1
|
Xiao Y, Li Q, Yang Y, Zhang Y, Shen Y, Liu J, Lei N, Zhang W, Wang Q. Unravelling the mechanisms of PFAS toxicity to submerged macrophytes and epiphytic biofilms at metabolic and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175726. [PMID: 39181257 DOI: 10.1016/j.scitotenv.2024.175726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are an emerging class of persistent organic pollutants that are widespread in aquatic ecosystems and pose a serious threat to aquatic organisms. It is thus crucial to explore the toxicity mechanisms of PFAS to submerged macrophytes and biofilms. In this study, Vallisneria natans (V. natans) was exposed to environmentally relevant concentrations of perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS). Results showed that PFAS induced the excessive production of reactive oxygen species, triggering antioxidant responses. V. natans exhibited an improved stress tolerance by altering the biosynthesis of several plant secondary metabolites and the histidine, arginine, proline pathways in response to PFAS exposure. Moreover, PIP1-1, PIP2-2, SLAH1 and SLAH2 genes were upregulated, indicating the activation of aquaporins and slow-type anion channels. The uptake of PFOA and PFOS by V. natans was 41.74 % and 52.31 %, respectively. Notably, PFAS bound to functional proteins (GSTF10), promoting the detoxification of plants. Exposure to PFAS also altered the structure of biofilms by inducing the synthesis of large amounts of polysaccharides and proteins. The diversity and richness of the microbial community within periphytic biofilms changed significantly. These results provide a comprehensive description of the responses of aquatic plants and periphytic biofilms to PFAS and the removal mechanism of PFAS, contributing to the environmental risk assessments and removal of PFAS in aquatic ecosystems.
Collapse
Affiliation(s)
- Yunxing Xiao
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Qi Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yumiao Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yifan Shen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Jing Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Ningfei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | | |
Collapse
|
2
|
Li S, Zhao Z, Liu J, Zhang B, Han B, Ma Y, Jin L, Zhu N, Gao G, Lin T. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and nutrients from two constructed wetlands in a city of southeastern China. Heliyon 2024; 10:e37551. [PMID: 39309800 PMCID: PMC11415654 DOI: 10.1016/j.heliyon.2024.e37551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large class of toxic contaminants. Nutrients are closely related to the ecological health of aquatic systems. Both have received widespread global attention. This study investigated the concentrations, compositions, and spatial distributions of PFAS and nutrients in surface water from two constructed wetlands and the nearby drinking water treatment plants (DWTPs). We explored the natural environmental factors and human activities that affect the composition and distribution of pollutants in wetlands and assessed the ability of the DWTPs to remove contaminants. Concentrations of ∑32PFAS varied from 153 to 405 ng/L. Hexafluoropropylene oxide trimer acid (HFPO-TA) was the predominant substance accounting for 45 % of ∑32PFAS concentrations. It might originate from the emissions of indirect sources of PFAS related manufacturers. The detection rate of 6:2 fluorotelomer carboxylic acid (6:2 FTCA) was 100 % with concentrations ranging from 0.915 to 19.7 ng/L 6:2 FTCA might come from the biotransformation of indirect sources in the air. Concentrations of total nitrogen (TN) and total phosphorus (TP) were from 1.47 to 3.54 mg/L, and non-detect (ND) to 0.323 mg/L, respectively. Constructed wetlands could effectively remove PFAS under nutrient stress, however, the removal of PFAS depends on the characteristics of specific compounds and their sources. The removal rates for PFAS and nutrients could be promoted through artificial dredging. But wetland bioremediation could have two opposing effects. On the one hand, plants can take up pollutants from water via roots, leading to pollutant removal and purification. On the other hand, plants may also absorb precursor intermediates from the air through leaves and release them into the water, leading to increased pollutant concentrations. Thirty-two emerging PFAS were identified by high resolution mass spectrum. The drinking water treatment process removed PFAS and nutrients below the drinking water quality standards of China, however, 9 non-target PFAS compounds were still found in tap water. These results provide case support and a theoretical basis for the pollution control and sustainable development of typical ecological wetlands used as drinking water sources.
Collapse
Affiliation(s)
- Shiyue Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Zhao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Boxuan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Baocang Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuntao Ma
- Jiaxing Jiayuan Testing Technology Service Co., Ltd, Jiaxing, 314000, China
| | - Limin Jin
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Ningzheng Zhu
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Guoping Gao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
3
|
Lu N, Du Z, Chu F, Xiao R, Wu Z, Wang M, Jia R, Chu W. Tracking the impact of perfluoroalkyl acid emissions on antibiotic resistance gene profiles in receiving water by metagenomic analysis. WATER RESEARCH 2024; 261:121931. [PMID: 38924952 DOI: 10.1016/j.watres.2024.121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
The ecological risks posed by perfluoroalkyl acids (PFAAs) to the aquatic environment have recently been of great concern. However, little information was available on the impact of PFAAs on antibiotic resistance genes (ARGs) profiles. In this study, the receiving river of the largest fluoropolymer production facility in China was selected to investigate the effects of PFAAs on ARGs profiles. The highest PFAAs concentration for water samples near the industrial effluent discharge point was 310.9 μg/L, which was thousands times of higher than the average concentration collected at upstream sites. Perfluorooctanoic acid accounted for more than 67.2 % of ∑PFAAs concentration in water samples collected at the downstream sites, followed by perfluorohexanoic acid (3.6 %-15.9 %). 145 ARG subtypes including high-risk ARGs were detected by metagenomic technology. The results indicated that the discharge of PFAA-containing effluents had a significant impact on the abundance and diversity of ARGs in receiving waters, and PFAAs and water quality parameters (e.g., pH, NH3N, CODMn, TP) could largely affect ARG profiles. Specifically, short-chain PFAAs had similar impacts on ARG profiles compared to the restricted long-chain PFAAs. This study confirmed the potential effects of PFAAs on ARGs in aquatic environment and provided more insights into the ecological risk raised by PFAAs.
Collapse
Affiliation(s)
- Nannan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Fumin Chu
- Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhengdi Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mingquan Wang
- Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Ruibao Jia
- Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
4
|
Li XQ, Hua ZL, Zhang JY, Jin JL. Effects of long-chained perfluoroalkyl acids (PFAAs) on the uptake and bioaccumulation of short-chained PFAAs in two free-floating macrophytes: Eichhornia crassipes and Ceratophyllum demersum. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134778. [PMID: 38843637 DOI: 10.1016/j.jhazmat.2024.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
Short-chained perfluoroalkyl acids (PFAAs, CnF2n+1-R, n ≤ 6) have merged as global concerns due to their extensive application and considerable toxicity. However, long-chained PFAAs (n ≥ 7) featured with high persistence are still ubiquitously observed in aquatic environment. To understand the uptake behavior of short-chained PFAAs in aquatic macrophytes, the uptake kinetics, bioconcentration, and translocation of short-chained PFAAs (3 ≤n ≤ 6) in two typical free-floating macrophytes (Eichhornia crassipes and Ceratophyllum demersum) were investigated in the treatments with and without long-chained PFAAs (7 ≤n ≤ 11). Results showed that short-chained PFAAs can be readily accumulated in both E. crassipes and C. demersum, and the uptake of short-chained PFAAs fit the two-compartment kinetic model well (p < 0.05). In the treatments with long-chained PFAAs, significant concentration decreases of all concerned short-chained PFAAs in E. crassipes and PFAAs with n ≤ 5 in C. demersum were observed. Long-chained PFAAs could hinder the uptake rates, bioconcentration factors, and translocation factors of most short-chained PFAAs in free-floating macrophytes (p < 0.01). Significant correlations between bioconcentration factors and perfluoroalkyl chain length were only observed when long-chained PFAAs were considered (p < 0.01). Our results underlined that the effects of long-chained PFAAs should be taken into consideration in understanding the uptake and bioaccumulation behaviors of short-chained PFAAs.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| | - Jun-Liang Jin
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| |
Collapse
|
5
|
Yu L, Liu X, Hua Z, Chu K. Intense Turbulent Bursts Promote the Release of Perfluoroalkyl Acids from Sediments at High Flow Velocity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11737-11747. [PMID: 38889003 DOI: 10.1021/acs.est.4c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Despite frequent detection of high levels of perfluoroalkyl acids (PFAAs) in sediments, research on the environmental fate of PFAAs in sediments, particularly under hydrodynamic conditions, is rather limited, challenging effective management of PFAA loadings. Therefore, this study investigated the release and transport of 15 PFAAs in sediments under environmentally relevant flow velocities using recirculating flumes and revealed the underlying release mechanisms by identifying related momentum transfer. An increased velocity enhanced the release magnitude of total PFAAs by a factor of 3.09. The release capacity of short-chain PFAAs was notably higher than that of long-chain PFAAs, and this pattern was further amplified by flow velocity. Pore-water drainage was the major pathway for PFAA release, with the release amount predominantly determined by flow velocity-induced release intensity and depth, as well as affected by the perfluorocarbon chain length and sediment size. The weak anion exchanger-diffusion gradients in the thin-film technique confirmed that the release depth of PFAAs increased with flow velocity. Quadrant analysis revealed that the rise in the frequency and intensity of turbulent bursts driven by sweeps and ejections at high flow velocity was the underlying cause of the increased release magnitude and depth of PFAAs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Kejian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| |
Collapse
|
6
|
Phung TV, Nguyen TD, Nguyen TN, Truong TK, Pham HV, Duong HA. Removal of perfluoroalkyl acids (PFAAs) from aqueous solution by water hyacinth (Eichhornia crassipes): Uptake, accumulation, and translocation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172029. [PMID: 38552988 DOI: 10.1016/j.scitotenv.2024.172029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Although Eichhornia crassipes, commonly known as water hyacinth, has been widely used in wastewater treatment, further investigations are still needed to explore the removal efficiency of perfluoroalkyl acids (PFAAs) from the aqueous environment using this floating aquatic plant. In this study, a hydroponic experiment was conducted to assess accumulation, bioconcentration factors (BCFs), translocation factors (TFs), and removal rates of eight PFAAs by water hyacinth. The obtained results indicated that all PFAAs, including five perfluoroalkyl carboxylic acids (PFCAs) with chain lengths C4-C8 and three perfluoroalkyl sulfonic acids (PFSAs) with C4, C6, and C8, were readily accumulated in water hyacinth. Throughout the duration of the experiment, there was a noticeable increase in PFAA concentrations and BCF values for different plant parts. For the root, PFAAs with more carbon numbers showed a higher uptake than the shorter homologues, with PFSAs being more readily accumulated compared to PFCAs with the same carbon number in the molecules. In contrast, the levels of long-chain PFAAs were comparatively lower than those of short-chain substances in the stem and leaf. Notably, PFAAs with less carbon numbers, like PFPeA, PFBA, and PFBS, showed a remarkable translocation from the root to the stem and leaf with TFs >1. For the whole plant, no significant correlation was found between BCFs and organic carbon-water partition coefficients (Koc), octanol-water partition coefficients (Kow), membrane-water distribution coefficients (Dmw), or protein-water distribution coefficients (Dpw). The removal rates of PFAAs ranged from 40.3 to 63.5 % throughout the three weeks of the experiment while the removal efficiencies varied from 48.9 % for PFHxS to 82.6 % for PFPeA in the last week.
Collapse
Affiliation(s)
- Thi Vi Phung
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam; Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Thanh Dam Nguyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam; Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Thuy Ngoc Nguyen
- Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Thi Kim Truong
- Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Hung Viet Pham
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam; Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Hong Anh Duong
- Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam.
| |
Collapse
|
7
|
Wang Y, Jiang Y, Xu Y, Tan F. Effects of uptake pathways on the accumulation, translocation, and metabolism of OPEs in rice: An emphasis on foliar uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170562. [PMID: 38307293 DOI: 10.1016/j.scitotenv.2024.170562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
The often-overlooked importance of foliar absorption on the plant uptake of organic pollutants was investigated by an exposure chamber test. Rice seedlings were exposed to organophosphate esters (OPEs) through 8 scenarios arranged from 3 major uptake pathways: root uptake via solution, foliar uptake via gas, and foliar uptake via particles, to identify the contributions of these 3 uptake pathways and their influences on the translocation and metabolism of OPEs in rice. The concentration of OPEs in rice tissues showed an "additive effect" with the increase of exposure pathways. OPEs in rice shoots mainly originated from foliar uptake through particle (29.6 %-63.5 %) and gaseous (28.5 %-49.4 %) absorptions rather than root uptake (7.86 %-24.2 %) under the exposure condition. In comparison with stomal absorption, wax layer penetration was the main pathway for most OPEs to enter into leaves, especially for those compounds with high octanol-air partition coefficients. Although the subcellular distributions of OPEs in the rice tissues of the foliar exposure were slightly different from those of the root exposure, hydrophobic OPEs were mainly stored in the cell wall with hydrophilic OPEs mainly in the cytosol. The translocation of OPEs from the exposed tissue to the unexposed tissue were significantly negatively correlated with their octanol-water partition coefficients, but their basipetal translocation were limited. The result suggested that the translocation of OPEs within rice is prioritized over their degradation. This study deepens our understanding of the processes behind OPE uptake by rice and highlights the importance of foliar uptake, especially for those via particle absorption.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yingying Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Wu H, Zhang W, Huang X, Gu P, Li Q, Luo X, Zheng Z. Phosphorus conditions change the cellular responses of Microcystis aeruginosa to perfluorooctanoic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166707. [PMID: 37660808 DOI: 10.1016/j.scitotenv.2023.166707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Perfluorooctanoic acid (PFOA), a widespread and emerging organic contaminant of aquatic environments, has high bioaccumulation potential and high toxicity. Consequently, major concerns have been raised worldwide regarding the management of this pollutant in aquatic ecosystems. To thoroughly understand PFOA's toxic effects on aquatic organisms, systematic investigations were conducted on the cellular responses of Microcystis aeruginosa to the environmental concentrations of PFOA under various concentrations as well as phosphorus (P) conditions (concentrations and forms). The results showed that P conditions remarkably affected cyanobacterial growth as well as photosynthetic pigment content, triggered oxidative stress to disrupt the function and structure of the cell membrane, and caused changes in the extracellular and intracellular contents of microcystin-LR (MC-LR). Furthermore, PFOA (100 μg/L) was absorbed by cyanobacterial cells through the stimulation of the secretion of extracellular polymeric substances (EPS) by M. aeruginosa. After entering the cyanobacterial cells, PFOA inhibited photosynthesis, reduced P absorption, induced oxidative damage, lead to a loss of cell integrity evident in scanning electron microscope images, and increased mcyA gene expression to promote MC-LR production. Moreover, the limited P concentration and forms conditions led to increased PFOA absorption by cyanobacterial cells, which further upregulated mcyA gene expression and increased the risk of MC-LR diffusion into the aquatic environment. Our present study provided a theoretical basis and new ideas for understanding and addressing safety issues related to the presence of PFOA in aquatic environments with varying nutritional statuses.
Collapse
Affiliation(s)
- Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Weizheng Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xuhui Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
9
|
Liu S, Liu Z, Tan W, Johnson AC, Sweetman AJ, Sun X, Liu Y, Chen C, Guo H, Liu H, Wan X, Zhang L. Transport and transformation of perfluoroalkyl acids, isomer profiles, novel alternatives and unknown precursors from factories to dinner plates in China: New insights into crop bioaccumulation prediction and risk assessment. ENVIRONMENT INTERNATIONAL 2023; 172:107795. [PMID: 36764184 DOI: 10.1016/j.envint.2023.107795] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are contaminants of global concern, and the inadvertent consumption of PFAA-contaminated crops may pose a threat to public health. Therefore, systematically studying their source tracing, bioaccumulation prediction and risk assessments in crops is an urgent priority. This study investigated the source apportionment and transport of PFAAs and novel fluorinated alternatives (collectively as per- and polyfluoroalkyl substances, PFASs) from factories to agricultural fields in a fluorochemical industrial region of China. Furthermore, bioaccumulation specificities and prediction of these chemicals in different vegetables were explored, followed by a comprehensive risk assessment from agricultural fields to dinner plates which considered precursor degradation. A positive matrix factorization model revealed that approximately 70 % of PFASs in agricultural soils were derived from fluorochemical manufacturing and metal processing. Alarming levels of ∑PFASs ranged 8.28-84.3 ng/g in soils and 163-7176 ng/g in vegetables. PFAS with short carbon chain or carboxylic acid group as well as branched isomers exhibited higher environmental transport potentials and bioaccumulation factors (BAFs) across a range of vegetables. The BAFs of different isomers of perfluorooctanoic acid (PFOA) decreased as the perfluoromethyl group moved further from the acid functional group. Hexafluoropropylene oxide dimer acid (GenX) showed relatively low BAFs, probably related to its ether bond with a high affinity to soil. Vegetables with fewer Casparian strips (e.g., carrot and radish), or more protein, possessed larger BAFs of PFASs. A bioaccumulation equation integrating critical parameters of PFASs, vegetables and soils, was built and corroborated with a good contamination prediction. After a total oxidizable precursors (TOP) assay, incremental perfluoroalkyl carboxylic acids (PFCAs) were massively found (325-5940 ng/g) in edible vegetable parts. Besides, precursor degradation and volatilization loss of PFASs was firstly confirmed during vegetable cooking. A risk assessment based on the TOP assay was developed to assist the protection of vegetable consumers.
Collapse
Affiliation(s)
- Shun Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon, OX 10 8BB, UK
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Xiaoyan Sun
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyu Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Wan
- Hubei Geological Survey, Wuhan 430034, China
| | - Limei Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Fabregat-Palau J, Vidal M, Rigol A. Examining sorption of perfluoroalkyl substances (PFAS) in biochars and other carbon-rich materials. CHEMOSPHERE 2022; 302:134733. [PMID: 35500630 DOI: 10.1016/j.chemosphere.2022.134733] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The use of carbon-rich sorbents to remove and/or immobilize perfluoroalkyl substances (PFAS) in contaminated environmental scenarios is attracting increasing interest. The identification of key sorbent properties responsible for PFAS sorption and the development of models that can predict the distribution coefficients (Kd) for PFAS sorption in these materials are crucial in the screening of candidate materials for environmental remediation. In this study, sorption kinetics, sorption isotherms, and the effects of pH, calcium concentration and dissolved organic carbon (DOC) content on PFAS sorption were evaluated in four representative carbon-rich materials: two biochars with contrasting properties, a compost, and charcoal fines rejected by the metallurgical industry. Subsequently, the sorption of seven PFAS with numbers of fluorinated carbons ranging from 4 to 11 was evaluated in a total of ten carbon-rich materials, including activated carbons, so as to build up a Kd prediction model. The sorption of PFAS increased with greater fluorinated chain length, suggesting that hydrophobic interactions play a major role in sorption and electrostatic interactions a minor one. These results were confirmed by a principal component analysis, which revealed that the CORG/O molar ratio and the specific surface area of the material were the two main sorbent properties affecting PFAS sorption. Furthermore, the DOC content in solution had a negative effect on PFAS sorption. Using this information, a simple Kd prediction model applicable to a wide range of materials and PFAS was developed, using only a few easily-derived physicochemical properties of sorbent (CORG/O molar ratio and SSA) and PFAS (number of CF2), and was externally validated with data gathered from the literature.
Collapse
Affiliation(s)
- Joel Fabregat-Palau
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Miquel Vidal
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Anna Rigol
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
11
|
Wang C, Thakuri B, Roy AK, Mondal N, Chakraborty A. Phase partitioning effects on seasonal compositions and distributions of terrigenous polycyclic aromatic hydrocarbons along the South China Sea and East China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154430. [PMID: 35276140 DOI: 10.1016/j.scitotenv.2022.154430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/19/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have posed serious risk to marine ecosystems due to their carcinogenic properties, and persistence in the environment and elevated bioaccumulation. It, therefore, becomes essential to examine spatial distribution, composition, and sources of PAHs. In this study, we have examined these PAH variations in the South China Sea (SCS) and East China Sea (ECS), that are experiencing rapid population and economic growth by the surrounding developing countries. It revealed high seasonal variations that significantly differ between dissolved and particulate PAHs concentrations. Spatial variations of PAHs across sites remain relatively insignificant. Persistently high particulate concentrations of the Naphthalene (Nap) were observed, whereas the dissolved concentrations of Fluorene (Flu) and Phenanthrene (Phen) remained prevalent across all the seasons. The result of non-metric multidimensional scaling (NMDS) strongly reflects the weak dispersions of PAHs across the seasons and the contrasting effects of the phase partitioning. Principal component analysis indicates that the primary source of PAH contamination is coal tar or petroleum distillation. However, estimated risk quotient (RQ) values of both the dissolved and particulate PAHs in all the seasons are far below the high-risk levels, while dissolved PAHs displayed relatively higher values. This study signifies the importance of phase petitioning for PAHs monitoring and potential risk assessments.
Collapse
Affiliation(s)
- Ce Wang
- School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| | - Bikash Thakuri
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Amit Kumar Roy
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Nitish Mondal
- Department of Anthropology, School of Human Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Amit Chakraborty
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India.
| |
Collapse
|
12
|
Wu JY, Hua ZL, Gu L. Per-, poly-fluoroalkyl substances (PFASs) and planktonic microbiomes: Identification of biotic and abiotic regulations in community coalescence and food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119078. [PMID: 35245616 DOI: 10.1016/j.envpol.2022.119078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The importance of per-, poly-fluoroalkyl substances (PFASs) effects on riverine microbiomes is receiving increased recognition in the environmental sciences. However, few studies have explored how PFASs affect microbiomes across trophic levels, specifically through predator-prey interactions. This study examined the community profiles of planktonic archaea, bacteria, fungi, algae, protozoa, and metazoa in a semi-industrial and agricultural river alongside their interactions with 15 detected PFASs. As abiotic factors, PFASs affected community coalescence more than biogenic substances (p < 0.05). For biotic regulations, sub-communities in rare biospheres (including always rare taxa-ART and critically rare taxa-CRT) contributed to spatial community coalescence more than sub-communities in abundant biospheres (always abundant taxa-AAT and critically abundant taxa-CAT) (p < 0.05). Metazoa-bacteria (Modularity = 1.971) and protozoa-fungi (1.723) were determined to be the most stable predator-prey networks. Based on pathway models, short-chain PFBA (C4) was shown to weaken the trophic transfer efficiencies from heterotrophic bacteria (HB) to heterotrophic flagellates (HF) (p < 0.05). Long-chain PFTeDA (C14) promoted HB to amoeba (p < 0.05), which we postulate is the pathway for PFTeDA to enter the microbial food chain. Our preliminary results elucidated the influence of PFASs on planktonic microbial food webs and highlighted the need to consider protecting and remediating riverine ecosystems containing PFASs.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| |
Collapse
|
13
|
Hua ZL, Li XQ, Zhang JY, Gu L. Removal potential of multiple perfluoroalkyl acids (PFAAs) by submerged macrophytes in aquatic environments: Tolerance of Vallisneria natans and PFAA removal in submerged macrophyte-microbiota systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127695. [PMID: 34775308 DOI: 10.1016/j.jhazmat.2021.127695] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have emerged as a global concern in aquatic environment remediation due to their abundance, persistence, bioaccumulation, and toxicity. To comprehensively understand the removal potential of multiple PFAAs by submerged macrophytes in aquatic environments, systematic investigations into the tolerance of the typical submerged macrophyte Vallisneria natans to 12 typical PFAAs and the removal capacity to PFAAs in V. natans-microbiota systems were carried out. Results showed that although PFAAs could induce the accumulation of hydrogen peroxide and malondialdehyde, V. natans was overall resistant to multiple PFAAs with natural concentrations. Catalase is one of the main strategies of V. natans to alleviate PFAA stress. Microbiota can remove 18.10-30.84% of the PFAAs from the water column. 24.35-73.45% of PFAAs were removed from water in V. natans-microbiota systems. The uptake of plant tissues and the bioaccumulation of microbiota were proposed as the main removal processes. The removal rates were significantly correlated with the perfluorinated carbon atoms numbers (p < 0.05). PFAAs and V. natans increased the relative abundance of Betaproteobacteria, Nostocales, Microscillaceae, Sphingobacteriales, SBR1031, Chlamydiales, Phycisphaerae, Caldilineales, Rhodobacterales, and Verrucomicrobiales. The present study suggested that V. natans can be a potential species to remove multiple PFAAs in aquatic environments, and further providing insights into the PFAAs' remediation.
Collapse
Affiliation(s)
- Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| |
Collapse
|
14
|
Zhang Z, Sarkar D, Biswas JK, Datta R. Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review. BIORESOURCE TECHNOLOGY 2022; 344:126223. [PMID: 34756980 DOI: 10.1016/j.biortech.2021.126223] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals widely manufactured for industrial and commercial applications in the past decades due to their remarkable stability as well as hydrophobic and lipophobic nature. PFAS species have been recognized as emerging environmental contaminants of concern due to their toxicity and environmental persistence, thereby attracting intensive research seeking effective technologies for their removal from the environment. The objective of this review is to provide a thorough analysis of the biodegradation of PFAS in multiple environmental matrices and offer a future outlook. By discussing targeted PFAS species, degradation intermediates, degradation efficiencies, and microbial species, a comprehensive summary of the known microbial species and their degradation pathways are presented. The biodegradation pathways for different types of PFAS species are summarized in two major categories, biodegradation with and without the cleavage of C-F bond. Existing uncertainties and future research directions for PFAS biodegradation are provided.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|