1
|
Martín-Gómez B, Valverde S, Bernal J, Ares AM. Development and validation of an analytical methodology based on solvent microextraction and UHPLC-MS/MS for determining bisphenols in honeys from different botanical origins. Food Chem 2024; 450:139358. [PMID: 38631201 DOI: 10.1016/j.foodchem.2024.139358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
A new analytical methodology was proposed to determine fourteen bisphenols in honeys from different botanical origins using ultra-high performance liquid chromatography-tandem mass spectrometry. A fast, efficient, environmentally-friendly and simple sample treatment (recoveries between 81% and 116%; matrix effect <20% for all studied compounds except for bisphenol E, F and S) was proposed, which involved a solvent microextraction with acetone and a small volume/amount of 1-hexanol. Chromatographic analysis (< 15 min) was performed in a Kinetex EVO C18 column under gradient elution mode. The method was validated in terms of selectivity, limits of detection (0.2-1.5 μg/kg) and quantification (0.5-4.7 μg/kg), linearity, matrix effect, trueness, and precision (relative standard deviation <17%). Finally, thirty honey samples were analyzed, revealing the presence of residues of nine bisphenols in some of them. However, quantification was possible only in two cases for bisphenol A, with a concentration of approximately 13 μg/kg.
Collapse
Affiliation(s)
- Beatriz Martín-Gómez
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Silvia Valverde
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - José Bernal
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Ana María Ares
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
2
|
Zhang H, Lu KH, Ebbini M, Huang P, Lu H, Li L. Mass spectrometry imaging for spatially resolved multi-omics molecular mapping. NPJ IMAGING 2024; 2:20. [PMID: 39036554 PMCID: PMC11254763 DOI: 10.1038/s44303-024-00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
The recent upswing in the integration of spatial multi-omics for conducting multidimensional information measurements is opening a new chapter in biological research. Mapping the landscape of various biomolecules including metabolites, proteins, nucleic acids, etc., and even deciphering their functional interactions and pathways is believed to provide a more holistic and nuanced exploration of the molecular intricacies within living systems. Mass spectrometry imaging (MSI) stands as a forefront technique for spatially mapping the metabolome, lipidome, and proteome within diverse tissue and cell samples. In this review, we offer a systematic survey delineating different MSI techniques for spatially resolved multi-omics analysis, elucidating their principles, capabilities, and limitations. Particularly, we focus on the advancements in methodologies aimed at augmenting the molecular sensitivity and specificity of MSI; and depict the burgeoning integration of MSI-based spatial metabolomics, lipidomics, and proteomics, encompassing the synergy with other imaging modalities. Furthermore, we offer speculative insights into the potential trajectory of MSI technology in the future.
Collapse
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Kelly H. Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Malik Ebbini
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
3
|
Yue H, Tian Y, Zhu H, Wu X, Xu P, Ji X, Qin G, Sang N. Fetal Origin of Abnormal Glucose Tolerance in Adult Offspring Induced by Maternal Bisphenol A Analogs Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10910-10919. [PMID: 38862419 DOI: 10.1021/acs.est.3c09238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
With the widespread use of bisphenol A (BPA) analogs, their health risks have attracted attention. The effects of maternal BPA analogs exposure on glucose homeostasis in adult offspring and the underlying fetal origins require further exploration. Herein, we exposed pregnant mice to two types of BPA analogs─BPB and BPAF; we evaluated glucose homeostasis in adult offspring and maternal-fetal glucose transport by testing intraperitoneal glucose tolerance, determining glucose and glycogen contents, conducting positron emission tomography (PET)/computed tomography (CT), detecting expression of placental nutrient transport factors, and assessing placental barrier status. We observed that adult female offspring maternally exposed to BPB and BPAF exhibited low fasting blood glucose in adulthood, with even abnormal glucose tolerance in the BPAF group. This phenomenon can be traced back to the elevated fetal glucose induced by the increased efficiency of placenta glucose transport in late pregnancy. On the other hand, the expression of genes associated with vascular development and glucose transport was significantly altered in the placenta in the BPAF group, potentially contributing to enhanced fetal glucose. These findings provide preliminary insights into potential mechanisms underlying the disturbance of glucose metabolism in adult female offspring mice induced by maternal exposure to BPA analogs.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Huizhen Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, P. R. China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi 030001, P. R. China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
4
|
Ganzerla MD, Indolfo NDC, Oliveira LCM, Doratioto TR, Avelino TM, de Azevedo RJ, Tofani LB, Terra MF, Elias GB, de Sousa IL, Alborguetti MR, Rocco SA, Arroteia KF, Figueira ACM. Unveiling the intricacies of BPA and BPS: comprehensive insights into its toxic effects using a cutting-edge microphysiological system. Toxicol In Vitro 2024; 98:105849. [PMID: 38772494 DOI: 10.1016/j.tiv.2024.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Concerns over Bisphenol A (BPA) and its substitute, Bisphenol S (BPS), have led to innovative exploration due to potential adverse health effects. BPS, replacing BPA in some regions to avoid toxic impacts, remains insufficiently studied. Besides this, the organ-on-a-chip technology emerges as a transformative solution in drug discovery and chemiclas toxicity testing, minimizing costs and aligning with ethical standards by reducing reliance on animal models, by integrating diverse tissues and dynamic cell environments enhances precision in predicting organ function. Here, we employ a 3-organ-on-a-chip microfluidic device with skin, intestine, and liver cultures to assess the effects of BPA and BPS via topical and oral administration. Our evaluation focused on gene markers associated with carcinogenicity, systemic toxicity, and endocrine disruption. BPA exhibited expected absorption profiles, causing liver injury and genetic modulation in related pathways. BPS, a safer alternative, induced adverse effects on gene expression, particularly in topical absorption, with distinct absorption patterns. Our findings underscore the urgency of addressing BPA and BPS toxicity concerns, highlighting the crucial role of organ-on-a-chip technology in understanding associated health risks. The study promotes the organ-on-a-chip methodology as a valuable tool for safe drug development and disease treatments, offering a novel liver toxicity screening alternative to traditional animal tests. This contributes to advancing comprehension of the biological effects of these compounds, fostering improved safety assessments in human health.
Collapse
|
5
|
Duncan KD, Pětrošová H, Lum JJ, Goodlett DR. Mass spectrometry imaging methods for visualizing tumor heterogeneity. Curr Opin Biotechnol 2024; 86:103068. [PMID: 38310648 PMCID: PMC11520788 DOI: 10.1016/j.copbio.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Profiling spatial distributions of lipids, metabolites, and proteins in tumors can reveal unique cellular microenvironments and provide molecular evidence for cancer cell dysfunction and proliferation. Mass spectrometry imaging (MSI) is a label-free technique that can be used to map biomolecules in tumors in situ. Here, we discuss current progress in applying MSI to uncover molecular heterogeneity in tumors. First, the analytical strategies to profile small molecules and proteins are outlined, and current methods for multimodal imaging to maximize biological information are highlighted. Second, we present and summarize biological insights obtained by MSI of tumor tissue. Finally, we discuss important considerations for designing MSI experiments and several current analytical challenges.
Collapse
Affiliation(s)
- Kyle D Duncan
- Department of Chemistry, Vancouver Island University, Nanaimo, British Columbia, Canada; Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
| | - Helena Pětrošová
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | - Julian J Lum
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - David R Goodlett
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
6
|
Zhou P, Xiao Y, Zhou X, Fang J, Zhang J, Liu J, Guo L, Zhang J, Zhang N, Chen K, Zhao C. Mapping Spatiotemporal Heterogeneity in Multifocal Breast Tumor Progression by Noninvasive Ultrasound Elastography-Guided Mass Spectrometry Imaging Strategy. JACS AU 2024; 4:465-475. [PMID: 38425919 PMCID: PMC10900218 DOI: 10.1021/jacsau.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Spatiotemporal heterogeneity of tumors provides an escape mechanism for breast cancer cells, which can obstruct the investigation of tumor progression. While molecular profiling obtained from mass spectrometry imaging (MSI) is rich in biochemical information, it lacks the capacity for in vivo analysis. Ultrasound diagnosis has a high diagnostic accuracy but low chemical specificity. Here, we describe a noninvasive ultrasound elastography (UE)-guided MSI strategy (UEg-MSI) that integrates physical and biochemical characteristics of tumors acquired from both in vivo and in vitro imaging. Using UEg-MSI, both elasticity histopathology metabolism "fingerprints" and reciprocal crosstalk are revealed, indicating the intact, multifocal spatiotemporal heterogeneity of spontaneous tumorigenesis of the breast from early, middle, and late stages. Our results demonstrate a gradual increase in malignant degree of primary focus in cervical and thoracic mammary glands. This progression is characterized by increased stiffness according to elasticity scores, histopathological changes from hyperplasia to increased nests of neoplastic cells and necrotic areas, and regional metabolic heterogeneity and reprogramming at the spatiotemporal level. De novo fatty acid (FA) synthesis focused on independent (such as ω-9 FAs) and dependent (such as ω-6 FAs) dietary FA intake in the core cancerous nest areas in the middle and late stages of tumor or in the peripheral microareas in the early stage of the tumor. SM-Cer signaling pathway and GPs biosynthesis and degradation, as well as glycerophosphoinositol intensity, changed in multiple characteristic microareas. The UEg-MSI strategy holds the potential to expand MSI applications and enhance ultrasound-mediated cancer diagnosis. It offers new insight into early cancer discovery and the occurrence of metastasis.
Collapse
Affiliation(s)
- Peng Zhou
- Bionic
Sensing and Intelligence Center, Institute of Biomedical and Health
Engineering, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department
of Ultrasound, First Affiliated Hospital of Shenzhen University Health
Science Center, Shenzhen Second People’s
Hospital, Shenzhen 518009, China
| | - Yu Xiao
- Department
of Thyroid and Breast department, First Affiliated Hospital of Shenzhen
University, Shenzhen Second People’s
Hospital, Shenzhen 518009, China
| | - Xin Zhou
- Bionic
Sensing and Intelligence Center, Institute of Biomedical and Health
Engineering, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinghui Fang
- Department
of Ultrasound, First Affiliated Hospital of Shenzhen University Health
Science Center, Shenzhen Second People’s
Hospital, Shenzhen 518009, China
| | - Jingwen Zhang
- Department
of Ultrasound, First Affiliated Hospital of Shenzhen University Health
Science Center, Shenzhen Second People’s
Hospital, Shenzhen 518009, China
| | - Jianjun Liu
- Shenzhen
Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline
of Health Toxicology (2020-2024), Shenzhen
Center for Disease Control and Prevention, 518054, Shenzhen, China
| | - Ling Guo
- Shenzhen
Key Laboratory of Epigenetics and Precision Medicine for Cancers,
National Cancer Center/National Clinical Research Center for Cancer/Cancer
Hospital & Shenzhen Hospital, Chinese
Academic of Medical Sciences & Peking Union Medical College, Shenzhen 518172, China
| | - Jiuhong Zhang
- Shenzhen
Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline
of Health Toxicology (2020-2024), Shenzhen
Center for Disease Control and Prevention, 518054, Shenzhen, China
| | - Ning Zhang
- College
of Chemistry and Chemical Engineering, Dezhou
University, Dezhou 253026, Shandong, China
| | - Ke Chen
- Key
Laboratory of Resources Conversion and Pollution Control of the State
Ethnic Affairs Commission, College of Resources and Environmental
Science, South-Central Minzu University, Wuhan 430074, China
| | - Chao Zhao
- Bionic
Sensing and Intelligence Center, Institute of Biomedical and Health
Engineering, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department
of Ultrasound, First Affiliated Hospital of Shenzhen University Health
Science Center, Shenzhen Second People’s
Hospital, Shenzhen 518009, China
- Shenzhen
Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Sharipov M, Ju TJ, Azizov S, Turaev A, Lee YI. Novel molecularly imprinted nanogel modified microfluidic paper-based SERS substrate for simultaneous detection of bisphenol A and bisphenol S traces in plastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132561. [PMID: 37729714 DOI: 10.1016/j.jhazmat.2023.132561] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Paper-based surface-enhanced Raman scattering (SERS) optical nanoprobes provide ultrasensitive analyte detection; however, they lack selectivity, making them difficult to use in real-world sample analysis without a pretreatment process. This work describes the design of a microfluidic paper-based SERS substrate based on molecularly imprinted nanogels decorated with silver nanoparticles to simultaneously detect bisphenol A (BPA) and bisphenol S (BPS) traces in plastic toys and receipts. The synthesized nanogels have two characteristics that boost SERS performance: molecularly imprinted cavities that allow for selective adsorption and a wrinkled surface that creates uniformly distributed hot spots. Simple paper-based sensor devices were built as 'drop and read' SERS substrates with a separate reservoir to detect a single target, while advanced SERS platforms were designed as a microfluidic chip with two reservoirs connected by a channel for simultaneous detection of BPA and BPS. The SERS platform with a single reservoir showed outstanding analytical performance for the detection of BPA and BPS, with low detection limits of 0.38 pM and 0.37 pM, respectively. The microfluidic paper-based sensor allowed simultaneous and selective detection of BPA and BPS with detection limits estimated at 0.68 nM and 0.47 nM, respectively. The developed sensors are successfully applied to detect BPA and BPS in plastic products and receipts. Finally, the results obtained with our method showed greater sensitivity than those of commercially available ELISA kits, and the acquired values within the ELISA detection range were in excellent agreement.
Collapse
Affiliation(s)
- Mirkomil Sharipov
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea; Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
| | - Tae Jun Ju
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
| | - Abbaskhan Turaev
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
| | - Yong-Ill Lee
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea; Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan.
| |
Collapse
|
8
|
Zhao Y, Boukherroub R, Liu L, Li H, Zhao RS, Wei Q, Yu X, Chen X. Boron nitride quantum dots-enhanced laser desorption/ionization mass spectrometry analysis and imaging of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132336. [PMID: 37597390 DOI: 10.1016/j.jhazmat.2023.132336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Bisphenol A (BPA) displays harmful effects on the human health, including potent endocrine activity and potential impact on the development of cancer. Analysis BPA residues in water and plastic products attracted considerable attention in the past decades. However, dominantly used conventional analysis techniques are unable to directly and non-destructively identify the correct species of BPA in plastic products. Hence, this study demonstrates the effective utilisation of boron nitride quantum dots (BNQDs) as an inorganic matrix in matrix-assisted laser desorption/ionization mass spectrometry analysis and imaging (MALDI-MS & MSI) for BPA. The presence of abundant hydroxyl and amino groups on the BNQDs' surface is favourable for the formation of hydrogen bonds with BPA, and increases their ionization and chemoselectivity. Intriguingly, the BNQDs matrix offers a distinct signal for phenolic hazardous molecules featuring different hydroxyl groups. The method was applied to detect BPA at nanomolar level in environmental water, and also allowed non-destructive and in situ mapping of BPA in plastics and pacifiers. This research provides a novel strategy for adapting nanomaterials as inorganic matrices for analysis of small molecular pollutants in environmentally relevant samples using MALDI-MS & MSI.
Collapse
Affiliation(s)
- Yanfang Zhao
- Beijing Key Laboratory of Materials Utilisation of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Lu Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China
| | - Huizhi Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China
| | - Ru-Song Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China
| | - Qin Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Yu
- Beijing Key Laboratory of Materials Utilisation of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, PR China.
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China.
| |
Collapse
|
9
|
Zhang R, Guo J, Wang Y, Sun R, Dong G, Wang X, Du G. Prenatal bisphenol S exposure induces hepatic lipid deposition in male mice offspring through downregulation of adipose-derived exosomal miR-29a-3p. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131410. [PMID: 37088024 DOI: 10.1016/j.jhazmat.2023.131410] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The increased usage of bisphenol S (BPS) results in wide distribution in pregnant women. In this study, pregnant mice were given multiple-dose BPS during gestation. Results showed that prenatal BPS exposure (50 μg/kg/day) induced increased weight gain, dyslipidemia, higher liver triglyceride (TG), adipocyte hypertrophy, and hepatic lipid deposition in male offspring. Exosomes play important roles in regulating lipid metabolism. Here, serum exosomes and adipose miRNA sequencing of male offspring indicated a remarkable decrease in miR-29a-3p expression. To clarify whether adipocyte-derived exosomes mediate hepatic lipid deposition, exosomes were extracted from BPS-treated adipocytes and co-cultured with hepatocytes. These exosomes could be taken up by hepatocytes and promoted lipid deposition, and notably, exosomal miR-29a-3p was downregulated. Furthermore, miR-29a-3p knockdown in adipocyte-derived exosomes promoted hepatocyte lipid deposition, whereas overexpression led to the opposite effect. Also, the role of miR-29a-3p was demonstrated in hepatocytes by overexpressing or knocking it down. Subsequent studies have shown that miR-29a-3p can promote lipid deposition by directly targeting Col4a1. Taken together, prenatal BPS exposure could lead to lower miR-29a-3p yield in adipocyte-derived exosomes and decrease miR-29a-3p content transported to hepatocytes, which further negatively regulate Col4a1 and promote hepatic lipid deposition. Our findings provided clues to maternal environmental exposure-induced liver metabolic diseases.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Immunology, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai 200136, China
| | - Jingyao Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yupeng Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rundong Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guangzhu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Baijiahu Community Health Service Center, Moling Street, Jiangning District, Nanjing 211102, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
10
|
Yang X, Zhang M, Yang J, Huo F, Li Y, Chen L. Sensitive determination of bisphenols in environmental samples by magnetic porous carbon solid-phase extraction combined with capillary electrophoresis. J Chromatogr A 2023; 1701:464052. [PMID: 37187097 DOI: 10.1016/j.chroma.2023.464052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Bisphenol compounds exist widely in the environment and pose potential hazards to the environment and human health, which has aroused widespread concern. Therefore, there is an urgent need for an efficient and sensitive analytical method to enrich and determine trace bisphenols in environmental samples. In this work, magnetic porous carbon (MPC) was synthesized by one-step pyrolysis combined with a solvothermal method for magnetic solid-phase extraction of bisphenols. The structural properties of MPC were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and saturation magnetization analysis. Its adsorption properties were evaluated by adsorption kinetics and adsorption isotherm studies. By optimizing the magnetic solid-phase extraction and capillary electrophoresis separation conditions, a capillary electrophoresis separation and detection method for four bisphenols was successfully constructed. The results showed that the detection limits of the proposed method for the four bisphenols were 0.71-1.65 ng/mL, the intra-day and inter-day precisions were 2.27-4.03% and 2.93-4.42%, respectively, and the recoveries were 87.68%-108.0%. In addition, the MPC could be easily recycled and utilized, and even if the magnetic solid-phase extraction was repeated 5 times, the extraction efficiency could still be kept above 75%.
Collapse
Affiliation(s)
- Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China.
| | - Maosen Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Jing Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Feng Huo
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro&Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Lianfang Chen
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China.
| |
Collapse
|
11
|
Yue H, Tian Y, Wu X, Yang X, Xu P, Zhu H, Sang N. Exploration of the damage and mechanisms of BPS exposure on the uterus and ovary of adult female mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161660. [PMID: 36690098 DOI: 10.1016/j.scitotenv.2023.161660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol S (BPS) has been followed with interest for its endocrine disrupting effects, but exploration on the reproductive system of adult females is lack of deep investigation. In the present study, adult female CD-1 mice were treated with BPS for 28 days at 300 μg/kg/day. After that, uteruses and ovaries were harvested for histopathological examination, RNA-seq analysis, and diseases risk prediction. Hematoxylin-eosin (H&E) staining results showed significant histological alterations in the uterus and ovary of the BPS-exposed mice. Bioinformatics analysis of the RNA-seq screened a certain number of differentially expressed genes (DEGs) in both uterus and ovary between BPS group and their corresponding vehicle control groups (Veh), respectively. Functional enrichment analysis of DEGs found that hormone metabolism and immunoinflammatory related pathways were enriched. Disease risk evaluation of the hub genes was performed and the results indicated that diseases associated with uterus and ovary were mainly related to tumors and cancers. Further pan cancer and ovarian cancer survival analysis based on human diseases database pointed out, Foxa1, Gata3, S100a8 and Shh for uterus, Itgam, Dhcr7, Fdps, Hmgcr, Hsd11b1, Hsd3b1, Ptges, F3, Fn1, Ptger4 and Srd5a1 for ovary were significant correlation with cancer. The findings suggest that BPS causes some histopathological changes, alters the expressions of hub genes, enhances uterine and ovarian tumors or even cancer risks.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huizhen Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
12
|
Gogola-Mruk J, Krawczyk K, Marynowicz W, Rokita M, Nimpsz S, Ptak A. Bisphenols S and F drive ovarian granulosa cell tumor invasion via a metabolic switch. Toxicol Lett 2023; 375:39-47. [PMID: 36584861 DOI: 10.1016/j.toxlet.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Alterations in the metabolism of cancer cells are crucial for tumor growth and progression. However, the mechanism whereby environmental pollutants such as bisphenols F (BPF) and S (BPS) affect glucose metabolism through the glycolytic pathway, and therefore influence tumor progression, are unclear. Both bisphenols are endocrine-disrupting molecules that are used in plastics. As a consequence of their widespread use, these compounds have been detected in various human body fluids. Thus, hormone-sensitive cancers, such as ovarian cancers, are exposed to these compounds. In the present study, we aimed to determine the effects of the concentrations of BPS and BPF found in body fluids on the cell viability, glucose uptake, glycolysis, oxygen consumption, and invasion by the adult ovarian granulosa cell tumor (AGCT) cell line. We found that BPS and BPF increased the glucose uptake, hexokinase activity, proliferation, and invasion of the cells at environmentally relevant concentrations. Furthermore, we identified an inhibition of glycolysis in parallel with an increase in oxygen consumption, suggesting a BPS/BPF-induced switch from aerobic glycolysis to mitochondrial respiration. In summary, these findings demonstrate a new mechanism through which BPS and BPF promote ovarian granulosa cell tumor progression by increasing energy production through mitochondrial respiration. Thus, both bisphenols induced a metabolic switch that appears to be a stimulus for AGCT progression.
Collapse
Affiliation(s)
- Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Kinga Krawczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Magdalena Rokita
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Samantha Nimpsz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
13
|
Chowaniec A, Czarnecki S, Sadowski Ł. Decreasing the hazardous effect of waste quartz powder and the toxicity of epoxy resin by its synergistic application in industrial coatings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25367-25381. [PMID: 35314932 DOI: 10.1007/s11356-022-19772-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Quartz powder sourced from industrial wastes is very hazardous. It is because it contains large amounts of fine particles. Thus, it has the potential to cause cancer and nervous system impact on humans and animals. Furthermore, its disposal leads to water pollution and plant pollination (negative for the environment). It will not be dangerous if incorporated into a hardened epoxy resin coating. In turn, epoxy resin is very harmful to the environment, in particular to aquatic organisms; therefore, it is necessary to reduce its mass in coatings by using additives. The article describes the systematic investigation of the adhesion of an epoxy resin coating and an economic and toxicity analysis showing the cost and toxicity reduction of the epoxy resin coating by replacing a part of the epoxy resin mass with waste quartz powder. The key novelty of the following article is to highlight a new way to decrease the hazardous effect of waste quartz powder, thanks to its utilization in epoxy resin coatings. Furthermore, the novelty is to decrease the toxicity of epoxy resin by reducing its mass necessary to make the industrial coating.
Collapse
Affiliation(s)
- Agnieszka Chowaniec
- Department of Materials Engineering and Construction Processes, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland.
| | - Sławomir Czarnecki
- Department of Materials Engineering and Construction Processes, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Łukasz Sadowski
- Department of Materials Engineering and Construction Processes, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
14
|
Liang C, Wang Y, Zhang T, Nie H, Han Y, Bai J. Aptamer-functionalised metal-organic frameworks as an 'on-off-on' fluorescent sensor for bisphenol S detection. Talanta 2023; 253:123942. [PMID: 36150340 DOI: 10.1016/j.talanta.2022.123942] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Bisphenol S (BPS) is an industrial chemical that is widely used to manufacture daily items, such as plastic water bottles, milk bottles, water cups, and paper products. BPS is a biologically toxic environmental endocrine disruptor. Long-term exposure to BPS can disrupt the reproductive system, endanger health, and increase the risk of cancer. The metal-organic framework UiO-66 is characterised with high thermal and chemical stability, a simple synthetic route, and low preparation cost. In this study, we modified UiO-66 with nucleic acid aptamers to prepare an 'on-off-on' fluorescent sensor for the simple and rapid detection of BPS. The FAM-labelled aptamer was selected as the fluorescent probe (i.e. 'on'). In the presence of UiO-66, the FAM-labelled aptamer adsorbed onto the surface of the UiO-66 material, and the fluorescence of FAM was quenched by photoinduced electron transfer (i.e. 'off'). When BPS was introduced into the system, the configuration of the FAM-labelled aptamer changed after binding to BPS, and the adsorption of FAM on UiO-66 weakened, resulting in fluorescence recovery (i.e. 'on'). Based on this principle, the reaction system was optimised, and the BPS content was analysed according to the change in the fluorescence signal. The signals changed linearly in the BPS concentration range of 2.0 × 10-4-4.0 × 10-2 mmol L-1, and the system had a detection limit of 1.84 × 10-4 mmol L-1. The sensor was successfully used to detect the BPS content in commercial plastic bottled water.
Collapse
Affiliation(s)
- Cuixia Liang
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Yumeng Wang
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Tingting Zhang
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, 071002, PR China
| | - Hailiang Nie
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
| | - Yanmei Han
- Medical Comprehensive Experimental Center, Hebei University, Baoding, 071002, PR China
| | - Jie Bai
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
| |
Collapse
|
15
|
Li M, Li T, Yin J, Xie C, Zhu J. Evaluation of toxicological effects of bisphenol S with an in vitro human bone marrow mesenchymal stem cell: Implications for bone health. Toxicology 2023; 484:153408. [PMID: 36565802 DOI: 10.1016/j.tox.2022.153408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
As the use of bisphenol A (BPA) has been restricted in consumer products, bisphenol S (BPS) is one major alternative to BPA for various materials, leading to growing concerns about its health risks in human beings. However, little is known about the toxic effects of BPS on bone health. We employed human bone marrow mesenchymal stem cells (hBMSCs) for the in vitro assessment of BPS on cell proliferation, differentiation, and self-renewal. Our study revealed that BPS at concentrations of 10-10-10-7 M increased cell viability but induced the morphological changes of hBMSCs. Moreover, BPS decreased ROS generation and increased Nrf2 expression. Furthermore, BPS not only activated ERα/β expression but also increased β-catenin expression and induced the replicative senescence of hBMSCs. Furthermore, we found that the upregulation of β-catenin induced by BPS was mediated, in part, by ER signaling. Overall, our results suggested BPS exposure caused the homeostatic imbalance of hBMSCs.
Collapse
Affiliation(s)
- Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Tenglong Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
16
|
Makowska K, Całka J, Gonkowski S. Effects of the long-term influence of bisphenol A and bisphenol S on the population of nitrergic neurons in the enteric nervous system of the mouse stomach. Sci Rep 2023; 13:331. [PMID: 36609592 PMCID: PMC9822927 DOI: 10.1038/s41598-023-27511-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine disruptor commonly used in the production of plastics. Due to its relatively well-known harmful effects on living organisms, BPA is often replaced by its various analogues. One of them is bisphenol S (BPS), widely used in the plastics industry. Until recently, BPS was considered completely safe, but currently, it is known that it is not safe for various internal organs. However, knowledge about the influence of BPS on the nervous system is scarce. Therefore, the aim of this study was to investigate the influence of two doses of BPA and BPS on the enteric nitrergic neurons in the CD1 strain mouse stomach using the double-immunofluorescence technique. The study found that both substances studied increased the number of nitrergic neurons, although changes under the impact of BPS were less visible than those induced by BPA. Therefore, the obtained results, for the first time, clearly indicate that BPS is not safe for the innervation of the gastrointestinal tract.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957, Olsztyn, Poland.
| | - Jarosław Całka
- grid.412607.60000 0001 2149 6795Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| | - Sławomir Gonkowski
- grid.412607.60000 0001 2149 6795Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| |
Collapse
|
17
|
Ji X, Jiang P, Li Y, Yan W, Yue H. New insights into the effect of bisphenol AF exposure on maternal mammary glands at various stages of gestation in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157793. [PMID: 35934037 DOI: 10.1016/j.scitotenv.2022.157793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol AF (BPAF) is the most estrogenic compound among BPA analogs. Mammary glands (MDs) are special organs that undergo repeated cycles of structural development, metabolism, and functional differentiation. Gestation is a sensitive window for MDs. In the present study, plug-positive CD-1 mice were exposed to vehicle (Veh) or 300 μg/kg BPAF through oral gavage every second day during gestation, and maternal MDs were collected from different developmental windows at 9.5, 13.5, and 18.5 d of gestation (gestation day [GD]9.5, GD13.5 and GD18.5). The results showed that gestational BPAF exposure induced a significantly elevated MD density at GD18.5. Non-target metabolomics analysis was used to screen for tyrosine, valine, ornithine, proline, threonine, phenylalanine and asymmetrical dimethylarginine (ADMA) amino acids, which changed significantly at all time points. Furthermore, the mRNA expression levels of genes related to these amino acids also changed significantly. Additionally, amino acid levels in BPAF-treated MGs at GD18.5 were related to the serum ammonia concentration of the corresponding offspring. These results provide a comprehensive view of the adverse effects of BPAF exposure during gestation on the maternal MG structure and function, which may affect milk components during lactation. Moreover, higher amino acids content may lead to amino acid imbalance or hyperammonemia in newborns.
Collapse
Affiliation(s)
- Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Peiyun Jiang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yating Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Wei Yan
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China..
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
18
|
Dong J, Peng Q, Deng L, Liu J, Huang W, Zhou X, Zhao C, Cai Z. iMS2Net: A multiscale networking methodology to decipher metabolic synergy of organism. iScience 2022; 25:104896. [PMID: 36039290 PMCID: PMC9418851 DOI: 10.1016/j.isci.2022.104896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023] Open
Abstract
The metabolic responses of organism to external stimuli are characterized by the multicellular- and multiorgan-based synergistic regulation. Network analysis is a powerful tool to investigate this multiscale interaction. The imaging mass spectrometry (iMS)-based spatial omics provides multidimensional and multiscale information, thus offering the possibility of network analysis to investigate metabolic response of organism to environmental stimuli. We present iMS dataset-sourced multiscale network (iMS2Net) strategy to uncover prenatal environmental pollutant (PM2.5)-induced metabolic responses in the scales of cell and organ from metabolite abundances and metabolite-metabolite interaction using mouse fetal model, including metabotypic similarity, metabolic vulnerability, metabolic co-variability and metabolic diversity within and between organs. Furthermore, network-based analysis results confirm close associations between lipid metabolites and inflammatory cytokine release. This networking methodology elicits particular advantages for modeling the dynamic and adaptive processes of organism under environmental stresses or pathophysiology and provides molecular mechanism to guide the occurrence and development of systemic diseases.
Collapse
Affiliation(s)
- Jiyang Dong
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Qianwen Peng
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Lingli Deng
- Department of Information Engineering, East China University of Technology, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Wei Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, China
| | - Xin Zhou
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
19
|
Zhao C, Dong J, Deng L, Tan Y, Jiang W, Cai Z. Molecular network strategy in multi-omics and mass spectrometry imaging. Curr Opin Chem Biol 2022; 70:102199. [PMID: 36027696 DOI: 10.1016/j.cbpa.2022.102199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
Human physiological activities and pathological changes arise from the coordinated interactions of multiple molecules. Mass spectrometry (MS)-based multi-omics and MS imaging (MSI)-based spatial omics are powerful methods used to investigate molecular information related to the phenotype of interest from homogenated or sliced samples, including the qualitative, relative quantitative and spatial distributions. Molecular network strategy provides efficient methods to help us understand and mine the biological patterns behind the phenotypic data. It illustrates and combines various relationships between molecules, and further performs the molecule identification and biological interpretation. Here, we describe the recent advances of network-based analysis and its applications for different biological processes, such as, obesity, central nervous system diseases, and environmental toxicology.
Collapse
Affiliation(s)
- Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiyang Dong
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Lingli Deng
- Department of Information Engineering, East China University of Technology, China
| | - Yawen Tan
- Department of Breast and Thyroid Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei Jiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
20
|
Xu Z, Yu S, Mo W, Tang Y, Cheng Y, Ding L, Chen M, Peng S. Facile and Sensitive Method for Detecting Bisphenol A UsingUbiquitous pH Meters. ChemistrySelect 2022. [DOI: 10.1002/slct.202202002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - ShaoYi Yu
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - WeiXi Mo
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - Yao Tang
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - Yunhui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
- School of Food Science and Engineering Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Li Ding
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - Maolong Chen
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - Shuang Peng
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 Hunan China
| |
Collapse
|
21
|
Ansari MI, Bano N, Kainat KM, Singh VK, Sharma PK. Bisphenol A exposure induces metastatic aggression in low metastatic MCF-7 cells via PGC-1α mediated mitochondrial biogenesis and epithelial-mesenchymal plasticity. Life Sci 2022; 302:120649. [PMID: 35597549 DOI: 10.1016/j.lfs.2022.120649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022]
Abstract
AIMS The frequency of estrogen receptor alpha (ERα)-positive breast cancers and their metastatic progression is prevalent in females globally. Aberrant interaction of estrogen-like endocrine-disrupting chemicals (EDCs) is highly implicated in breast carcinogenesis. Studies have shown that single or acute exposures of weak EDCs such as bisphenol A (BPA) may not have a substantial pro-carcinogenic/metastatic effect. However, repeated exposure to EDCs is expected to strongly induce carcinogenic/metastatic progression, which remains to be studied. MAIN METHODS Low metastatic ERα-positive human breast cancer cells (MCF-7) were exposed to nanomolar doses of BPA every 24 h (up to 200 days) to study the effect of repeated exposure on metastatic potential. Following the designated treatment of BPA, markers of epithelial-mesenchymal transition (EMT), migration and invasion, mitochondrial biogenesis, ATP levels, and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) knockdown assays were performed. KEY FINDINGS A repeated exposure of low dose BPA induced stable epithelial-mesenchymal plasticity in MCF-7 cells to augment migration and invasion in the ERα-dependent pathway. Repeated exposures of BPA increased the levels of several mesenchymal markers such as N-cadherin, vimentin, cluster of differentiation 44 (CD44), slug, and alpha-smooth muscle actin (α-SMA), whereas reduced the level of E-cadherin drastically. BPA-induced mitochondrial biogenesis favored metastatic aggression by fulfilling bioenergetics demand via PGC-1α/NRF1/ERRα signaling. Knockdown of PGC-1α resulted in suppressing both mitochondrial biogenesis and EMT in BPA exposed MCF-7 cells. SIGNIFICANCE Repeated exposures of low dose BPA may induce metastatic aggression in ERα-positive breast cancer cells via PGC-1α-mediated mitochondrial biogenesis and epithelial-mesenchymal plasticity.
Collapse
Affiliation(s)
- Mohammad Imran Ansari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nuzhat Bano
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K M Kainat
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vipendra Kumar Singh
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradeep Kumar Sharma
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Chen S, Wu J, Li M, Sun Q, Gong Z, Letcher RJ, Liu C. A high-throughput screening assay for identification of chemicals with liver tumor promoting potential using a transgenic zebrafish line. CHEMOSPHERE 2022; 297:134169. [PMID: 35245594 DOI: 10.1016/j.chemosphere.2022.134169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Traditional high-throughput methods for identification of chemicals with liver tumor promotion potentials are based on established cancer cell lines, and rapid and cost-effective high-throughput screening assays in whole organisms are presently lacking. In this study, a transgenic zebrafish liver cancer model was employed to develop a method that could be used to identify chemicals with liver tumor promotion effect quickly and accurately. The method consisted of three parts, including exposure preparation, exposure process and image acquisition. In brief, after chemical exposure for 7 days, 96-well plate exposure system for zebrafish larvae was assessed by microplate reader. Then, the liver cancer promoting potential chemicals were evaluated by field area and field average intensity of fluorescence. The results were further validated by conducting histopathological examination. Our data demonstrated that the high-throughput screening assay developed in this study was reproducible and could be used to rapidly screen chemicals with liver tumor promoting potentials by using tris-(2-chloropropyl)-phosphate (TDCIPP) as a positive control. Furthermore, some other positive chemicals found in previous studies and environmental compounds were assessed using the established method. Results indicated that 86.7% of the positive chemicals and five environmental compounds out of seventeen compounds could enhance liver tumor progression.
Collapse
Affiliation(s)
- Sheng Chen
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Wu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Sun
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
23
|
Mass Spectrometry and Mass Spectrometry Imaging-based Thyroid Cancer Analysis. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Zhang X, Guo N, Jin H, Liu R, Zhang Z, Cheng C, Fan Z, Zhang G, Xiao M, Wu S, Zhao Y, Lu X. Bisphenol A drives di(2-ethylhexyl) phthalate promoting thyroid tumorigenesis via regulating HDAC6/PTEN and c-MYC signaling. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127911. [PMID: 34910997 DOI: 10.1016/j.jhazmat.2021.127911] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) and di-(2-ethylhcxyl) phthalate (DEHP) are exist widespread in the environment and produce adverse effect to human as environmental disruptors (EDCs). Epidemiological studies have found that the exposure of DEHP and BPA could increase the susceptibility to thyroid diseases including thyroid cancer and benign thyroid nodules. Due to the existence of multiple pollutants in our daily life, the mixed toxic effects of exposure and their interrelationships may distinguish from the exposure to a single chemical, so it is of great significance to explore the mixed toxic effect of DEHP and BPA co-exposure. Thyroid, as one of the target organs of EDCs, is prone to tumor occurrence, however, whether the mixture of BPA and DEHP will affect the occurrence of thyroid cancer is still obscure. We aim to investigate the effect of single or combined exposure to BPA and DEHP on the occurrence of thyroid cancer. An animal model of exposure to BPA and DEHP was firstly established to evaluate their effect on DMD-induced thyroid cancer. Additionally, human thyroid cancer cells BCPAP and thyroid cells Nthy-ori3-1 were used to further clarify some possible mechanisms of BPA and MEHP, the main metabolite of DEHP. Consequently, we found that BPA alone could increase the incidence of thyroid tumors in female rats compared with DEHP, and DEHP enhanced the effect of BPA on cancer promotion. BPA alone and in combination with DEHP mainly induced the expression of HDAC6, inhibited tumor suppressor gene PTEN upregulated the expression of oncogene c-MYC, and eventually elevate the susceptibility to thyroid tumors. Mechanistically, BPA alone and in combination with MEHP could significantly induce the proliferation of BCPAP cells depending on HDAC6, which could modulate H3K9ac to inhibit PTEN, activate AKT signaling pathway, and simultaneously upregulate the expression of c-MYC. Interestingly, we found that BPA alone and in combination with MEHP could significantly induce the proliferation of Nthy-ori3-1 cells independent on HDAC6 via activating ERK signaling pathway. Taken together, these findings not only provide new evidence of the promoting effect of BPA and DEHP on thyroid cancer but also discusses some possible mechanisms underlying these effects.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Nan Guo
- Department of head and Neck Surgery, Cancer hospital of China Medical University/Liaoning Cancer hospital & Institute, Shenyang, PR China
| | - Hao Jin
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Renqi Liu
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Zhen Zhang
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, PR China
| | - Cheng Cheng
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Zhijun Fan
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Guopei Zhang
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Mingyang Xiao
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Shengwen Wu
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China
| | - Yuejiao Zhao
- Department of head and Neck Surgery, Cancer hospital of China Medical University/Liaoning Cancer hospital & Institute, Shenyang, PR China.
| | - Xiaobo Lu
- Department of Toxicology, School of Public health, China Medical University, Shenyang, PR China.
| |
Collapse
|
25
|
Zhao C, Guo L, Dong J, Cai Z. Mass spectrometry imaging-based multi-modal technique: Next-generation of biochemical analysis strategy. Innovation (N Y) 2021; 2:100151. [PMID: 34901900 PMCID: PMC8640581 DOI: 10.1016/j.xinn.2021.100151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/07/2021] [Indexed: 10/27/2022] Open
Affiliation(s)
- Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Lei Guo
- National Institute for Data Science in Health and Medicine, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Jiyang Dong
- National Institute for Data Science in Health and Medicine, Department of Electronic Science, Xiamen University, Xiamen 361005, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, China
| |
Collapse
|