangling PFAS and VD interrelationships is crucial to avoid paradoxical findings.
Collapse
Affiliation(s)
- Yu Gao
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Jiajun Luo
- Institute for Population and Precision Health, the University of Chicago, Chicago, IL, United States
| | - Dandan Mao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Xiaoning Lei
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Shanyu Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Qian Yao
- Clinical Research Unit, Shanghai Pulmonary Hospital, 200433 Shanghai, PR China
| | - Jiong Li
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Epidemiology, School of Public Health, Nanjing Medical University, 211166 Nanjing, PR China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, PR China.
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| |
Collapse
|
9
|
Liu D, Yan S, Liu Y, Chen Q, Ren S. Association of prenatal exposure to perfluorinated and polyfluoroalkyl substances with childhood neurodevelopment: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115939. [PMID: 38211513 DOI: 10.1016/j.ecoenv.2024.115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Although previous studies have shown an association between prenatal exposure to perfluorinated and polyfluoroalkyl substances (PFAS) and neurodevelopmental disorders in children, the results have been inconsistent. We summarize studies on the association between prenatal PFAS exposure and neurodevelopment in children in order to better understand the relationship. OBJECTIVE We conducted a meta-analysis of prenatal PFAS exposure and developmental outcomes associated with intellectual, executive function and behavioral difficulty in children to explore the relationship between prenatal exposure to perfluorinated and polyfluoroalkyl substances (PFAS) and neurodevelopmental disorders in children. METHODS We searched for articles published up to August 3, 2023, included and quantified original studies on PFAS and child Intelligence Quotient (IQ), executive function and behavioral difficulty during pregnancy, and systematically summarized articles that could not be quantified. CONCLUSION There is evidence of sex-specific relationship between PFAS exposure and children's PIQ. We found that PFOS [β = -1.56, 95% CI = -2.96, - 0.07; exposure = per 1 ln (ng/ml) increase], PFOA [β = -1.87, 95% CI = -3.29, - 0.46; exposure = per 1 ln (ng/ml) increase], PFHxS [β = -2.02, 95% CI = -3.23, - 0.81; exposure = per 1 ln (ng/ml) increase] decreased performance IQ in boys, but PFOS [β = 1.56, 95% CI = 0.06, 3.06; exposure = per 1 ln (ng/ml) increase] increased performance IQ in girls. PFAS are associated with executive function impairments in children, but not related to behavioral difficulty in children.
Collapse
Affiliation(s)
- Dongge Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuqi Yan
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yanping Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qianqian Chen
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuping Ren
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
10
|
Stübner C, Nielsen C, Jakobsson K, Gillberg C, Miniscalco C. Early-Life Exposure to Perfluoroalkyl Substances (PFAS) and Child Language and Communication Development: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7170. [PMID: 38131721 PMCID: PMC10742458 DOI: 10.3390/ijerph20247170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Language development starts during the fetal period when the brain is sensitive to endocrine disruptions from environmental contaminants. This systematic review aims to systematically summarize the existing literature on early-life exposure to PFAS and children's language and communication development, which is an indicator of neurocognitive development. A structured literature search was conducted using three databases, PubMed, Scopus, and CINAHL, last updated in April 2023. The population was defined as children and young adults. PFAS exposure was assessed pre- or postnatally. The outcome was defined as a language and communication ability assessed with validated instruments, parental self-reports, or clinical language disorder diagnoses. In total, 15 studies were identified for subsequent analyses. Thirteen were performed in background-exposed populations and two in highly exposed populations. There were some indications of potential adverse effects; however, these were not consistent across child sex, age of assessment, or PFAS exposure levels. No systematic effect of early-life PFAS exposure on language and communication development was found. These inconclusive findings may partly be explained by the use of general test instruments with limited validity as to children's language and communication development. Further studies over a wider exposure range using specific language test instruments are needed.
Collapse
Affiliation(s)
- Charlotte Stübner
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden; (C.G.); (C.M.)
- Department of Pediatric Speech and Language Pathology, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, 416 50 Gothenburg, Sweden
| | - Christel Nielsen
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, 223 81 Lund, Sweden;
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, 5000 Odense, Denmark
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden;
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden; (C.G.); (C.M.)
- Department of Child and Adolescent Neuropsychiatry Unit, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, 416 50 Gothenburg, Sweden
| | - Carmela Miniscalco
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden; (C.G.); (C.M.)
- Department of Pediatric Speech and Language Pathology, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, 416 50 Gothenburg, Sweden
- Department of Child and Adolescent Neuropsychiatry Unit, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, 416 50 Gothenburg, Sweden
| |
Collapse
|
11
|
Huang H, Li X, Deng Y, San S, Qiu D, Guo X, Xu L, Li Y, Zhang H, Li Y. The Association between Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Respiratory Tract Infections in Preschool Children: A Wuhan Cohort Study. TOXICS 2023; 11:897. [PMID: 37999549 PMCID: PMC10674762 DOI: 10.3390/toxics11110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
This study investigates the association between prenatal exposure to per- and polyfluoroalkyl substances (PFASs) and the incidence and frequency of respiratory tract infections (RTIs) in preschool children. We selected 527 mother-infant pairs from Wuhan Healthy Baby Cohort (WHBC), China. Ten PFASs were measured in umbilical cord serum, and we collected data on common RTIs in preschool children aged 4 years through a questionnaire. Associations of single PFASs with the incidence and frequency of RTIs were analyzed via Logistic regression and Poisson regression, while the collective effect was assessed by weighted quantile sum (WQS) regression. Furthermore, stratified and interaction analyses were performed to evaluate if there were sex-specific associations. We found a positive correlation between perfluorododecanoic acid (PFDoDA) and the incidence of tonsillitis, with several PFASs also showing positive associations with its frequency. Moreover, perfluorotridecanoic acid (PFTrDA) showed a positive link with the frequency of common cold. The results of WQS regression revealed that after adjusting for other covariates, PFASs mixture showed a positive association with the incidence of tonsillitis, the frequency of common cold, and episodes. In particular, perfluoroundecanoic acid (PFUnDA), PFDoDA, PFTrDA, perfluorodecanoic acid (PFDA) and 8:2 chlorinated polyfluorinated ether sulfonic acid (8:2 Cl-PFESA) had the most significant impact on this combined effect. The results suggest that both single and mixed exposures to PFASs may cause RTIs in preschool children. However, there was no statistically significant interaction between different PFASs and sex.
Collapse
Affiliation(s)
- Haiyun Huang
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, China; (H.H.); (Y.D.); (S.S.); (D.Q.)
| | - Xiaojun Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yican Deng
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, China; (H.H.); (Y.D.); (S.S.); (D.Q.)
| | - Siyi San
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, China; (H.H.); (Y.D.); (S.S.); (D.Q.)
| | - Dongmei Qiu
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, China; (H.H.); (Y.D.); (S.S.); (D.Q.)
| | - Xiaoyu Guo
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.G.); (L.X.); (Y.L.)
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.G.); (L.X.); (Y.L.)
| | - Yang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.G.); (L.X.); (Y.L.)
| | - Hongling Zhang
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, China; (H.H.); (Y.D.); (S.S.); (D.Q.)
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
12
|
Gao XX, Zuo QL, Fu XH, Song LL, Cen MQ, Wu J. Association between prenatal exposure to per- and polyfluoroalkyl substances and neurodevelopment in children: Evidence based on birth cohort. ENVIRONMENTAL RESEARCH 2023; 236:116812. [PMID: 37536558 DOI: 10.1016/j.envres.2023.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Although numerous studies have examined the effect of prenatal per- and polyfluoroalkyl substances (PFAS) exposure on neurodevelopment in children, findings have been inconsistent. OBJECTIVE To better understand the effects of PFAS exposure during pregnancy on offspring neurodevelopment, we conducted a systematic review of prenatal exposure to different types of PFAS and neurodevelopment in children. METHODS A comprehensive search was conducted in the PubMed, Web of Science, and EMBASE electronic databases up to March 2023. Only birth cohort studies that report a specific association between PFAS exposure during pregnancy and neurodevelopment were included in this review. RESULTS 31 birth cohort studies that met the inclusion criteria were qualitatively integrated. Among these, 14 studies investigated the impact of PFAS exposure during pregnancy on cognition, 13 on neurobehavior, and 4 on both cognition and neurobehavior. Additionally, 4 studies explored the influence of PFAS on children's comprehensive development. CONCLUSION Prenatal PFAS exposure was associated with poor neurodevelopment in children, including psychomotor development, externalizing behavior, and comprehensive development. However, conclusive evidence regarding its effects on other neurological outcomes remains limited. In addition, sex-specific effects on social behavior and sleep problems were identified.
Collapse
Affiliation(s)
- Xin-Xin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian-Lin Zuo
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Hang Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling-Ling Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man-Qiu Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Kim JH, Moon N, Ji E, Moon HB. Effects of postnatal exposure to phthalate, bisphenol a, triclosan, parabens, and per- and poly-fluoroalkyl substances on maternal postpartum depression and infant neurodevelopment: a korean mother-infant pair cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96384-96399. [PMID: 37572253 DOI: 10.1007/s11356-023-29292-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) can promote infant neurodevelopmental impairment and maternal postpartum depression (PPD). However, the associations between lactation exposure to EDCs, maternal PPD, and infant neurodevelopment are unclear. Hence, we investigated these relationships in infants aged 36-42 months. We recruited 221 Korean mothers and analyzed 29 EDCs. The Edinburgh Postnatal Depression Scale (EPDS) was used to assess maternal PPD. Bayley scales of infant development; the Swanson, Nolan, and Pelham rating scale (SNAP); and the Child Behavior Checklist (CBCL) were used to assess neurodevelopment in infants exposed to the top 30% of EDC over three years. Multiple regression analyses were adjusted for maternal age, pre-pregnancy body mass index, education, income, employment, residence, and infant age and sex. The rates of infants with clinically abnormal diagnoses on neurologic developmental tests (Balyey, SNAP, and CBCL scales) ranged from 7.7 to 38.5% in this study, with the motor and hyperactivity/impulsivity areas scoring the highest among 65 boys and girls. Mono-2-ethylhexyl phthalate (MEHP) and mono-isononyl phthalate (MiNP) levels in breast milk significantly correlated with infant inattention and hyperactivity. Perfluorononanoic acid (PFNA) and perfluorooctyl sulfonate (PFOS) levels correlated significantly with motor development of BSID-III and total CBCL score which mean infant might have lower developmental status. EDC concentrations in breast milk were not associated with maternal PPD. Overall, lactational exposure to EDCs during the postpartum period can exert a negative effect on maternal PPD and infant neurodevelopment.
Collapse
Affiliation(s)
- Ju Hee Kim
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Korea.
| | - Nalae Moon
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Korea
| | - Eunsun Ji
- Department of Nursing, Konkuk University Global Campus, Chungju, 27478, Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
14
|
Girardi P, Lupo A, Mastromatteo LY, Scrimin S. Behavioral outcomes and exposure to perfluoroalkyl substances among children aged 6-13 years: The TEDDY child study. ENVIRONMENTAL RESEARCH 2023; 231:116049. [PMID: 37207732 DOI: 10.1016/j.envres.2023.116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Although some studies report that exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy and early life stages of a child could adversely impact neurodevelopment, literature shows mixed evidence. OBJECTIVES Using an ecological framework for human development, we assessed the association of risk factors for environmental PFAS exposure and childhood PFAS concentrations with behavioral difficulties among school-age children exposed to PFAS from birth, while also controlling for the important influence of the parenting and familial environment. METHODS The study participants included 331 school-age children (6-13 years) born in a PFAS-contaminated area in the Veneto Region (Italy). We study the associations between environmental risk factors of maternal PFAS exposure (residential time, consumption of tap water, residence in Red zone A or B), and breastfeeding duration with parent assessments of children's behavioral problems (using the Strengths and Difficulties Questionnaire [SDQ]), adjusting for socio-demographic, parenting and familial variables. The direct relationships between serum blood PFAS concentrations and SDQ scores was evaluated in a subset of children (n = 79), both with single PFAS and weighted quantile sum (WQS) regressions. RESULTS Poisson regression models reported positive associations between high consumption of tap water and externalizing SDQ scores (Incidence Rate Ratio [IRR]: 1.18; 95% confidence interval [CI]: 1.04-1.32) and total difficulty scores (IRR: 1.14; 95% CI: 1.02-1.26). Childhood perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) were associated with higher internalizing SDQ scores (4th vs. 1st quartile, PFOS IRR: 1.54, 95% CI: 1.06-2.25), externalizing scores (4th vs. 1st quartile, PFHxS IRR: 1.59, 95% CI: 1.09-2.32), and total difficulty scores (4th vs. 1st quartile, PFOS IRR: 1.37, 95% CI: 1.05-1.71; PFHxS IRR: 1.54, 95% CI: 1.09-1.90). The WQS regressions confirmed the associations reported by single-PFAS analyses. CONCLUSIONS We observed cross-sectional associations of tap water consumption and childhood PFOS, and PFHxS concentrations with greater behavioral difficulties.
Collapse
Affiliation(s)
- Paolo Girardi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venezia-Mestre, Italy.
| | - Alice Lupo
- Department of Developmental Psychology and Socialization, University of Padova, Italy.
| | | | - Sara Scrimin
- Department of Developmental Psychology and Socialization, University of Padova, Italy.
| |
Collapse
|
15
|
Enright EA, Eick SM, Morello-Frosch R, Aguiar A, Woodbury ML, Sprowles JLN, Geiger SD, Trowbridge J, Andrade A, Smith S, Park JS, DeMicco E, Padula AM, Woodruff TJ, Schantz SL. Associations of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) with measures of cognition in 7.5-month-old infants: An exploratory study. Neurotoxicol Teratol 2023; 98:107182. [PMID: 37172619 PMCID: PMC10762627 DOI: 10.1016/j.ntt.2023.107182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to a wide array of adverse maternal and child health outcomes. However, studies examining PFAS in relation to offspring cognition have been inconclusive. OBJECTIVE We examined whether prenatal exposure to a mixture of PFAS was related to cognition in 7.5-month-old infants. METHODS Our analytic sample included participants enrolled in the Chemicals in Our Bodies (CIOB) and Illinois Kids Development Study (IKIDS) cohorts (N = 163). Seven PFAS were measured in 2nd trimester maternal serum samples and were detected in >65% of participants. Infant cognition was measured with a visual recognition memory task using an infrared eye tracker when infants were 7.5 months old. This task included familiarization trials where each infant was shown two identical faces and test trials where each infant was shown the familiar face paired with a novel face. In familiarization, we assessed average run duration (time looking at familiarization stimuli before looking away) as a measure of information processing speed, in addition to time to familiarization (time to reach 20 s of looking at stimuli) and shift rate (the number of times infants looked between stimuli), both as measures of attention. In test trials, we assessed novelty preference (proportion of time looking to the novel face) to measure recognition memory. Linear regression was used to estimate associations of individual PFAS with cognitive outcomes, while Bayesian kernel machine regression (BKMR) was used to estimate mixture effects. RESULTS In adjusted single-PFAS linear regression models, an interquartile range increase in PFNA, PFOA, PFOS, PFHxS, PFDeA, and PFUdA was associated with an increase in shift rate, reflecting better visual attention. Using BKMR, increasing quartiles of the PFAS mixture was similarly associated with a modest increase in shift rate. There were no significant associations between PFAS exposure and time to reach familiarization (another measure of attention), average run duration (information processing speed), or novelty preference (visual recognition memory). CONCLUSION In our study population, prenatal PFAS exposure was modestly associated with an increase in shift rate and was not strongly associated with any adverse cognitive outcomes in 7.5-month-old infants.
Collapse
Affiliation(s)
- Elizabeth A Enright
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, USA.
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andréa Aguiar
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Megan L Woodbury
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, USA; College of Engineering, Northeastern University, Boston, MA, USA
| | - Jenna L N Sprowles
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, USA; ICF, Durham, NC, USA
| | - Sarah Dee Geiger
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, USA; Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jessica Trowbridge
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Aileen Andrade
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - June-Soo Park
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - Erin DeMicco
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Amy M Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
16
|
Pan D, Song Y, Liu S, Zeng X, Pang Q, Zhang Y, Wu H, Tan HJJ, Liao Q, Liang J, Huang D, Qiu X. Association between perfluoroalkyl and polyfluoroalkyl substances exposure and fetal overgrowth: A prospective birth cohort study conducted in China. ENVIRONMENTAL RESEARCH 2023:116175. [PMID: 37257750 DOI: 10.1016/j.envres.2023.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) has been associated with gestational diabetes mellitus, obesity or overweight in childhood, but data on fetal overgrowth outcomes including macrosomia and large for gestational age (LGA) and among gestational age diverse infants remain scarce. OBJECTIVE To evaluate the association between maternal PFASs exposure and macrosomia and LGA, with exploration of the interaction between PFASs exposure and gestational age on fetal overgrowth. METHODS A total of 1441 mother-infants pairs from Guangxi Zhuang Birth Cohort of China were analyzed. Nine PFASs were measured in maternal serum using ultra-high liquid performance chromatographytandem mass spectrometry. Multivaraible logistical regression and generalized additive models were performed for individual PFAS exposures, piecewise regression analysis was used to estimate the breakpoint values for the non-linear dose-response relationships. Bayesian Kernel Machine Regression was performed for PFASs mixture. RESULTS In single pollutant models, maternal PFDA and PFOA exposure showed U-shaped relationship with macrosomia and LGA. When PFDA concentration exceeded 0.32 ng/mL was significantly positively associated with risks of LGA and macrosomia (OR=4.66, 95%CI: 1.26, 17.17; OR=14.43, 95%CI: 2.64, 79.02; respectively), while a negatively association was observed when level below 0.32 ng/mL. When PFOA concentration exceeded 1.20 ng/mL was significantly associated with increased risk of macrosomia (OR=7.75, 95%CI: 1.36, 44.06). In mixed exposure models, mixture of PFASs was positively associated with macrosomia, as well as associated with LGA when all the PFASs were at their 30th percentile or below. The maximum risk of LGA was reached when concentrations of PFUnA, PFDA, or PFBS were at the highest concentrations and the gestational age at the minimum of this study. CONCLUSIONS Maternal exposure to PFDA, PFOA and PFASs mixture were non-monotonically associated with macrosomia and LGA, the direction of the associations depends on the level of exposure.
Collapse
Affiliation(s)
- Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiang Pang
- Department of Cardiology, Debao Maternal and Child Health Hospital, Debao, 533700, Guangxi, China
| | - Yuanxiao Zhang
- Obstetrical Department, Pingguo Maternal and Child Health Hospital, Pingguo, 531400, Guangxi, China
| | - Huiping Wu
- Obstetrical Department, Jingxi People's Hospital, Jingxi, 533800, Guangxi, China
| | - Hui Juan Jennifer Tan
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
17
|
Xie Z, Liang H, Miao M, Wang Z, Chen Y, Yang L, Zhou Y, Cao W, Yuan W. Prenatal Exposure to Perfluoroalkyl Substances and Cognitive and Neurobehavioral Development in Children at 6 Years of Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37216669 DOI: 10.1021/acs.est.2c06535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epidemiological evidence regarding the effects of prenatal exposure to perfluoroalkyl substances (PFASs) on neurodevelopment in children is inconclusive. In 449 mother-child pairs from the Shanghai-Minhang Birth Cohort Study, we measured the concentrations of 11 PFASs in maternal plasma samples obtained at 12-16 weeks of gestation. We assessed children's neurodevelopment at 6 years of age by the fourth edition of the Chinese Wechsler Intelligence Scale for Children and Child Behavior Checklist for ages 6-18. We evaluated the association between prenatal exposure to PFASs and children's neurodevelopment and the effect modification of maternal dietary factors during pregnancy and the child's sex. We found that prenatal exposure to multiple PFASs was associated with increased scores for attention problems, and the individual effect of perfluorooctanoic acid (PFOA) was statistically significant. However, no statistically significant association between PFASs and cognitive development was observed. Additionally, we found the effect modification of maternal nut intake and child's sex. In conclusion, this study suggests that prenatal exposure to PFASs was associated with more attention problems, and maternal nut intake during pregnancy may alter the potential effect of PFASs. However, these findings were exploratory because of multiple testing and the relatively small sample size.
Collapse
Affiliation(s)
- Zhenzhen Xie
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200237, China
| | - Hong Liang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Maohua Miao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ziliang Wang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yao Chen
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Lan Yang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200237, China
| | - Yan Zhou
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wencheng Cao
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wei Yuan
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
18
|
Wang H, Luo F, Zhang Y, Yang X, Zhang S, Zhang J, Tian Y, Zheng L. Prenatal exposure to perfluoroalkyl substances and child intelligence quotient: Evidence from the Shanghai birth cohort. ENVIRONMENT INTERNATIONAL 2023; 174:107912. [PMID: 37023630 DOI: 10.1016/j.envint.2023.107912] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND AIM Epidemiological evidence on the association between prenatal exposure to Perfluoroalkyl substances (PFAS) and child cognition remains unclear. Thus, we aimed to investigate whether prenatal exposure to PFAS is associated with intelligence quotient (IQ) in offspring. METHOD This study population included 2031 mother-child pairs in the Shanghai Birth Cohort (SBC) enrolled during 2013-2016. Ten PFAS were measured by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS) in maternal plasma samples collected in early gestation between 9 and 16 weeks of gestation. Child IQ was assessed using the Wechsler Preschool and Primary Scales of Intelligence-Fourth Edition (WPPSI-IV) at 4 years of age. Multivariable linear regression models were used to estimate the associations between individual PFAS concentrations (as a continuous variable or categorized into tertiles) and child IQ. A quantile g-computation approach was used to evaluate the joint and independent effects of PFAS on IQ. We also examined whether the associations varied by child sex. RESULTS We found no significant associations between ln-transformed nine individual PFAS and child full scale IQ (FSIQ) or subscale IQ after adjusting for potential confounders. The observed associations were not modified by child sex. PFAS in tertiles showed the same pattern. Results from quantile g-computation showed that PFAS mixture was not associated with child IQ; perfluorobutane sulfonate was negatively associated with FSIQ (β, -0.81; 95 % CI: -1.55, -0.07), and perfluorooctane sulfonate was also associated with lower fluid reasoning index scores (β, -1.61; 95 % CI: -3.07, -0.16) while adjusting for the other PFAS. CONCLUSION PFAS mixture during early pregnancy was not associated with child IQ. For certain individual PFAS, there were inverse associations with FSIQ or subscale IQ. Considering the evidence is still inconsistent, further research is needed to confirm or refute these results in other populations and to elucidate the potential neurotoxicology of PFAS.
Collapse
Affiliation(s)
- Hui Wang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei Luo
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuchen Yang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanyu Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Li QQ, Huang J, Cai D, Chou WC, Zeeshan M, Chu C, Zhou Y, Lin L, Ma HM, Tang C, Kong M, Xie Y, Dong GH, Zeng XW. Prenatal Exposure to Legacy and Alternative Per- and Polyfluoroalkyl Substances and Neuropsychological Development Trajectories over the First 3 Years of Life. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3746-3757. [PMID: 36800558 DOI: 10.1021/acs.est.2c07807] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The neurotoxic effects of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) on offspring animals are well-documented. However, epidemiological evidence for legacy PFAS is inconclusive, and for alternative PFAS, it is little known. In this investigation, we selected 718 mother-child pairs from the Chinese Maoming Birth Cohort Study and measured 17 legacy and alternative PFAS in the third-trimester serum. Neuropsychological developments (communication, gross motor function, fine motor function, problem solving ability, and personal-social skills) were assessed at 3, 6, 12, 18, 24, and 36 months using the Ages and Stages Questionnaires 3rd edition. Trajectories of each subscale were classified into persistently low and persistently high groups via group-based trajectory modeling. Logistic regression and grouped weighted quantile sum were fitted to assess the potential effects of individual PFAS and their mixtures, respectively. Higher linear PFHxS levels were associated with elevated odds for the persistently low trajectories of communication (OR = 1.73; 95% CI: 1.12, 2.66) and problem solving ability (OR = 2.11; 95% CI: 1.14, 3.90). Similar findings were observed for linear PFOS, 1m-PFOS, PFDA, PFDoDA, PFUnDA, and legacy PFAS mixture. However, no association was observed for alternative PFAS and their mixture. We provided insights into the longitudinal links between prenatal legacy/alternative PFAS exposure and neuropsychological development trajectories over the first 3 years of life.
Collapse
Affiliation(s)
- Qing-Qing Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinbo Huang
- Maoming Maternal and Child Health Hospital, Maoming 525000, Guangdong, China
| | - Dan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32611, United States
| | - Mohammed Zeeshan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Cardiovascular Institute, Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Lizi Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Min Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510630, China
| | - Cuilan Tang
- Maoming Maternal and Child Health Hospital, Maoming 525000, Guangdong, China
| | - Minli Kong
- Maoming Maternal and Child Health Hospital, Maoming 525000, Guangdong, China
| | - Yanqi Xie
- Maoming Maternal and Child Health Hospital, Maoming 525000, Guangdong, China
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
20
|
Zhou Y, Li Q, Wang P, Li J, Zhao W, Zhang L, Wang H, Cheng Y, Shi H, Li J, Zhang Y. Associations of prenatal PFAS exposure and early childhood neurodevelopment: Evidence from the Shanghai Maternal-Child Pairs Cohort. ENVIRONMENT INTERNATIONAL 2023; 173:107850. [PMID: 36857906 DOI: 10.1016/j.envint.2023.107850] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological data on the effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on infant neurodevelopment trajectories are far from being sufficiently addressed. In this study, 1285 mother-child pairs were recruited during 2016-2017. A high-performance liquid chromatography-triple quadrupole mass spectrometer was used to measure 16 PFAS levels in cord serum. Ages and Stages Questionnaires were used to examine children's neurodevelopment at 2, 6, 12, and 24 months of age. Group-based trajectory models were applied to derive the neurodevelopmental trajectories. Children with relatively low scores from 2 to 24 months were classified into a low-score group and were used as a risk group in each domain. Multiple linear regression, logistic regression, and quantile-based g-computation were performed to assess associations of single or mixture PFAS exposures with neurodevelopment and trajectories. Perfluorooctane sulphonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and 6:2 chlorinated polyfluorooctane ether sulfonate (6:2Cl-PFESA) were detected in over 90 % samples. PFOA had the highest concentration (median: 4.61 μg/L). Each ln-unit (μg/L) increase of PFAS (e.g., PFOA, PFOS, PFHxS, 6:2Cl-PFESA) was associated with poor scores of communication domain at 6 months, with the effect size ranging from -0.69 to -0.44. PFOS (OR: 1.14, (1.03, 1.26), PFDA (OR:1.08, (1.02, 1.15)), PFHxS (OR:1.31, (1.12, 1.56)), and 6:2Cl-PFESA (OR:1.08, (1.00, 1.16)) were associated with an increased risk of being in the low-score group in the early childhood communication domain's trajectory. Each mixture quartile increment was associated with a 1.60 (-2.76, -0.45) decrease in communication domain scores of 6-month-old infants, and the mixture effect was mainly attributed to PFOS. Each mixture quartile increase was associated with a 1.23-fold (1.03, 1.46) risk of being in the low-score group of the communication domain, and the mixture effect was mainly attributed to PFOS. In conclusion, PFAS and their mixtures might adversely affect childhood neurodevelopment. The gender-specific associations existed in the above associations.
Collapse
Affiliation(s)
- Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenxuan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yukai Cheng
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Maternal, Child and Adolescent Health, School of Public Health, Fudan University, Shanghai, China
| | - Jiufeng Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
21
|
Zhang B, Wang Z, Zhang J, Dai Y, Feng C, Lin Y, Zhang L, Guo J, Qi X, Chang X, Lu D, Wu C, Zhou Z. Prenatal perfluoroalkyl substances exposure and neurodevelopment in toddlers: Findings from SMBCS. CHEMOSPHERE 2023; 313:137587. [PMID: 36535498 DOI: 10.1016/j.chemosphere.2022.137587] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Prenatal perfluoroalkyl substances (PFAS) exposure has been reported to affect offspring neurodevelopment, while epidemiological evidences were limited and inconsistent. OBJECTIVES We aimed to evaluate the associations between cord serum PFAS concentrations and neurodevelopment in toddlers from 1 to 3 years of age. METHODS A total of 716 children from Sheyang Mini Birth Cohort Study (SMBCS) were included in this study. 12 PFAS concentrations were quantified in cord serum. Neurodevelopment was assessed using the Developmental Screen Test for Children Aged 0-6 Years at 1 year and the Gesell Developmental Schedules (GDS) at 2 and 3 years, respectively. Development quotient (DQ) z-score was standardized from DQ to eliminate the difference caused by two methods. We used generalized linear model (GLM) and Bayesian kernel machine regression (BKMR) to explore the associations of single or mixture PFAS exposure with neurodevelopment measurements at each time point. Associations between PFAS exposure and longitudinal changes in DQ z-score were investigated through generalized estimating equation (GEE) and trajectory analysis. RESULTS In general, prenatal PFAS concentrations showed negative associations with neurodevelopment measurements at specific age. When accounting for longitudinal changes from 1 to 3 years of age, PFOA was negatively associated with DQ z-score (β = -0.212, 95% CI: -0.422, -0.003), the association was only found significant in boys after stratified by gender (β = -0.327, 95% CI: -0.616, -0.038). Meanwhile, increased PFBS (OR = 2.159, 95% CI: 1.177, 3.959) and PFHpA (OR = 1.700, 95% CI: 1.016, 2.846) exposure was associated with elevated odds for the low-score trajectory group. The results of mixture of PFAS further confirmed above findings. CONCLUSIONS Our findings suggested that prenatal PFAS exposure may be associated with adverse neurodevelopment effects in the first 3 years of life. Further studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Boya Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, No. 1380 West Zhongshan Road, Shanghai, 200336, China
| | - Yuanjie Lin
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, No. 1380 West Zhongshan Road, Shanghai, 200336, China
| | - Lei Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, No. 1380 West Zhongshan Road, Shanghai, 200336, China
| | - Chunhua Wu
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
22
|
Li X, Liu H, Wan H, Li Y, Xu S, Xiao H, Xia W. Sex-specific associations between legacy and novel per- and polyfluoroalkyl substances and telomere length in newborns in Wuhan, China: Mixture and single pollutant associations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159676. [PMID: 36283531 DOI: 10.1016/j.scitotenv.2022.159676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Telomere length (TL) at birth predicts later life TL and is related to health. Prenatal exposure to environmental pollutants might affect TL, but the associations between intrauterine per- and polyfluoroalkyl substances (PFASs) exposure and neonatal TL remained inconclusive. This study aimed to explore the single pollutant and mixture associations between legacy and novel PFASs and TL in newborns. In 908 mother-newborn pairs from Wuhan, China, thirteen PFASs were measured in cord serum, and TL was determined in cord leukocytes. Weighted quantile sum (WQS) regression and generalized linear model (GLM) were utilized to analyze the associations between PFASs mixture and single PFASs and TL in newborns. Furthermore, stratified and interaction analyses were performed to evaluate if there were sex-specific associations. The concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) ranked the highest (geometric mean, 4.12, 1.61, and 0.77 ng/mL, respectively) among the 13 measured PFASs. Each unit increase in WQS index of PFASs mixture was associated with -5.19 % change (95% CI, -9.44, -0.73) of neonatal TL, and 8:2 Cl-PFESA contributed most (32.59 %) to the mixture association. In stratified analyses by neonatal sex, PFOS (-4.73 % change, 95% CI, -8.40, -0.93 for per doubling concentration) and 8:2 Cl-PFESA (-4.52 % change, 95% CI, -8.20, -0.70) were negatively associated with neonatal TL in male newborns, but no significant association appeared in females. In summary, intrauterine exposure to PFASs in mixture was associated with shorter neonatal TL, and the negative associations of 8:2 Cl-PFESA and PFOS with neonatal TL were observed only in boys. Future risk assessments are needed to pay more attention to the health effects of novel PFASs.
Collapse
Affiliation(s)
- Xiaojun Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Hongxia Wan
- Ningguo Meilin Hospital, Ningguo, Anhui 242321, PR China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
23
|
Kim JH, Moon N, Lee JW, Mehdi Q, Yun MH, Moon HB. Time-course trend and influencing factors for per- and polyfluoroalkyl substances in the breast milk of Korean mothers. CHEMOSPHERE 2023; 310:136688. [PMID: 36202376 DOI: 10.1016/j.chemosphere.2022.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Many studies have reported that neonates and infants are exposed to several per- and polyfluoroalkyl substances (PFASs) via breastfeeding; however, these studies have had small sample sizes. This study aimed to determine the concentrations and time-course trend of PFASs in breast milk and identify influencing factors governing PFAS concentrations. Between July and September (2018), 207 low-risk primiparous women were recruited from a lactation counseling clinic in Korea and their breast milk samples were tested for 14 PFASs, including four perfluoroalkyl sulfonic acids. A questionnaire survey, comprising 84 questions covering the women's demographic, obstetrical, dietary, lifestyle, behavioral, and neonatal information, was conducted to investigate associations. Twelve of the 14 PFASs were detectable in breast milk samples. Perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorodecanoic acid were detected in 100% of the samples, followed by perfluorohexanesulfonic acid (detection rate: 87%), perfluorononanoic acid (87%), and perfluorohexanoic acid (73%); the median concentrations were 0.05, 0.10, 0.031, 0.007, and 0.033 ng/mL, respectively. The PFAS concentrations in breast milk measured in our study were higher than those reported in other studies or countries. In 12 years, from 2007 to 18, the mean concentration of PFOA in breast milk increased by approximately three times (278%). The major factors associated with PFAS concentrations in the bivariate association analysis were body mass index; living area (non-metropolitan); neonatal age; and frequency of fish, ice cream, and canned food consumption. In the multiple regression model, fish consumption significantly influenced the PFOS concentrations in breast milk (β = 0.88, p = 0.033). Frequently, fish consumption has been analyzed as the main dietary factor related to PFOS concentration. Our findings suggest the need for a comprehensive cohort study on PFAS exposure and its association with infant health.
Collapse
Affiliation(s)
- Ju Hee Kim
- College of Nursing Science, Kyung Hee University, Seoul 02447, South Korea
| | - Nalae Moon
- College of Nursing Science, Kyung Hee University, Seoul 02447, South Korea
| | - Jae-Won Lee
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, South Korea
| | - Qaim Mehdi
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, South Korea
| | - Myoung-Hee Yun
- Moyusarang Lactation Consultant Clinic, 13590, Seongnam, South Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
24
|
Dickman RA, Aga DS. A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS). JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129120. [PMID: 35643010 DOI: 10.1016/j.jhazmat.2022.129120] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
The fate, effects, and treatment of per- and polyfluoroalkyl substances (PFAS), an anthropogenic class of chemicals used in industrial and commercial production, are topics of great interest in recent research and news cycles. This interest stems from the ubiquity of PFAS in the global environment as well as their significant toxicological effects in humans and wildlife. Research on toxicity, sequestration, removal, and degradation of PFAS has grown rapidly, leading to a flood of valuable knowledge that can get swamped out in the perpetual rise in the number of publications. Selected papers from the Journal of Hazardous Materials between January 2018 and May 2022 on the toxicity, sequestration, and degradation of PFAS are reviewed in this article and made available as open-access publications for one year, in order to facilitate the distribution of critical knowledge surrounding PFAS. This review discusses routes of toxicity as observed in mammalian and cellular models, and the observed human health effects in exposed communities. Studies that evaluate of toxicity through in-silico approaches are highlighted in this paper. Removal of PFAS through modified carbon sorbents, nanoparticles, and anion exchange materials are discussed while comparing treatment efficiencies for different classes of PFAS. Finally, various biotic and abiotic degradation techniques, and the pathways and mechanisms involved are reviewed to provide a better understanding on the removal efficiencies and cost effectiveness of existing treatment strategies.
Collapse
Affiliation(s)
- Rebecca A Dickman
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, United States
| | - Diana S Aga
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, United States.
| |
Collapse
|
25
|
Weng X, Liang H, Tan Y, Chen J, Fei Q, Liu S, Guo X, Wen L, Wu Y, Jing C. Mixed effects of perfluoroalkyl and polyfluoroalkyl substances exposure on cognitive function among people over 60 years old from NHANES. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32093-32104. [PMID: 35013956 DOI: 10.1007/s11356-021-17789-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The relationship between perfluoroalkyl and polyfluoroalkyl substances (PFAS) and cognitive function are inconsistent, and the mixed effects of PFAS on cognitive function are still unclear. We aimed to evaluate the joint effects of PFAS on cognitive function assessed using four tests as follows: the Consortium to Establish a Registry for Alzheimer's Disease Immediate Recall Test (IRT), Delayed Recall Test (DRT), the Animal Fluency Test (AFT), and the Digit Symbol Substitution Test (DSST) in the US elderly. A total of 777 individuals aged ≥ 60 from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 were included in this study. Multivariable logistic regression and Bayesian kernel machine regression (BKMR) were constructed to estimate the overall and the individual effects of PFAS exposure on cognitive function. There were 21.36%, 22.65%, 21.62%, and 21.24% participants with cognitive decline in IRT, DRT, AFT, and DSST, respectively. After multivariable adjustment, perfluorooctanoic acid (PFOA) was inversely associated with cognitive decline in IRT, DRT, and AFT, while no significant association was observed between any other PFAS and cognitive decline. Compared with the lowest quartile, the adjusted odds ratio of cognitive decline with a 95% confidence interval (CI) for the highest quartile of PFOA was 0.33 (95% CI: 0.15-0.69) in IRT, 0.50 (0.26-0.96) in DRT, and 0.45 (0.21-0.95) in AFT. In BKMR analysis, the overall effect of mixtures was significantly protective on cognitive decline in IRT, of which PFOA made the greatest contribution. The consistent protective effect in DRT and DSST was observed when all the chemicals were at their 50th percentile or below it. No significant interaction was observed among PFAS for cognitive function. These findings suggested that PFAS mixture at a low level of current exposure of the US population may have a protective effect on cognitive function.
Collapse
Affiliation(s)
- Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yuxuan Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qiaoyuan Fei
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xinrong Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China.
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
26
|
Oh J, Shin HM, Nishimura T, Rahman MS, Takahashi N, Tsuchiya KJ. Perfluorooctanoate and perfluorooctane sulfonate in umbilical cord blood and child cognitive development: Hamamatsu Birth Cohort for Mothers and Children (HBC Study). ENVIRONMENT INTERNATIONAL 2022; 163:107215. [PMID: 35378444 DOI: 10.1016/j.envint.2022.107215] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) has been shown to affect offspring behaviors in laboratory animals. Several epidemiological studies investigated associations between prenatal PFAS exposure and child neurodevelopment, but results were inconclusive. We examined associations between cord blood concentrations of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) and cognitive development in children from 4 to 40 months of age. METHODS This study included 598 mother-child pairs who participated in the Hamamatsu Birth Cohort Study for Mothers and Children (HBC Study), a prospective birth cohort study in Japan. PFOA and PFOS were quantified in cord blood. The Mullen Scales of Early Learning (MSEL) was used to assess child cognitive function at 4, 6, 10, 14, 18, 24, 32, and 40 months of age. For each of log 2-transformed PFOA and PFOS concentrations, we examined: 1) associations with the scores of MSEL Early Learning Composite (Composite) and four subscales (Fine Motor, Visual Reception, Receptive Language, Expressive Language) at each assessment time point; and 2) associations with longitudinal changes in the Composite and subscale scores. RESULTS MSEL Composite scores were inversely associated with PFOA at 18 months of age (per 2-fold increase in concentration: β = -2.23, 95% CI: -3.91, -0.56), but not at other ages. When accounting for changes in scores from 4 to 40 months of age, PFOA and PFOS were positively associated with Composite as well as Receptive and Expressive Language scores. Child's sex modified associations between PFOA and Composite scores at 14, 18, and 40 months and those between PFOS and Composite scores at 14 months, showing negative associations among females. CONCLUSIONS In this study, cord blood PFOA and PFOS concentrations showed mixed associations with child cognitive functions at specific age but had positive associations with longitudinal changes in cognitive development from 4 to 40 months of age.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA.
| | - Tomoko Nishimura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mohammad Shafiur Rahman
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Nagahide Takahashi
- Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
27
|
Liu M, Nordstrom M, Forand S, Lewis-Michl E, Wattigney WA, Kannan K, Wang W, Irvin-Barnwell E, Hwang SA. Assessing exposures to per- and polyfluoroalkyl substances in two populations of Great Lakes Basin fish consumers in Western New York State. Int J Hyg Environ Health 2021; 240:113902. [PMID: 34915281 DOI: 10.1016/j.ijheh.2021.113902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Fish and other seafood are an important dietary source of per- and polyfluoroalkyl substances (PFAS) exposure in many areas of the world, and PFAS were found to be pervasive in fish from the Great Lakes area. Few studies, however, have examined the associations between Great Lakes Basin fish consumption and PFAS exposure. Many licensed anglers and Burmese refugees and immigrants residing in western New York State consume fish caught from the Great Lakes and surrounding waters, raising their risk of exposure to environmental contaminants including PFAS. The aims of this study were to: 1) present the PFAS exposure profile of the licensed anglers and Burmese refugees and 2) examine the associations between serum PFAS levels and local fish consumption. METHODS Licensed anglers (n = 397) and Burmese participants (n = 199) provided blood samples and completed a detailed questionnaire in 2013. We measured 12 PFAS in serum. Multiple linear regression was used to assess associations between serum PFAS concentrations and self-reported consumption of fish from Great Lakes waters. RESULTS Licensed anglers and Burmese participants reported consuming a median of 16 (IQR: 6-36) and 88 (IQR: 44-132) meals of locally caught fish in the year before sample collection, respectively (data for Burmese group restricted to 10 months of the year). Five PFAS were detected in almost all study participants (PFOS, PFOA, PFHxS, PFNA and PFDA; 97.5-100%). PFOS had the highest median serum concentration in licensed anglers (11.6 ng/mL) and the Burmese (35.6 ng/mL), approximately two and six times that of the U.S. general population, respectively. Serum levels of other PFAS in both groups were generally low and comparable to those in the general U.S. POPULATION Among licensed anglers, Great Lakes Basin fish meals over the past year were positively associated with serum PFOS (P < 0.0001), PFDA (P < 0.0001), PFHxS (P = 0.01), and PFNA (P = 0.02) and the number of years consuming locally caught fish was positively associated with serum PFOS (P = 0.01) and PFDA (P = 0.01) levels. In the Burmese group, consuming Great Lakes Basin fish more than three times a week in the past summer was positively associated with serum PFOS (P = 0.004) and PFDA (P = 0.02) among the Burmese of non-Karen ethnicity, but not among those of Karen ethnicity, suggesting potential ethnic differences in PFAS exposure. CONCLUSIONS Great Lakes Basin fish consumption was associated with an increase in blood concentrations of some PFAS, and especially of PFOS, among licensed anglers and Burmese refugees and immigrants in western New York State. In the Burmese population, there may be other important PFAS exposure routes related to residential history and ethnicity. Continued outreach efforts to increase fish advisory awareness and reduce exposure to contaminants are needed among these populations.
Collapse
Affiliation(s)
- Ming Liu
- New York State Department of Health, Bureau of Environmental & Occupational Epidemiology, Empire State Plaza-Corning Tower, Room 1203, Albany, NY, 12237, United States.
| | - Monica Nordstrom
- New York State Department of Health, Bureau of Environmental & Occupational Epidemiology, Empire State Plaza-Corning Tower, Room 1203, Albany, NY, 12237, United States
| | - Steven Forand
- New York State Department of Health, Bureau of Environmental & Occupational Epidemiology, Empire State Plaza-Corning Tower, Room 1203, Albany, NY, 12237, United States
| | - Elizabeth Lewis-Michl
- New York State Department of Health, Bureau of Environmental & Occupational Epidemiology, Empire State Plaza-Corning Tower, Room 1203, Albany, NY, 12237, United States
| | - Wendy A Wattigney
- Agency for Toxic Substances and Disease Registry, Division of Toxicology and Human Health Science, 4770 Buford Highway, Atlanta, GA, 30341, United States
| | - Kurunthachalam Kannan
- New York State Department of Health, Wadsworth Center, Empire State Plaza, Albany, NY, 12201, United States; New York University School of Medicine, Department of Pediatrics and Department of Environmental Medicine, New York, NY, 10016, United States
| | - Wei Wang
- New York State Department of Health, Wadsworth Center, Empire State Plaza, Albany, NY, 12201, United States
| | - Elizabeth Irvin-Barnwell
- Agency for Toxic Substances and Disease Registry, Division of Toxicology and Human Health Science, 4770 Buford Highway, Atlanta, GA, 30341, United States
| | - Syni-An Hwang
- New York State Department of Health, Bureau of Environmental & Occupational Epidemiology, Empire State Plaza-Corning Tower, Room 1203, Albany, NY, 12237, United States; University at Albany, School of Public Health, Department of Epidemiology & Biostatistics, One University Place, Rensselaer, NY, 12144, United States
| |
Collapse
|
28
|
Skogheim TS, Weyde KVF, Aase H, Engel SM, Surén P, Øie MG, Biele G, Reichborn-Kjennerud T, Brantsæter AL, Haug LS, Sabaredzovic A, Auyeung B, Villanger GD. Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and associations with attention-deficit/hyperactivity disorder and autism spectrum disorder in children. ENVIRONMENTAL RESEARCH 2021; 202:111692. [PMID: 34293314 DOI: 10.1016/j.envres.2021.111692] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may be a risk factor for neurodevelopmental deficits and disorders, but evidence is inconsistent. OBJECTIVES We investigated whether prenatal exposure to PFAS were associated with childhood diagnosis of attention-deficit/hyperactivity disorder (ADHD) or autism spectrum disorder (ASD). METHODS This study was based on the Norwegian Mother, Father and Child Cohort Study and included n = 821 ADHD cases, n = 400 ASD cases and n = 980 controls. Diagnostic cases were identified by linkage with the Norwegian Patient Registry. In addition, we used data from the Medical Birth Registry of Norway. The study included the following PFAS measured in maternal plasma sampled mid-pregnancy: Perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonate (PFHxS), perfluoroheptanesulfonic acid (PFHpS), and perfluorooctane sulfonate (PFOS). Relationships between individual PFAS and ADHD or ASD diagnoses were examined using multivariable adjusted logistic regression models. We also tested for possible non-linear exposure-outcome associations. Further, we investigated the PFAS mixture associations with ASD and ADHD diagnoses using a quantile-based g-computation approach. RESULTS Odds of ASD was significantly elevated in PFOA quartile 2 [OR = 1.71 (95% CI: 1.20, 2.45)] compared to quartile 1, and PFOA appeared to have a non-linear, inverted U-shaped dose-response relationship with ASD. PFOA was also associated with increased odds of ADHD, mainly in quartile 2 [OR = 1.54 (95% CI: 1.16, 2.04)] compared to quartile 1, and displayed a non-linear relationship in the restricted cubic spline model. Several PFAS (PFUnDA, PFDA, and PFOS) were inversely associated with odds of ADHD and/or ASD. Some of the associations were modified by child sex and maternal education. The overall PFAS mixture was inversely associated with ASD [OR = 0.76 (95% CI: 0.64, 0.90)] as well as the carboxylate mixture [OR = 0.79 (95% CI: 0.68, 0.93)] and the sulfonate mixture [OR = 0.84 (95% CI: 0.73, 0.96)]. CONCLUSION Prenatal exposure to PFOA was associated with increased risk of ASD and ADHD in children. For some PFAS, as well as their mixtures, there were inverse associations with ASD and/or ADHD. However, the inverse associations reported herein should not be interpreted as protective effects, but rather that there could be some unresolved confounding for these relationships. The epidemiologic literature linking PFAS exposures with neurodevelopmental outcomes is still inconclusive, suggesting the need for more research to elucidate the neurotoxicological potential of PFAS during early development.
Collapse
Affiliation(s)
- Thea S Skogheim
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Kjell Vegard F Weyde
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Heidi Aase
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Stephanie M Engel
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Campus Box 7435, Chapel Hill, NC, 27599-7435, USA
| | - Pål Surén
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Merete G Øie
- Department of Psychology, University of Oslo, PO Box 1094, Blindern, N-0317, Oslo, Norway
| | - Guido Biele
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, PO Box 1171, Blindern, N-0318, Oslo, Norway
| | - Anne Lise Brantsæter
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Line S Haug
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Azemira Sabaredzovic
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Bonnie Auyeung
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK; Department of Psychiatry, Autism Research Centre, University of Cambridge, Douglas House, 18b Trumpington Road, Cambridge, CB2 8AH, UK
| | - Gro D Villanger
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| |
Collapse
|
29
|
Sarzo B, Ballesteros V, Iñiguez C, Manzano-Salgado CB, Casas M, Llop S, Murcia M, Guxens M, Vrijheid M, Marina LS, Schettgen T, Espada M, Irizar A, Fernandez-Jimenez N, Ballester F, Lopez-Espinosa MJ. Maternal Perfluoroalkyl Substances, Thyroid Hormones, and DIO Genes: A Spanish Cross-sectional Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11144-11154. [PMID: 34314170 DOI: 10.1021/acs.est.1c01452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Results of studies on perfluoroalkyl substances (PFASs) and thyroid hormones (THs) are heterogeneous, and the mechanisms underlying the action of PFASs to target THs have not been fully characterized. We examined the relation between first-trimester maternal PFAS and TH levels and the role played by polymorphisms in the iodothyronine deiodinase 1 (DIO1) and 2 (DIO2) genes in this association. Our sample comprised 919 pregnant Spanish women (recruitment = 2003-2008) with measurements of perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), thyroid-stimulating hormone (TSH), total triiodothyronine (TT3), and free thyroxine (FT4), and we genotyped for single-nucleotide polymorphisms in the DIO1 (rs2235544) and DIO2 (rs12885300) genes. We performed multivariate regression analyses between PFASs and THs and included the interaction term PFAS-genotypes in the models. PFHxS was associated with an increase in TSH (% change in outcome [95% CI] per 2-fold PFAS increase = 6.09 [-0.71, 13.4]), and PFOA and PFNA were associated with a decrease in TT3 (-7.17 [-13.5, -0.39] and -6.28 [-12.3, 0.12], respectively). We found stronger associations between PFOA, PFNA, and TT3 for DIO1-CC and DIO2-CT genotypes, although interaction p-values were not significant. In conclusion, this study found evidence of an inverse association between PFOA and TT3 levels. No clear effect modification by DIO enzyme genes was observed.
Collapse
Affiliation(s)
- Blanca Sarzo
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
| | - Virginia Ballesteros
- Andalusian Health and Environment Observatory (OSMAN), Andalusian School of Public Health, 18011 Granada, Spain
| | - Carmen Iñiguez
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Department of Statistics and Operational Research, University of Valencia, 46100 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | | | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- ISGlobal, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Health Information Systems Analysis Service, Conselleria de Sanitat, Generalitat Valenciana, 46010 Valencia, Spain
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- ISGlobal, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- ISGlobal, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, 20013 Donostia-San Sebastian, Spain
- Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014 Donostia-San Sebastian, Spain
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Mercedes Espada
- Clinical Chemistry Unit, Public Health Laboratory of Bilbao, 8160 Bilbao, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014 Donostia-San Sebastian, Spain
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV-EHU), 20018 San Sebastian, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Faculty of Nursing and Chiropody, University of Valencia, 46010 Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-University of Valencia, 46019 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Faculty of Nursing and Chiropody, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
30
|
González N, Domingo J. Concentrations of persistent organic pollutants in blood of the Spanish population: Temporal trend. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-33765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The present article reviews the human biomonitoring studies conducted in Spain to assess exposure to persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), polybrominated diphenyl ethers (PBDEs), and per- and poly-fluoroalkyl substances (PFAS). In general terms, important variations in POPs concentrations between Spanish regions and specific populations were observed, while no associations between exposure to POPs and adverse health outcomes were found. Moreover, occupational exposure seems not to be a risk factor with regards to POPs exposure in the Spanish population. The present review highlights the importance of conducting human biomonitoring studies to find possible associations between POPs and adverse health effects.
Collapse
|
31
|
Yu G, Luo F, Nian M, Li S, Liu B, Feng L, Zhang J. Exposure to Perfluoroalkyl Substances During Pregnancy and Fetal BDNF Level: A Prospective Cohort Study. Front Endocrinol (Lausanne) 2021; 12:653095. [PMID: 34140927 PMCID: PMC8204808 DOI: 10.3389/fendo.2021.653095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Humans are widely exposed to environmental perfluoroalkyl substances (PFAS), which may affect fetal neurodevelopment. Brain-derived neurotrophic factor (BDNF) is an important factor in neurodevelopment, but its role in PFAS-induced neurotoxicity is unclear. We investigated the association between prenatal PFAS exposure and fetal BDNF level in the umbilical cord blood in a large prospective cohort. METHODS A total of 725 pregnant women who participated in the Shanghai Birth Cohort were included. 10 PFAS were measured by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS) in the plasma samples of early pregnancy. The BDNF level was determined by ELISA. The concentration of total mercury (Hg) in the umbilical cord blood was tested by cold vapor atomic absorption spectrometry (AAS) and included as a main confounder, along with other covariates. Multiple linear regression was used to explore the associations between PFAS concentrations and BDNF level. Quantile-based g-computation was applied to explore the joint and independent effects of PFAS on BDNF level. RESULTS The mean BDNF level in the total population was 10797 (±4713) pg/ml. Male fetuses had a higher level than female fetuses (P<0.001). A significant positive association was observed between PFHxS and BDNF level after adjusting for potential confounders [β=1285 (95% CI: 453, 2118, P=0.003)]. No association was observed between other PFAS congeners and BDNF level. Results of the mixed exposure model showed that the joint effects of PFAS mixture were not associated with BDNF [β=447 (95% CI: -83, 978, P=0.10)], while the positive association with PFHxS exposure remained significant after controlling for other PFAS [β=592 (95% CI: 226, 958, P=0.002)]. The above associations were more prominent in male [β=773 (95% CI: 25, 1520, P= 0.04)] than female fetuses [β=105 (95% CI: -791, 1002, P= 0.82)] for the mixed effects. CONCLUSIONS Prenatal exposure to PFHxS was associated with an increased BDNF level in the umbilical blood, especially in male fetuses.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Fei Luo
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, United States
- *Correspondence: Jun Zhang, ; Liping Feng,
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- *Correspondence: Jun Zhang, ; Liping Feng,
| |
Collapse
|