1
|
Niu H, Nie Z, Long Y, Guo J, Tan J, Bi J, Yang H. Efficient pyridine biodegradation by Stenotrophomonas maltophilia J2: Degradation performance, mechanism, and immobilized application for wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132220. [PMID: 37549577 DOI: 10.1016/j.jhazmat.2023.132220] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Stenotrophomonas maltophilia J2, a highly efficient pyridine-degrading bacterium, was isolated from the aerobic tank of a pesticide-contaminated wastewater treatment plant. The strain J2 demonstrated an impressive pyridine degradation rate of 98.34% ± 0.49% within 72 h, at a pyridine concentration of 1100 mg·L-1, a temperature of 30 °C, a pH of 8.0, and a NaCl concentration of 0.5%. Notably, two new pyridine metabolic intermediates, 1,3-dihydroxyacetone and butyric acid, were discovered, indicating that J2 may degrade pyridine through two distinct metabolic pathways. Furthermore, the immobilized strain J2 was obtained by immobilizing J2 with biochar derived from the stem of Solidago canadensis L. In the pyridine-contaminated wastewater bioremediation experiment, the immobilized strain J2 was able to remove 2000 mg·L-1 pyridine with a 98.66% ± 0.47% degradation rate in 24 h, which was significantly higher than that of the control group (3.17% ± 1.24%), and remained above 90% in subsequent cycles until the 27th cycle. High-throughput sequencing analysis indicated that the J2 +B group had an elevated relative abundance of bacteria and functional genes that could be associated with the degradation of pyridine. The results offer a foundation for the effective use of immobilized strain in the treatment of recalcitrant pyridine-contaminated wastewater.
Collapse
Affiliation(s)
- Hongyu Niu
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China
| | - Zimeng Nie
- School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Yu Long
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China
| | - Jiayuan Guo
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China
| | - Ju Tan
- Changsha Ecological Monitoring Center of Hunan Province, 410001 Changsha, China
| | - Junping Bi
- Changsha Environmental Protection College, 410001 Changsha, China
| | - Haijun Yang
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China.
| |
Collapse
|
2
|
Zhang B, Zhang H, He J, Zhou S, Dong H, Rinklebe J, Ok YS. Vanadium in the Environment: Biogeochemistry and Bioremediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14770-14786. [PMID: 37695611 DOI: 10.1021/acs.est.3c04508] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Vanadium(V) is a highly toxic multivalent, redox-sensitive element. It is widely distributed in the environment and employed in various industrial applications. Interactions between V and (micro)organisms have recently garnered considerable attention. This Review discusses the biogeochemical cycling of V and its corresponding bioremediation strategies. Anthropogenic activities have resulted in elevated environmental V concentrations compared to natural emissions. The global distributions of V in the atmosphere, soils, water bodies, and sediments are outlined here, with notable prevalence in Europe. Soluble V(V) predominantly exists in the environment and exhibits high mobility and chemical reactivity. The transport of V within environmental media and across food chains is also discussed. Microbially mediated V transformation is evaluated to shed light on the primary mechanisms underlying microbial V(V) reduction, namely electron transfer and enzymatic catalysis. Additionally, this Review highlights bioremediation strategies by exploring their geochemical influences and technical implementation methods. The identified knowledge gaps include the particulate speciation of V and its associated environmental behaviors as well as the biogeochemical processes of V in marine environments. Finally, challenges for future research are reported, including the screening of V hyperaccumulators and V(V)-reducing microbes and field tests for bioremediation approaches.
Collapse
Affiliation(s)
- Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Han Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
- International ESG Association (IESGA), Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
He J, Zhang B, Wang Y, Chen S, Dong H. Vanadate Bio-Detoxification Driven by Pyrrhotite with Secondary Mineral Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1807-1818. [PMID: 36598371 DOI: 10.1021/acs.est.2c06184] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vanadium(V) is a redox-sensitive heavy-metal contaminant whose environmental mobility is strongly influenced by pyrrhotite, a widely distributed iron sulfide mineral. However, relatively little is known about microbially mediated vanadate [V(V)] reduction characteristics driven by pyrrhotite and concomitant mineral dynamics in this process. This study demonstrated efficient V(V) bioreduction during 210 d of operation, with a lifespan about 10 times longer than abiotic control, especially in a stable period when the V(V) removal efficiency reached 44.1 ± 13.8%. Pyrrhotite oxidation coupled to V(V) reduction could be achieved by an enriched single autotroph (e.g., Thiobacillus and Thermomonas) independently. Autotrophs (e.g., Sulfurifustis) gained energy from pyrrhotite oxidation to synthesize organic intermediates, which were utilized by the heterotrophic V(V) reducing bacteria such as Anaerolinea, Bacillus, and Pseudomonas to sustain V(V) reduction. V(V) was reduced to insoluble tetravalent V, while pyrrhotite oxidation mainly produced Fe(III) and SO42-. Secondary minerals including mackinawite (FeS) and greigite (Fe3S4) were produced synchronously, resulting from further transformations of Fe(III) and SO42- by sulfate reducing bacteria (e.g., Desulfatiglans) and magnetotactic bacteria (e.g., Nitrospira). This study provides new insights into the biogeochemical behavior of V under pyrrhotite effects and reveals the previously overlooked mineralogical dynamics in V(V) reduction bioprocesses driven by Fe(II)-bearing minerals.
Collapse
Affiliation(s)
- Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Ya'nan Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Siming Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science and Resources, China University of Geosciences Beijing, Beijing 100083, P. R. China
| |
Collapse
|
4
|
Liu Y, Li X, Zhou W, He R, Zhang Y, Zhao N. Electrical stimulation accelerated phenanthrene biodegradation coupling with nitrate reduction in groundwater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Zhang H, Shi J, Chen C, Yang M, Lu J, Zhang B. Heterotrophic Bioleaching of Vanadium from Low-Grade Stone Coal by Aerobic Microbial Consortium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13375. [PMID: 36293959 PMCID: PMC9603648 DOI: 10.3390/ijerph192013375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Bioleaching is a viable method that assists in increasing the vanadium output in an economical and environmentally friendly manner. Most bioleaching is conducted by pure cultures under autotrophic conditions, which frequently require strong acidity and produce acid wastewater. However, little is known about heterotrophic bioleaching of vanadium by mixed culture. This study investigated the bioleaching of vanadium from low-grade stone coal by heterotrophic microbial consortium. According to the results, vanadium was efficiently extracted by the employed culture, with the vanadium recovery percentage in the biosystem being 7.24 times greater than that in the control group without inoculum. The average vanadium leaching concentration reached 680.7 μg/L in the first three cycles. The kinetic equation indicated that the main leaching process of vanadium was modulated by a diffusion process. Scanning electron microscopy revealed traces of bacterial erosion with fluffy structures on the surface of the treated stone coal. X-ray photoelectron spectroscopy confirmed the reduction of the vanadium content in the stone coal after leaching. Analysis of high-throughput 16S rRNA gene sequencing revealed that the metal-oxidizing bacteria, Acidovorax and Delftia, and the heterotrophic-metal-resistant Pseudomonas, were significantly enriched in the bioleaching system. Our findings advance the understanding of bioleaching by aerobic heterotrophic microbial consortium and offer a promising technique for vanadium extraction from low-grade stone coals.
Collapse
|
6
|
Wang S, Wang J, Liu Z, Zhang B. Unraveling diverse survival strategies of microorganisms to vanadium stress in aquatic environments. WATER RESEARCH 2022; 221:118813. [PMID: 35810633 DOI: 10.1016/j.watres.2022.118813] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Worldwide vanadium contamination is posing serious risks to ecosystems. Although abilities of microbial communities to cope with vanadium stress using specific survival strategies have been reported, little is known regarding their relative importance and the underlying detoxification/tolerance mechanisms. Herein, we investigated the potential survival strategies of microbial communities and associated pathways in aquatic environments based on geochemistry and molecular biology. High vanadium content was observed for both water (12.6 ± 1.15 mg/L) and sediment (1.18 × 103 ± 10.4 mg/kg) in the investigated polluted stream. Co-occurrence network investigation implied that microbial communities showed cooperative interactions to adapt to the vanadium-polluted condition. Vanadium was also characterized as one of the vital factors shaping the community structure via redundancy analysis and structural equation models. Based on the metagenomic technology, three survival strategies including denitrification pathway, electron transfer, and metal resistance in innate microbes under the vanadium stress were revealed, with comprehensively summarized vanadium detoxification/tolerance genes. Remarkable role of electron transfer genes and the prevalent existence of resistance genes during detoxifying vanadium were highlighted. Overall, these findings provide novel insights into survival strategies under the vanadium contamination in aquatic environments, which can be of great significance for the identification, isolation, and application of vanadium reducing bacteria in vanadium bioremediation.
Collapse
Affiliation(s)
- Song Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences Beijing, Beijing 100083, China
| | - Jiawen Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Ziqi Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences Beijing, Beijing 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences Beijing, Beijing 100083, China.
| |
Collapse
|
7
|
Li Y, Li L, Han Y, Shi J, He J, Cheng S, Liu H, Zhang B. Soil indigenous microorganisms alleviate soluble vanadium release from industrial dusts. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128837. [PMID: 35427972 DOI: 10.1016/j.jhazmat.2022.128837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Vanadium-bearing dusts from industrial processes release abundant toxic vanadium, posing imminent ecological and human health concerns. Although the precipitation of these dusts has been recognized as the main source of soil vanadium pollution, little is known regarding the interrelationships between industrial dusts and soil inherent compositions. In this study, the interactions between dusts from vanadium smelting and soil indigenous microorganisms were investigated. Soluble vanadium (V) [V(V)] released from industrial dusts was reduced by 41.5 ± 0.39% with soil addition, compared to water leaching. Reducible fraction accounted for the highest proportion (55.1 ± 1.73%) of vanadium speciation in the resultant soils, while residual vanadium fraction increased to 83.7 ± 3.22% in the leached dusts. Functional genera (e.g., Aliihoeflea, Actinotalea) that transformed V(V) to insoluble vanadium (IV) alleviated dissolved vanadium release. Nitrate/nitrite reduction and glutathione metabolisms contributed to V(V) immobilization primarily. Structural equation model analysis indicated that V(V) reducers had significant negative impacts on soluble V(V) in the leachate. This first-attempt study highlights the importance of soil microorganisms in immobilizing vanadium from industrial dusts, which is helpful to develop novel strategies to reduce their environmental risks associated to vanadium smelting process.
Collapse
Affiliation(s)
- Yi'na Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Liuliu Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yawei Han
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jinxi He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Shu Cheng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Hui Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
8
|
Shi J, Zhang B, Liu J, Fang Y, Wang A. Spatiotemporal dynamics in microbial communities mediating biogeochemical cycling of nutrients across the Xiaowan Reservoir in Lancang River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151862. [PMID: 34826492 DOI: 10.1016/j.scitotenv.2021.151862] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Microbes drive biogeochemical cycles of nutrients controlling water quality in freshwater ecosystems, yet little is known regarding how spatiotemporal variation in the microbial community affects this ecosystem-level functional processes to resist perturbations. Here we examined spatiotemporal dynamics of microbial communities in paired stratified water columns and sediments collected from the Xiaowan Reservoir of Lancang-Mekong River over a year long period. Results highlighted distinctive spatiotemporal patterns of microbial communities in water columns mainly driven by sulfate, dissolved oxygen, nitrate and temperature, whilst sediment communities only showed a seasonal variation pattern governed by pH, reduced inorganic sulfur, sulfate, organic matter and total nitrogen. Microbial co-occurrence networks revealed the succession of keystone taxa in both water columns and sediments, reflecting core ecological functions in response to altered environmental conditions. Specifically, in shallow water, keystone nitrogen fixers and denitrifiers were responsible for providing nitrogen nutrients in summer, while recalcitrant substance degraders likely supplied microbially available organic matters to maintain ecosystem stability in winter. But in deep water, methane oxidation was the critical process linked to microbial-mediated cycle of carbon, nitrogen and sulfur. In addition, carbon metabolism and mercury methylation mediated by sulfate reducers, denitrifiers and nitrogen fixers were core functioning features of sediments in summer and winter, respectively. This work expands our knowledge of the importance of keystone taxa in maintaining stability of reservoir ecosystems under changing environments, providing new perspectives for water resource conservation and management.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jun Liu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yun Fang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resources and Environments, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|