1
|
Michelini S, Mawas S, Kurešepi E, Barbero F, Šimunović K, Miremont D, Devineau S, Schicht M, Ganin V, Haugen ØP, Afanou AK, Izabelle C, Zienolddiny-Narui S, Jüngert K, Repar N, Fenoglio I, Šetina Batić B, Paulsen F, Mandić-Mulec I, Boland S, Erman A, Drobne D. Pulmonary hazards of nanoplastic particles: a study using polystyrene in in vitro models of the alveolar and bronchial epithelium. J Nanobiotechnology 2025; 23:388. [PMID: 40426130 PMCID: PMC12117733 DOI: 10.1186/s12951-025-03419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Nanoplastics (NPs) are released into the environment through the degradation of plastic objects, leading to human exposure. Due to their small size, concerns have been raised about the potential hazards to the respiratory tract, as ultrafine and nanoparticles are known to penetrate till the alveolar regions of the lungs, potentially impairing their functions. Thus, in the present study, we used model polystyrene nanoparticles doped with the fluorescent metal europium (PS-Eu) to enhance the understanding of NPs hazard and investigate adverse outcomes associated with exposure in human lungs using alveolar (A549) and bronchial (Calu-3) cell models grown in 2D and 3D submerged conditions or quasi air-liquid interface (ALI) conditions (3D). RESULTS Briefly, after in-dept physicochemical characterization of the particles, we assessed their impact on ROS production, cell viability (AlamarBlue and lactate dehydrogenase assays) and barrier integrity (lucifer yellow assay and TEER measurement), finding no negative effects in either model. However, in alveolar cells, particles increased acidic organelle activity. Transmission electron microscopy and Raman microscopy showed, in both models, a dose- and cell-dependent particle uptake with PS-Eu accumulating in numerous and large endo-lysosomes, which, in transwells-grown A549 cells, often contained also lamellar bodies (LBs), organelles involved in surfactants storage and secretion. After extensively quantifying surfactant proteins (SP) in the pellet and supernatant fractions of treated A549 cells, we observed a significant reduction in several members of this family, including surfactant protein B, which is crucial for lamellar body formation and surface tension regulation in the lungs. In quasi-ALI Calu-3 cultures instead, PS-Eu significantly upregulated interleukin 6 (IL-6) and increased transforming growth factor beta β (TGF-β), zonula occludens 1 (ZO-1), and mucin (MUC) 5B mRNA expressions causing a moderate proinflammatory response. CONCLUSION Our results show that PS-Eu exposure does not induce acute cytotoxicity in these models, but affects cell-specific functions like surfactant, mucin, and cytokine production. This underscores the limitations of relying solely on standard cytotoxicity tests for particle hazard assessment and highlights the importance of investigating cell function-specific signaling pathways. To support researchers in hazard assessment, we propose specific classes of biomarkers to test in in vitro lung models.
Collapse
Affiliation(s)
- Sara Michelini
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Safaa Mawas
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Ema Kurešepi
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Francesco Barbero
- Department of Chemistry, Laboratory of Toxicity and Biocompatibility of Materials, University of Torino, Torino, Italy
| | - Katarina Šimunović
- Biotechnical Faculty, Department of Microbiology, University of Ljubljana, Ljubljana, Slovenia
| | - Dorian Miremont
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Stéphanie Devineau
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Victor Ganin
- Institute of Metals and Technology, Ljubljana, Slovenia
| | | | | | - Charlotte Izabelle
- Université Paris Cité, CNRS UAR612, Inserm US25, Cellular and Molecular Imaging Facility, Paris, France
| | | | - Katharina Jüngert
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Neža Repar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ivana Fenoglio
- Department of Chemistry, Laboratory of Toxicity and Biocompatibility of Materials, University of Torino, Torino, Italy
| | | | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ines Mandić-Mulec
- Biotechnical Faculty, Department of Microbiology, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Boland
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Andreja Erman
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Drobne
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Cui Y, Wu Y, Shi P, Ni Y, Zeng H, Zhang Z, Zhao C, Sun W, Yi Q. Mitigating microplastic-induced organ Damage: Mechanistic insights from the microplastic-macrophage axes. Redox Biol 2025; 84:103688. [PMID: 40412021 DOI: 10.1016/j.redox.2025.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/10/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
We live in a world increasingly dominated by plastic, leading to the generation of microplastic particles that pose significant global health concerns. Microplastics can enter the body via ingestion, inhalation, and direct contact, accumulating in various tissues and potentially causing harm. Despite this, the specific cellular mechanisms and signaling pathways involved remain poorly understood. Macrophages are essential in absorbing, distributing, and eliminating microplastics, playing a key role in the body's defense mechanisms. Recent evidence highlights oxidative stress signaling as a key pathway in microplastic-induced macrophage dysfunction. The accumulation of microplastics generates reactive oxygen species (ROS), disrupting normal macrophage functions and exacerbating inflammation and organ damage. This review serves as the first comprehensive examination of the interplay between microplastics, macrophages, and oxidative stress. It discusses how oxidative stress mediates macrophage responses to microplastics and explores the interactions with gut microbiota. Additionally, it reviews the organ damage resulting from alterations in macrophage function mediated by microplastics and offers a novel perspective on the defense, assessment, and treatment of microplastic-induced harm from the viewpoint of macrophages.
Collapse
Affiliation(s)
- Yinxing Cui
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China; Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Yuqi Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Pan Shi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Yan Ni
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Huaying Zeng
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Zhao Zhang
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Chunling Zhao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China.
| |
Collapse
|
3
|
Wang L, Tang Y, Ding W, Tian R, Li R, Li H, Liu X. A How-To Approach to Estimating Surface Charge Density of Nano/Micro Particles through Aggregation Experiments Considering the Specific Ion Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6612-6620. [PMID: 40042963 DOI: 10.1021/acs.langmuir.4c04477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Accurate estimation of the surface charge density of nano/micro particles is crucial for regulating their environmental fate and bioavailability in the fields of environmental science and materials engineering. However, existing analytical methods for accurately estimating surface charge density remain significant challenges. In this study, we proposed a method for estimating the surface charge density of nano/micro particles through aggregation experiments using dynamic light scattering technology. The specific ion effect had a significant effect on the accuracy of these estimations. Without considering the specific ion effect, this led to significantly different and unacceptable surface charge densities for montmorillonite particles with permanent charges. Conversely, when considering the specific ion effect, similar surface charge densities were obtained (0.1974, 0.1930, and 0.1718 C/m2), with a mean value of 0.1874 ± 0.0136 C/m2, which aligned well with the literature-reported values. Furthermore, the surface charge density of various nano/micro particles, such as microplastic polymers, graphene oxide, and nanosilver, was also estimated using this method. The migration behavior of these particles was determined by electrostatic repulsion between them, which was controlled by their surface charge density. The surface analysis method proposed herein provides a solid foundation for the directed adjustment and control of the migration dynamics of nano/micro particles in environmental systems.
Collapse
Affiliation(s)
- Lin Wang
- Chongqing key laboratory of interface process and soil health, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ying Tang
- Chongqing key laboratory of interface process and soil health, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wuquan Ding
- Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing University of Arts and Science, Chongqing 402168, China
| | - Rui Tian
- Chongqing key laboratory of interface process and soil health, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Rui Li
- Chongqing key laboratory of interface process and soil health, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hang Li
- Chongqing key laboratory of interface process and soil health, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xinmin Liu
- Chongqing key laboratory of interface process and soil health, College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Santizo KY, Mangold HS, Mirzaei Z, Park H, Kolan RR, Sarau G, Kolle S, Hansen T, Christiansen S, Wohlleben W. Microplastic Materials for Inhalation Studies: Preparation by Solvent Precipitation and Comprehensive Characterization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405555. [PMID: 39801210 PMCID: PMC11840474 DOI: 10.1002/smll.202405555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/11/2024] [Indexed: 02/21/2025]
Abstract
Assessing the inhalation hazard of microplastics is important but necessitates sufficient quantity of microplastics that are representative and respirable (<4 µm). Common plastics are not typically manufactured in such small sizes. Here, solvent precipitation is used to produce respirable test materials from thermoplastics polyurethane (TPU), polyamide (PA-6), polyethylene terephthalate (PET), and low-density polyethylene (LDPE). Complementary methods verified that the desired size range is achieved both in number metrics and in mass metrics. To assess if the test materials are representative of their original plastic, a range of molecular properties, particle properties, and impurities are characterized: chemical composition, molecular weight, crystallinity, molecular mobility, density, surface charge, surface reactivity, particle size in mass and number metrics, particle shape, endotoxin content, and solvent content. The test materials obtained by precipitation are compared to commercial granules as references, and to alternative test materials obtained by other synthesis routes from LDPE, TPU, PET, PA-6, polystyrene (PS), and polyvinylchloride (PVC). Charge and surface reactivity of the precipitated test materials are low. Due to storage in water, microbial contamination needed to be monitored. For PET, PA-6, and TPU, the test materials are considered as representative and fit for purpose, whereas the inherent hydrophobicity of LDPE imposed strong aggregation.
Collapse
Affiliation(s)
| | - Hannah S. Mangold
- BASF SE, Dept. Chemicals & Catalysis Research67056LudwigshafenGermany
| | - Zeynab Mirzaei
- Institute for Nanotechnology and Correlative Microscopy eV INAM91301ForchheimGermany
| | - Hyoungwon Park
- Fraunhofer Institute for Ceramic Technologies and System (Fraunhofer IKTS)91301ForchheimGermany
| | - Rajkumar Reddy Kolan
- Fraunhofer Institute for Ceramic Technologies and System (Fraunhofer IKTS)91301ForchheimGermany
| | - George Sarau
- Fraunhofer Institute for Ceramic Technologies and System (Fraunhofer IKTS)91301ForchheimGermany
- Max Planck Institute for the Science of Light, Leuchs Emeritus Group91058ErlangenGermany
| | - Susanne Kolle
- BASF SE, Dept. of Experimental Toxicology & Ecology67056LudwigshafenGermany
| | - Tanja Hansen
- Fraunhofer Institute of Toxicology and Experimental Medicine (Fraunhofer ITEM)30625HannoverGermany
| | - Silke Christiansen
- Institute for Nanotechnology and Correlative Microscopy eV INAM91301ForchheimGermany
- Fraunhofer Institute for Ceramic Technologies and System (Fraunhofer IKTS)91301ForchheimGermany
- Freie Universität Berlin, Physics Department14195BerlinGermany
| | - Wendel Wohlleben
- BASF SE, Dept. Analytical & Material Science67056LudwigshafenGermany
- BASF SE, Dept. of Experimental Toxicology & Ecology67056LudwigshafenGermany
| |
Collapse
|
5
|
Gou Z, Wu H, Li S, Liu Z, Zhang Y. Airborne micro- and nanoplastics: emerging causes of respiratory diseases. Part Fibre Toxicol 2024; 21:50. [PMID: 39633457 PMCID: PMC11616207 DOI: 10.1186/s12989-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Airborne micro- and nanoplastics (AMNPs) are ubiquitously present in human living environments and pose significant threats to respiratory health. Currently, much research has been conducted on the relationship between micro- and nanoplastics (MNPs) and cardiovascular and gastrointestinal diseases, yet there is a clear lack of understanding regarding the link between AMNPs and respiratory diseases. Therefore, it is imperative to explore the relationship between the two. Recent extensive studies by numerous scholars on the characteristics of AMNPs and their relationship with respiratory diseases have robustly demonstrated that AMNPs from various sources significantly influence the onset and progression of respiratory conditions. Thus, investigating the intrinsic mechanisms involved and finding necessary preventive and therapeutic measures are crucial. In this review, we primarily describe the fundamental characteristics of AMNPs, their impact on the respiratory system, and the intrinsic toxic mechanisms that facilitate disease development. It is hoped that this article will provide new insights for further research and contribute to the advancement of human health.
Collapse
Affiliation(s)
- Zixuan Gou
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Haonan Wu
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Shanyu Li
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| | - Ying Zhang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
- Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Swinnerton S, Su J, Tsai CSJ. The emission and physicochemical properties of airborne microplastics and nanoplastics generated during the mechanical recycling of plastic via shredding. Sci Rep 2024; 14:24755. [PMID: 39433549 PMCID: PMC11494166 DOI: 10.1038/s41598-024-73775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
This study examined the emission and physicochemical properties of microplastics and nanoplastics (MPs/NPs) generated during shredding, which is regularly used in mechanical recycling. Waste and new polyethylene terephthalate, polypropylene, and high-density polyethylene were investigated herein for a total of six categories. The concentration and size distribution of particles were measured using two spectrometer instruments, and morphology and elemental composition of emitted particles were analyzed with microscopy and spectroscopy. This study found that number concentrations in both submicron and micron sizes of respirable particles were 3-2910× higher during periods of shredding than pre-shredding background concentrations. Maximum concentrations of particles within 10-420 nm, across all six categories, ranged from 22,000- to 1,300,000-particles/cm3 during shredding, compared to average background levels of 700 particles/cm3. Maximum concentrations of particles within 0.3 to 10 μm, across all six categories, ranged from 24- to 2000-particles/cm3 during shredding, compared to average background levels of 2 particles/cm3. Waste plastics consistently generated higher emissions than their new counterparts, which is attributed to the labels, adhesives, and increased additives incorporated into the waste plastic. Morphology varied drastically between particles and an elemental composition analysis found that the samples consisted primarily of C and O, representing the polymer material, as well as Na, Mg, Al, Si, Cu, Cl, K, Ca, Ti, Fe, Rb, and Br representing additives, label, and other contaminates. The shredding of plastic has the potential to expose workers to elevated concentrations of airborne MPs/NPs, especially those between 10 and 100 nm.
Collapse
Affiliation(s)
- S Swinnerton
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles (UCLA), 650 Charles E. Young Drive S., MC 177220, Los Angeles, CA, USA
| | - J Su
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Candace S J Tsai
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles (UCLA), 650 Charles E. Young Drive S., MC 177220, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Gouin T, Ellis-Hutchings R, Pemberton M, Wilhelmus B. Addressing the relevance of polystyrene nano- and microplastic particles used to support exposure, toxicity and risk assessment: implications and recommendations. Part Fibre Toxicol 2024; 21:39. [PMID: 39334292 PMCID: PMC11429038 DOI: 10.1186/s12989-024-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND There has been an exponential increase in the number of studies reporting on the toxicological effects associated with exposure to nano and microplastic particles (NMPs). The majority of these studies, however, have used monodispersed polystyrene microspheres (PSMs) as 'model' particles. Here we review the differences between the manufacture and resulting physicochemical properties of polystyrene used in commerce and the PSMs most commonly used in toxicity studies. MAIN BODY In general, we demonstrate that significant complexity exists as to the properties of polystyrene particles. Differences in chemical composition, size, shape, surface functionalities and other aspects raise doubt as to whether PSMs are fit-for-purpose for the study of potential adverse effects of naturally occurring NMPs. A realistic assessment of potential health implications of the exposure to environmental NMPs requires better characterisation of the particles, a robust mechanistic understanding of their interactions and effects in biological systems as well as standardised protocols to generate relevant model particles. It is proposed that multidisciplinary engagement is necessary for the development of a timely and effective strategy towards this end. We suggest a holistic framework, which must be supported by a multidisciplinary group of experts to work towards either providing access to a suite of environmentally relevant NMPs and/or developing guidance with respect to best practices that can be adopted by research groups to generate and reliably use NMPs. It is emphasized that there is a need for this group to agree to a consensus regarding what might best represent a model NMP that is consistent with environmental exposure for human health, and which can be used to support a variety of ongoing research needs, including those associated with exposure and hazard assessment, mechanistic toxicity studies, toxicokinetics and guidance regarding the prioritization of plastic and NMPs that likely represent the greatest risk to human health. It is important to acknowledge, however, that establishing a multidisciplinary group, or an expert community of practice, represents a non-trivial recommendation, and will require significant resources in terms of expertise and funding. CONCLUSION There is currently an opportunity to bring together a multidisciplinary group of experts, including polymer chemists, material scientists, mechanical engineers, exposure and life-cycle assessment scientists, toxicologists, microbiologists and analytical chemists, to provide leadership and guidance regarding a consensus on defining what best represents environmentally relevant NMPs. We suggest that given the various complex issues surrounding the environmental and human health implications that exposure to NMPs represents, that a multidisciplinary group of experts are thus critical towards helping to progress the harmonization and standardization of methods.
Collapse
Affiliation(s)
- Todd Gouin
- TG Environmental Research, 18 Wellpond Close, Sharnbrook, UK.
| | | | | | - Bianca Wilhelmus
- INEOS Styrolution Group GmbH, Mainzer Landstraße 50, 60325, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Morgan SE, Romanick SS, DeLouise L, McGrath J, Elder A. Understanding Human Health Impacts Following Microplastic Exposure Necessitates Standardized Protocols. Curr Protoc 2024; 4:e1104. [PMID: 39018010 PMCID: PMC11451905 DOI: 10.1002/cpz1.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Microplastics (MPs; 1 µm to 5 mm) are a persistent and pervasive environmental pollutant of emergent and increasing concern. Human exposure to MPs through food, water, and air has been documented and thus motivates the need for a better understanding of the biological implications of MP exposure. These impacts are dependent on the properties of MPs, including size, morphology, and chemistry, as well as the dose and route of exposure. This overview offers a perspective on the current methods used to assess the bioactivity of MPs. First, we discuss methods associated with MP bioactivity research with an emphasis on the variety of assays, exposure conditions, and reference MP particles that have been used. Next, we review the challenges presented by common instrumentation and laboratory materials, the lack of standardized reference materials, and the limited understanding of MP dosimetry. Finally, we propose solutions that can help increase the applicability and impact of future studies while reducing redundancy in the field. The excellent protocols published in this issue are intended to contribute toward standardizing the field so that the MP knowledge base grows from a reliable foundation. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Sarah E Morgan
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, United States
| | - Samantha S Romanick
- Department of Biomedical Engineering, University of Rochester, 480 Intercampus Drive, Rochester, New York
| | - Lisa DeLouise
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York
| | - James McGrath
- Department of Biomedical Engineering, University of Rochester, 480 Intercampus Drive, Rochester, New York
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, United States
| |
Collapse
|
9
|
Vdovchenko A, Resmini M. Mapping Microplastics in Humans: Analysis of Polymer Types, and Shapes in Food and Drinking Water-A Systematic Review. Int J Mol Sci 2024; 25:7074. [PMID: 39000186 PMCID: PMC11241750 DOI: 10.3390/ijms25137074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Microplastics (MPs) pervade the environment, infiltrating food sources and human bodies, raising concerns about their impact on human health. This review is focused on three key questions: (i) What type of polymers are humans most exposed to? (ii) What are the prevalent shapes of MPs found in food and human samples? (iii) Are the data influenced by the detection limit on the size of particles? Through a systematic literature analysis, we have explored data on polymer types and shapes found in food and human samples. The data provide evidence that polyester is the most commonly detected polymer in humans, followed by polyamide, polyurethane, polypropylene, and polyacrylate. Fibres emerge as the predominant shape across all categories, suggesting potential environmental contamination from the textile industry. Studies in humans and drinking water reported data on small particles, in contrast to larger size MPs detected in environmental research, in particular seafood. Discrepancies in size detection methodologies across different reports were identified, which could impact some of the discussed trends. This study highlights the need for more comprehensive research on the interactions between MPs and biological systems and the effects of MPs on toxicity, together with standardised analytical methodologies to accurately assess contamination levels and human exposure. Understanding these dynamics is essential for formulating effective strategies to mitigate the environmental and health implications of MP pollution.
Collapse
Affiliation(s)
| | - Marina Resmini
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
10
|
Mondellini S, Schwarzer M, Völkl M, Jasinski J, Jérôme V, Scheibel T, Laforsch C, Freitag R. Size dependent uptake and trophic transfer of polystyrene microplastics in unicellular freshwater eukaryotes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172470. [PMID: 38621530 DOI: 10.1016/j.scitotenv.2024.172470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Microplastics (MP) have become a well-known and widely investigated environmental pollutant. Despite the huge amount of new studies investigating the potential threat posed by MP, the possible uptake and trophic transfer in lower trophic levels of freshwater ecosystems remains understudied. This study aims to investigate the internalization and potential trophic transfer of fluorescent polystyrene (PS) beads (0.5 μm, 3.6 × 108 particles/mL; 6 μm, 2.1 × 105 particles/mL) and fragments (<30 μm, 5 × 103 particles/mL) in three unicellular eukaryotes. This study focuses on the size-dependent uptake of MP by two freshwater Ciliophora, Tetrahymena pyriformis, Paramecium caudatum and one Amoebozoa, Amoeba proteus, serving also as predator for experiments on potential trophic transfer. Size-dependent uptake of MP in all three unicellular eukaryotes was shown. P. caudatum is able to take up MP fragments up to 27.7 μm, while T. pyriformis ingests particles up to 10 μm. In A. proteus, small MP (PS0.5μm and PS6μm) were taken up via pinocytosis and were detected in the cytoplasm for up to 14 days after exposure. Large PS-MP (PS<30μm) were detected in A. proteus only after predation on MP-fed Ciliophora. These results indicate that A. proteus ingests larger MP via predation on Ciliophora (PS<30μm), which would not be taken up otherwise. This study shows trophic transfer of MP at the base of the aquatic food web and serves as basis to study the impact of MP in freshwater ecosystems.
Collapse
Affiliation(s)
- Simona Mondellini
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
| | - Michael Schwarzer
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
| | - Matthias Völkl
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Julia Jasinski
- Biomaterials, University of Bayreuth, 95447 Bayreuth, Germany
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, University of Bayreuth, 95447 Bayreuth, Germany; Bayerisches Polymerinstitut (BPI), University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Materialzentrum (BayMAT), University of Bayreuth, 95447 Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany.
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
11
|
Adler MY, Issoual I, Rückert M, Deloch L, Meier C, Tschernig T, Alexiou C, Pfister F, Ramsperger AF, Laforsch C, Gaipl US, Jüngert K, Paulsen F. Effect of micro- and nanoplastic particles on human macrophages. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134253. [PMID: 38642497 DOI: 10.1016/j.jhazmat.2024.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment, resulting in the uptake of MNPs by a variety of organisms, including humans, leading to particle-cell interaction. Human macrophages derived from THP-1 cell lines take up Polystyrene (PS), a widespread plastic. The question therefore arises whether primary human macrophages also take up PS micro- and nanobeads (MNBs) and how they react to this stimulation. Major aim of this study is to visualize this uptake and to validate the isolation of macrophages from peripheral blood mononuclear cells (PBMCs) to assess the impact of MNPs on human macrophages. Uptake of macrophages from THP-1 cell lines and PBMCs was examined by transmission electron microscopy (TEM), scanning electron microscopy and live cell imaging. In addition, the reaction of the macrophages was analyzed in terms of metabolic activity, cytotoxicity, production of reactive oxygen species (ROS) and macrophage polarization. This study is the first to visualize PS MNBs in primary human cells using TEM and live cell imaging. Metabolic activity was size- and concentration-dependent, necrosis and ROS were increased. The methods demonstrated in this study outline an approach to assess the influence of MNP exposure on human macrophages and help investigating the consequences of worldwide plastic pollution.
Collapse
Affiliation(s)
- Maike Y Adler
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Insaf Issoual
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Chair of Machine Learning and Data Analytics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa Deloch
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Christian Laforsch
- Animal Ecology I and Bay CEER, University of Bayreuth, Bayreuth, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katharina Jüngert
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
12
|
Islam MS, Gupta I, Xia L, Pitchai A, Shannahan J, Mitra S. Generation of Eroded Nanoplastics from Domestic Wastes and Their Impact on Macrophage Cell Viability and Gene Expression. Molecules 2024; 29:2033. [PMID: 38731523 PMCID: PMC11085467 DOI: 10.3390/molecules29092033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and Poly (Ethylene-co-Methacrylic Acid) (PEMA). The chemical composition of these plastics was confirmed using Raman and FTIR spectroscopy, and they were found to have irregular shapes. The resulting NP particles ranged from 50 to 400 nm in size and demonstrated relative stability when suspended in water. To assess their impact, the study investigated the effects of these NP particulates on cell viability and the expression of genes involved in inflammation and oxidative stress using a macrophage cell line. The findings revealed that all types of NP reduced cell viability in a concentration-dependent manner. Notably, PS, HDPE, and PP induced significant reductions in cell viability at lower concentrations, compared to PEMA and PET. Moreover, exposure to NP led to differential alterations in the expression of inflammatory genes in the macrophage cell line. Overall, this study presents a viable method for producing NP from waste materials that closely resemble real-world NP. Furthermore, the toxicity studies demonstrated distinct cellular responses based on the composition of the NP, shedding light on the potential environmental and health impacts of these particles.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.S.I.); (I.G.)
| | - Indrani Gupta
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.S.I.); (I.G.)
| | - Li Xia
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (L.X.); (A.P.); (J.S.)
| | - Arjun Pitchai
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (L.X.); (A.P.); (J.S.)
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (L.X.); (A.P.); (J.S.)
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.S.I.); (I.G.)
| |
Collapse
|
13
|
Jarosz K, Borek-Dorosz A, Drozdek M, Rokicińska A, Kiełbasa A, Janus R, Setlak K, Kuśtrowski P, Zapotoczny S, Michalik M. Abiotic weathering of plastic: Experimental contributions towards understanding the formation of microplastics and other plastic related particulate pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170533. [PMID: 38307281 DOI: 10.1016/j.scitotenv.2024.170533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
The increasing use of plastic (synthetic polymers) results in the release of uncontrollable amounts of synthetic materials into the environment through waste, infrastructure, and essential goods. As plastic materials undergo weathering, a complex process unfolds, leading to the formation of pollutants, notably microplastics. This study employs multiple instrumental methods to explore the intricate abiotic degradation of the five most commonly used synthetic polymers in environmentally relevant conditions. An extensive set of analytical techniques, along with chemometric analysis of the results of Raman spectroscopy, was used to characterize the materials and evaluate the nature and extent of degradation caused by artificial weathering under temperature, humidity, and solar-like irradiation cycles. Investigation focuses on the link between abiotic weathering and the generation of micro- and nanoplastics, accompanied by molecular and surface adhesion changes, and the release of additives such as metals and metal oxides. Research reveals that microplastics may exhibit varied physical properties due to the incorporation of significant quantities of high-density additives from the parent plastic, which might influence the extraction methods and the transportation models' accuracy. At the molecular and microscopic scales, non-homogeneous pathways through which plastic decomposes during weathering were observed. The formation of additive-polymer combinations might play a pivotal role in the monitoring approaches for microplastics, presenting unique challenges in assessing the environmental impact of different plastic types. These findings offer complex insight into abiotic weathering, microplastics' generation, and the influence of additives that were previously overlooked in toxicity and health assessment studies. As plastic pollution continues to escalate, understanding these complex processes is crucial for microplastic monitoring development and adopting effective preventative measures.
Collapse
Affiliation(s)
- Kinga Jarosz
- Institute of Geological Sciences, Faculty of Geography and Geology, Jagiellonian University, ul. Gronostajowa 3a, 30-387 Kraków, Poland.
| | | | - Marek Drozdek
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| | - Anna Rokicińska
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Kiełbasa
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, ul. Prof. St. Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Rafał Janus
- Faculty of Energy and Fuels, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Kinga Setlak
- Faculty of Material Engineering and Physics, Cracow University of Technology, ul. Jana Pawła II 37, 31-864 Krakow, Poland.
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| | - Marek Michalik
- Institute of Geological Sciences, Faculty of Geography and Geology, Jagiellonian University, ul. Gronostajowa 3a, 30-387 Kraków, Poland.
| |
Collapse
|
14
|
Jasinski J, Völkl M, Wilde MV, Jérôme V, Fröhlich T, Freitag R, Scheibel T. Influence of the polymer type of a microplastic challenge on the reaction of murine cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133280. [PMID: 38141312 DOI: 10.1016/j.jhazmat.2023.133280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Due to global pollution derived from plastic waste, the research on microplastics is of increasing public interest. Until now, most studies addressing the effect of microplastic particles on vertebrate cells have primarily utilized polystyrene particles (PS). Other studies on polymer microparticles made, e.g., of polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), or poly (ethylene terephthalate) (PET), cannot easily be directly compared to these PS studies, since the used microparticles differ widely in size and surface features. Here, effects caused by pristine microparticles of a narrow size range between 1 - 4 µm from selected conventional polymers including PS, PE, and PVC, were compared to those of particles made of polymers derived from biological sources like polylactic acid (PLA), and cellulose acetate (CA). The microparticles were used to investigate cellular uptake and assess cytotoxic effects on murine macrophages and epithelial cells. Despite differences in the particles' properties (e.g. ζ-potential and surface morphology), macrophages were able to ingest all tested particles, whereas epithelial cells ingested only the PS-based particles, which had a strong negative ζ-potential. Most importantly, none of the used model polymer particles exhibited significant short-time cytotoxicity, although the general effect of environmentally relevant microplastic particles on organisms requires further investigation.
Collapse
Affiliation(s)
- Julia Jasinski
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Matthias Völkl
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Magdalena V Wilde
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Munich, Germany; Department of Earth and Environmental Sciences, Paleontology & Geobiology, LMU München, Munich, Germany
| | - Valérie Jérôme
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Munich, Germany
| | - Ruth Freitag
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Material Science (BayMAT), University of Bayreuth, Bayreuth, Germany; Bavarian Polymer Institute (BPI), University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
15
|
Eom S, Shim W, Choi I. Microplastic-induced inhibition of cell adhesion and toxicity evaluation using human dermal fibroblast-derived spheroids. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133359. [PMID: 38171200 DOI: 10.1016/j.jhazmat.2023.133359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Nanoplastics and microplastics (MPs) can significantly affect marine ecosystems and pose potential risks to human health. Although adverse effects stemming from direct exposure to MPs have been demonstrated at the cellular level in animal models, the potential toxicity of these materials in the human body remains uncertain. In this study, we investigated the three-dimensional (3D) behavior of dermal-derived cells exposed to MPs using artificially manufactured spherical primary polystyrene (PS) particles. To explore these effects, we used cellular spheroids as a 3D cell culture model, examined the size-dependent penetration of PS-MPs, and observed morphological alterations in the spheroids. Furthermore, we assessed changes in physiological activities, including reactive oxygen species, adenosine triphosphate, and lactate dehydrogenase, to elucidate the potential intra- and extracellular toxic reactions to PS-MPs. Additionally, our examination of cell-cell junctions and the extracellular matrix (ECM), along with analysis of the regulators involved in their decreased integrity, revealed negatively influenced changes in expression. This exposure study using spheroid models provides new insights into the potential toxicity of short-term exposure to MPs under conditions that closely resemble in vivo systems.
Collapse
Affiliation(s)
- Seonghyeon Eom
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Woosung Shim
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea; Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
16
|
Wieland S, Ramsperger AFRM, Gross W, Lehmann M, Witzmann T, Caspari A, Obst M, Gekle S, Auernhammer GK, Fery A, Laforsch C, Kress H. Nominally identical microplastic models differ greatly in their particle-cell interactions. Nat Commun 2024; 15:922. [PMID: 38297000 PMCID: PMC10830523 DOI: 10.1038/s41467-024-45281-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Due to the abundance of microplastics in the environment, research about its possible adverse effects is increasing exponentially. Most studies investigating the effect of microplastics on cells still rely on commercially available polystyrene microspheres. However, the choice of these model microplastic particles can affect the outcome of the studies, as even nominally identical model microplastics may interact differently with cells due to different surface properties such as the surface charge. Here, we show that nominally identical polystyrene microspheres from eight different manufacturers significantly differ in their ζ-potential, which is the electrical potential of a particle in a medium at its slipping plane. The ζ-potential of the polystyrene particles is additionally altered after environmental exposure. We developed a microfluidic microscopy platform to demonstrate that the ζ-potential determines particle-cell adhesion strength. Furthermore, we find that due to this effect, the ζ-potential also strongly determines the internalization of the microplastic particles into cells. Therefore, the ζ-potential can act as a proxy of microplastic-cell interactions and may govern adverse effects reported in various organisms exposed to microplastics.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Anja F R M Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Moritz Lehmann
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Thomas Witzmann
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Anja Caspari
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Martin Obst
- Experimental Biogeochemistry, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Günter K Auernhammer
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
17
|
Vattanasit U, Kongpran J, Ikeda A. Airborne microplastics: A narrative review of potential effects on the human respiratory system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166745. [PMID: 37673257 DOI: 10.1016/j.scitotenv.2023.166745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
There has been growing evidence showing the widespread of airborne microplastics (AMPs) in many regions of the world, raising concerns about their impact on human health. This review aimed to consolidate recent literature on AMPs regarding their physical and chemical characteristics, deposition in the human respiratory tract, translocation, occurrence from human studies, and toxic effects determined in vitro and in vivo. The physical characteristics influence interactions with cell membranes, cellular internalization, accumulation, and cytotoxicity resulting from cell membrane damage and oxidative stress. In addition, prolonged exposure to AMP-associated toxic chemicals might lead to significant health effects. Most toxicological assessments of AMPs in vitro and in vivo have demonstrated that oxidative stress and inflammation are major mechanisms of action for their toxic effects. Elevated reactive oxygen species production could lead to mitochondrial dysfunction, inflammatory responses, and subsequent apoptosis in experimental models. To date, there has been some evidence suggesting exposure in humans. However, the data are still insufficient, and adverse human health effects need to be investigated. Future research on the existence, exposure, and health effects of AMPs is required for developing preventive and mitigation measures to protect human health.
Collapse
Affiliation(s)
- Udomratana Vattanasit
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Jira Kongpran
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Sapporo 0600812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| |
Collapse
|
18
|
Liu XY, Wang N, Lv LY, Wang PF, Gao WF, Sun L, Zhang GM, Ren ZJ. Adsorption-desorption behaviors of ciprofloxacin onto aged polystyrene fragments in aquatic environments. CHEMOSPHERE 2023; 341:139995. [PMID: 37652241 DOI: 10.1016/j.chemosphere.2023.139995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
As two emerging pollutants of great concern, microplastics (MPs) and antibiotics inevitably cooccur in various aquatic environments and interact with each other, impacting the fate and ecological risks. Aging obviously complicates their interaction and deserves further study. Therefore, the adsorption-desorption behaviors of ciprofloxacin (CIP) onto polystyrene (PS) fragments with various aging extent were investigated, and the key physiochemical properties influencing the interaction and the interaction mechanisms were clarified by redundancy analysis, FTIR and XPS spectra. The physicochemical properties of PS MPs were significantly changed with aging time, and the morphological and chemical changes seemed to occur asynchronously. The adsorption of CIP onto the pristine PS MPs relied on physisorption, especially the ion-involving electrostatic and cation-π interaction. Due to the hydrogen bonding formed by the C-OH, CO, and O-CO groups of PS and CIP, the adsorption capacities of the aged PS MPs were greatly increased. The desorption efficiency of CIP from MPs in the gastric fluid was closely related to the solution ionic strengths, C-OH and CO groups of MPs, while that in the intestinal fluid was associated with O-CO groups of MPs. The different impact factors could be well described by the differences in the chemical components and pHs of the simulated gastric and intestinal fluids. This study gives a comprehensive understanding of the adsorption-desorption behaviors of antibiotics onto MPs at a molecular level and indicates that MPs could act as Trojan horses to transport antibiotics into aquatic organisms.
Collapse
Affiliation(s)
- Xiao-Yang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Ning Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Long-Yi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Peng-Fei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Wen-Fang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Guang-Ming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China.
| | - Zhi-Jun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| |
Collapse
|
19
|
Liu L, Zhang QH, Li RT. In Situ and Individual-Based Analysis of the Influence of Polystyrene Microplastics on Escherichia coli Conjugative Gene Transfer at the Single-Cell Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15936-15944. [PMID: 37801563 DOI: 10.1021/acs.est.3c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The impact of microplastic particles of micro- and nanometer sizes on microbial horizontal gene transfer (HGT) remains a controversial topic. Existing studies rely on traditional approaches, which analyze population behavior, leading to conflicting conclusions and a limited understanding. The present study addressed these limitations by employing a novel microfluidic chamber system for in situ visualization and precise quantification of the effects of different concentrations of polystyrene (PS) microbeads on microbial HGT at the single-cell level. The statistical analysis indicated no significant difference in the division times of both the donor and recipient bacteria across different PS microbead concentrations. However, as the concentration of PS microbeads increased from 0 to 2000 mg L-1, the average conjugation frequency of Escherichia coli decreased from 0.028 ± 0.015 to 0.004 ± 0.003. Our observations from the microfluidic experiments revealed that 500 nm PS microbeads created a barrier effect on bacterial conjugative transfer. The presence of microbeads resulted in reduced contact and interaction between the donor and recipient strains, thereby causing a decrease in the conjugation transfer frequency. These findings were validated by an individual-based modeling framework parameterized by the data from the individual-level microfluidic experiments. Overall, this study offers a fresh perspective and strategy for investigating the risks associated with the dissemination of antibiotic resistance genes related to microplastics.
Collapse
Affiliation(s)
- Li Liu
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Qiang-Hong Zhang
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Rui-Tong Li
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
20
|
Han J, Park S, Seid MG, Park B, Lee SH, Kim HM, Lee C, Lee J, Kim JH, Hong SW. Real-time morphological detection of label-free submicron-sized plastics using flow-channeled differential interference contrast microscopy. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132207. [PMID: 37543019 DOI: 10.1016/j.jhazmat.2023.132207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Owing to the surge in plastic waste generated during the COVID-19 pandemic, concerns regarding microplastic pollution in aqueous environments are increasing. Since microplastics (MPs) are broken down into submicron (< 1 µm) and nanoscale plastics, their real-time morphological detection in water is necessary. However, the decrease in the scattering cross-section of MPs in aqueous media precludes morphological detection by bright-field microscopy. To address this problem, we propose and demonstrate a differential interference contrast (DIC) system that incorporates a magnification-enhancing system to detect MPs in aqueous samples. To detect MPs in both the stationary and mobile phases, a microfluidic chip was designed, taking into consideration the imaging depth of focus and flow resistance. MPs of various sizes flowing in deionized, tap, and pond water at varying speeds were observed under Static and Flow conditions. Successful real-time morphological detection and quantification of polystyrene beads down to 200 nm at a constant flow rate in water were achieved. Thus, the proposed novel method can significantly reduce analysis time and improve the size-detection limit. The proposed DIC microscopy system can be coupled with Raman or infrared spectroscopy in future studies for chemical composition analysis. ENVIRONMENTAL IMPLICATION: Microplastics (MPs), particularly submicron plastics < 1-µm, can pose a risk to human health and aquatic ecosystems. Existing methods for detecting MPs in the aqueous phase have several limitations, including the use of expensive instruments and prolonged and labor-intensive procedures. Our results clearly demonstrated that a new low-cost flow-channeled differential interference contrast microscopy enables the real-time morphological detection and quantification of MPs down to 200 nm under flowing conditions without sample labeling. Consequently, our proposed rapid method for accurate quantitative measurements can serve as a valuable reference for detecting submicron plastics in water samples.
Collapse
Affiliation(s)
- Jiyun Han
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, the Republic of Korea; Department of Energy and Environmental Policy, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, the Republic of Korea
| | - Subeen Park
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, the Republic of Korea; Department of Chemistry, Kookmin University, Seoul 02707, the Republic of Korea
| | - Mingizem Gashaw Seid
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, the Republic of Korea
| | - Byeongho Park
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, the Republic of Korea
| | - Soo Hyun Lee
- Center for Brain Technology, Korea Institute of Science and Technology (KIST), Seoul 02792, the Republic of Korea
| | - Hyung Min Kim
- Department of Chemistry, Kookmin University, Seoul 02707, the Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, the Republic of Korea
| | - Jaesang Lee
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-701, the Republic of Korea
| | - Jae Hun Kim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, the Republic of Korea.
| | - Seok Won Hong
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, the Republic of Korea; Department of Energy and Environmental Policy, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, the Republic of Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, the Republic of Korea.
| |
Collapse
|
21
|
Yang Z, DeLoid GM, Zarbl H, Baw J, Demokritou P. Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NANOIMPACT 2023; 32:100481. [PMID: 37717636 PMCID: PMC10841092 DOI: 10.1016/j.impact.2023.100481] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plastic waste has been produced at a rapidly growing rate over the past several decades. The environmental impacts of plastic waste on marine and terrestrial ecosystems have been recognized for years. Recently, researchers found that micro- and nanoplastics (MNPs), micron (100 nm - 5 mm) and nanometer (1 - 100 nm) scale particles and fibers produced by degradation and fragmentation of plastic waste in the environment, have become an important emerging environmental and food chain contaminant with uncertain consequences for human health. This review provides a comprehensive summary of recent findings from studies of potential toxicity and adverse health impacts of MNPs in terrestrial mammals, including studies in both in vitro cellular and in vivo mammalian models. Also reviewed here are recently released biomonitoring studies that have characterized the bioaccumulation, biodistribution, and excretion of MNPs in humans. The majority MNPs in the environment to which humans are most likely to be exposed, are of irregular shapes, varied sizes, and mixed compositions, and are defined as secondary MNPs. However, the MNPs used in most toxicity studies to date were commercially available primary MNPs of polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and other polymers. The emerging in vitro and in vivo evidence reviewed here suggests that MNP toxicity and bioactivity are largely determined by MNP particle physico-chemical characteristics, including size, shape, polymer type, and surface properties. For human exposure, MNPs have been identified in human blood, urine, feces, and placenta, which pose potential health risks. The evidence to date suggests that the mechanisms underlying MNP toxicity at the cellular level are primarily driven by oxidative stress. Nonetheless, large knowledge gaps in our understanding of MNP toxicity and the potential health impacts of MNP exposures still exist and much further study is needed to bridge those gaps. This includes human population exposure studies to determine the environmentally relevant MNP polymers and exposure concentrations and durations for toxicity studies, as well as toxicity studies employing environmentally relevant MNPs, with surface chemistries and other physico-chemical properties consistent with MNP particles in the environment. It is especially important to obtain comprehensive toxicological data for these MNPs to understand the range and extent of potential adverse impacts of microplastic pollutants on humans and other organisms.
Collapse
Affiliation(s)
- Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua Baw
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
22
|
Jasinski J, Völkl M, Hahn J, Jérôme V, Freitag R, Scheibel T. Polystyrene microparticle distribution after ingestion by murine macrophages. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131796. [PMID: 37307726 DOI: 10.1016/j.jhazmat.2023.131796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
The impact of microplastic particles on organisms is currently intensely researched. Although it is well established that macrophages ingest polystyrene (PS) microparticles, little is known about the subsequent fate of the particles, such as entrapment in organelles, distribution during cell division, as well as possible mechanisms of excretion. Here, submicrometer (0.2 and 0.5 µm) and micron-sized (3 µm) particles were used to analyze particle fate upon ingestion of murine macrophages (J774A.1 and ImKC). Distribution and excretion of PS particles was investigated over cycles of cellular division. The distribution during cell division seems cell-specific upon comparing two different macrophage cell lines, and no apparent active excretion of microplastic particles could be observed. Using polarized cells, M1 polarized macrophages show higher phagocytic activity and particle uptake than M2 polarized ones or M0 cells. While particles with all tested diameters were found in the cytoplasm, submicron particles were additionally co-localized with the endoplasmic reticulum. Further, 0.5 µm particles were occasionally found in endosomes. Our results indicate that a possible reason for the previously described low cytotoxicity upon uptake of pristine PS microparticles by macrophages may be due to the preferential localization in the cytoplasm.
Collapse
Affiliation(s)
- Julia Jasinski
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Matthias Völkl
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Jonas Hahn
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Valérie Jérôme
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Material Science (BayMAT), University of Bayreuth, Bayreuth, Germany; Bavarian Polymer Institute (BPI), University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
23
|
Saha S, Laforsch C, Ramsperger A, Niebel D. [Microplastic and dermatological care]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2023; 74:27-33. [PMID: 35994101 PMCID: PMC9395856 DOI: 10.1007/s00105-022-05035-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Synthetic polymers (plastics) from fossil resources are produced in large quantities and reach the environment as microplastics due to improper disposal and via various entry routes. This may lead to implications on flora, fauna, and humans. OBJECTIVES This article aims to provide a concise overview for dermatologists about this complex topic and how it relates to daily medical practice. MATERIALS AND METHODS We performed a selective literature review regarding microplastics and sustainability in dermatology in liaison with the collaborative research center on microplastics at the University of Bayreuth. RESULTS Primary and secondary microplastics are released into the environment on a large scale and accumulate in aquatic and terrestrial ecosystems. This may lead to their disruption and bears potential to create ecological niches for human pathogenic species. Humans and animals inhale and ingest microplastics, and the health consequences have not been sufficiently investigated. This is mainly because microplastics are not a homogenous group of substances, and potential effects depend on various properties (e.g., type of polymer, size, shape, additivation, surface charge). Dermatological care is resource intensive and contributes in various ways to this matter. CONCLUSION Plastics are currently indispensable in many fields. Nevertheless, physicians have the responsibility to prevent negative consequences for the health of society (precautionary principle). Extensive efforts are thus necessary for better sustainability; this includes medical care.
Collapse
Affiliation(s)
- Susanne Saha
- Arbeitskreis Plastik und Nachhaltigkeit in der Dermatologie (APN), Guntramstr. 8, 79106, Freiburg, Deutschland.
| | - Christian Laforsch
- Tierökologie, Sonderforschungsbereich 1357 Mikroplastik, Universität Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Deutschland
| | - Anja Ramsperger
- Tierökologie, Sonderforschungsbereich 1357 Mikroplastik, Universität Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Deutschland
| | - Dennis Niebel
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Deutschland.
| |
Collapse
|
24
|
Zebrowski ML, Babkiewicz E, Błażejewska A, Pukos S, Wawrzeńczak J, Wilczynski W, Zebrowski J, Ślusarczyk M, Maszczyk P. The effect of microplastics on the interspecific competition of Daphnia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120121. [PMID: 36089144 DOI: 10.1016/j.envpol.2022.120121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastic pollution is currently one of the most intensely studied ecological issues. Numerous studies have estimated the distribution and concentration of microplastics in various environments and determine how they affect their inhabitants. Much less effort has been place on assessing the possible effects of microplastics on interactions between organisms, including interspecific competition. Our aim was to test the hypothesis that the presence of microplastics affects the proportion of individuals of coexisting species and the elimination rate of the inferior competitor. The hypothesis was tested in competitive experiments done in the absence and presence of spherical non-biodegradable polystyrene and polyethylene and biodegradable polyhydroxybutyrate in environmentally relevant densities. In each of the experiments, we used three different pairs of closely related planktonic species of the genus Daphnia composed of the superior and inferior competitor: D. pulex and D. magna, D. magna and D. galeata, D. pulex and D. galeata. The results support our hypothesis and demonstrate each microplastic type had a different effect on the density of the competing species. The presence of polystyrene and polyethylene lowered the density of the superior competitor in each of the three pairs, at least partially due to a reduction in the number of gravid females, but not their fecundity. The presence of the polyhydroxybutyrate, in turn, increased the population density of D. magna in the variants with each of the two remaining species. Moreover, the presence of microplastics affected the elimination rate of the inferior competitor, i.e. polystyrene expedited the exclusion of D. magna by D. pulex, and polyhydroxybutyrate hampered the exclusion of D. magna by D. pulex. Our results suggest that long-term exposure to environmentally relevant densities of both non-biodegradable and biodegradable microplastics may affect the relative abundance of co-occurring species in zooplankton communities, and thus the functioning of aquatic ecosystems.
Collapse
Affiliation(s)
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Szymon Pukos
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Julia Wawrzeńczak
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wojciech Wilczynski
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland; Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Mirosław Ślusarczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
25
|
Jasinski J, Wilde MV, Voelkl M, Jérôme V, Fröhlich T, Freitag R, Scheibel T. Tailor-Made Protein Corona Formation on Polystyrene Microparticles and its Effect on Epithelial Cell Uptake. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47277-47287. [PMID: 36194482 DOI: 10.1021/acsami.2c13987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microplastic particles are pollutants in the environment with a potential impact on ecology and human health. As soon as microplastic particles get in contact with complex (biological) environments, they will be covered by an eco- and/or protein corona. In this contribution, protein corona formation was conducted under defined laboratory conditions on polystyrene (PS) microparticles to investigate the influence on surface properties, protein corona evolution, particle-cell interactions, and uptake in two murine epithelial cells. To direct protein corona formation, PS particles were preincubated with five model proteins, namely, bovine serum albumin (BSA), myoglobin, β-lactoglobulin, lysozyme, and fibrinogen. Subsequently, the single-protein-coated particles were incubated in a cell culture medium containing a cocktail of serum proteins to analyze changes in the protein corona profile as well as in the binding kinetics of the model proteins. Therein, we could show that the precoating step has a critical impact on the final composition of the protein corona. Yet, since proteins building the primary corona were still detectable after additional incubations in a protein-containing medium, backtracking of the particle's history is possible. Interestingly, whereas the precoating history significantly disturbs particle-cell interactions (PCIs), the cellular response (i.e., metabolic activity, MTT assay) stays unaffected. Of note, lysozyme precoating revealed one of the highest rates in PCI for both epithelial cell lines. Taken together, we could show that particle history has a significant impact on protein corona formation and subsequently on the interaction of particles with murine intestinal epithelial-like cells. However, as this study was limited to one cell type, further work is needed to assess if these observations can be generalized to other cell types.
Collapse
Affiliation(s)
- Julia Jasinski
- Biomaterials, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Magdalena V Wilde
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, D-81377 Munich, Germany
| | - Matthias Voelkl
- Process Biotechnology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, D-81377 Munich, Germany
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, University of Bayreuth, D-95447 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, D-95447 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, D-95447 Bayreuth, Germany
- Bayreuth Center for Material Science (BayMAT), University of Bayreuth, D-95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
26
|
Schmidtmann J, Elagami H, Gilfedder BS, Fleckenstein JH, Papastavrou G, Mansfeld U, Peiffer S. Heteroaggregation of PS microplastic with ferrihydrite leads to rapid removal of microplastic particles from the water column. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1782-1789. [PMID: 36001017 DOI: 10.1039/d2em00207h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) particles are ubiquitous in aquatic environments. Therefore, understanding the processes that affect their removal from the water column, such as sedimentation, is critical for evaluating the risk they pose to aquatic ecosystems. We performed sedimentation experiments in which polystyrene (PS) and PS + ferrihydrite, a short-range ordered ferric (oxy)hydroxide, were analyzed in settling columns after 1 day and 1 week of settling time. The presence of ferrihydrite increased sedimentation rates of PS at all pH values studied (pH 3-11). At pH 6 we found that almost all PS particles were removed from the water column after only one day of exposure time. SEM/EDS imaging confirmed heteroaggregation between the PS particles and ferrihydrite. Zeta potential measurements indicated that at acidic pH values the negatively charged PS surface was coated with positively charged ferrihydrite particles leading to charge reversal. Our results demonstrate for the first time that ferric (oxy)hydroxides drive heteroaggregation and subsequent removal of MP from the water column, especially at typical pH values found in natural lake environments. Given their abundance in aquatic systems ferric (oxy)hydroxides need to be regarded as key scavengers of MP.
Collapse
Affiliation(s)
| | - Hassan Elagami
- Department of Hydrology, University of Bayreuth, Germany.
- Limnological Research Station, University of Bayreuth, Germany
| | - Bejamin S Gilfedder
- Department of Hydrology, University of Bayreuth, Germany.
- Limnological Research Station, University of Bayreuth, Germany
| | - Jan H Fleckenstein
- Department of Hydrogeology, Helmholtz-Centre for Environmental Research - UFZ, Germany
- Hydrologic Modelling Unit, University of Bayreuth, Bayreuth, Germany
| | | | - Ulrich Mansfeld
- Bavarian Polymer Institute (BPI), Keylab Electron and Optical Microscopy, University of Bayreuth, Germany
| | - Stefan Peiffer
- Department of Hydrology, University of Bayreuth, Germany.
| |
Collapse
|
27
|
Li D, Sheerin ED, Shi Y, Xiao L, Yang L, Boland JJ, Wang JJ. Alcohol Pretreatment to Eliminate the Interference of Micro Additive Particles in the Identification of Microplastics Using Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12158-12168. [PMID: 36006854 PMCID: PMC9454250 DOI: 10.1021/acs.est.2c01551] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Raman spectroscopy is an indispensable tool in the analysis of microplastics smaller than 20 μm. However, due to its limitation, Raman spectroscopy may be incapable of effectively distinguishing microplastics from micro additive particles. To validate this hypothesis, we characterized and compared the Raman spectra of six typical slip additives with polyethylene and found that their hit quality index values (0.93-0.96) are much higher than the accepted threshold value (0.70) used to identify microplastics. To prevent this interference, a new protocol involving an alcohol treatment step was introduced to successfully eliminate additive particles and accurately identify microplastics. Tests using the new protocol showed that three typical plastic products (polyethylene pellets, polyethylene bottle caps, and polypropylene food containers) can simultaneously release microplastic-like additive particles and microplastics regardless of the plastic type, daily-use scenario, or service duration. Micro additive particles can also adsorb onto and modify the surfaces of microplastics in a manner that may potentially increase their health risks. This study not only reveals the hidden problem associated with the substantial interference of additive particles in microplastic detection but also provides a cost-effective method to eliminate this interference and a rigorous basis to quantify the risks associated with microplastic exposure.
Collapse
Affiliation(s)
- Dunzhu Li
- AMBER
Research Centre and Centre for Research on Adaptive Nanostructures
and Nanodevices (CRANN), Trinity College
Dublin, Dublin D02 PN40, Ireland
- Department
of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Emmet D. Sheerin
- AMBER
Research Centre and Centre for Research on Adaptive Nanostructures
and Nanodevices (CRANN), Trinity College
Dublin, Dublin D02 PN40, Ireland
- School
of Chemistry, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Yunhong Shi
- AMBER
Research Centre and Centre for Research on Adaptive Nanostructures
and Nanodevices (CRANN), Trinity College
Dublin, Dublin D02 PN40, Ireland
- Department
of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Liwen Xiao
- Department
of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin D02 PN40, Ireland
- TrinityHaus, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Luming Yang
- AMBER
Research Centre and Centre for Research on Adaptive Nanostructures
and Nanodevices (CRANN), Trinity College
Dublin, Dublin D02 PN40, Ireland
- Department
of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - John J. Boland
- AMBER
Research Centre and Centre for Research on Adaptive Nanostructures
and Nanodevices (CRANN), Trinity College
Dublin, Dublin D02 PN40, Ireland
- School
of Chemistry, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Jing Jing Wang
- AMBER
Research Centre and Centre for Research on Adaptive Nanostructures
and Nanodevices (CRANN), Trinity College
Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
28
|
Cao J, Yang Q, Jiang J, Dalu T, Kadushkin A, Singh J, Fakhrullin R, Wang F, Cai X, Li R. Coronas of micro/nano plastics: a key determinant in their risk assessments. Part Fibre Toxicol 2022; 19:55. [PMID: 35933442 PMCID: PMC9356472 DOI: 10.1186/s12989-022-00492-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/08/2022] [Indexed: 12/17/2022] Open
Abstract
As an emerging pollutant in the life cycle of plastic products, micro/nanoplastics (M/NPs) are increasingly being released into the natural environment. Substantial concerns have been raised regarding the environmental and health impacts of M/NPs. Although diverse M/NPs have been detected in natural environment, most of them display two similar features, i.e.,high surface area and strong binding affinity, which enable extensive interactions between M/NPs and surrounding substances. This results in the formation of coronas, including eco-coronas and bio-coronas, on the plastic surface in different media. In real exposure scenarios, corona formation on M/NPs is inevitable and often displays variable and complex structures. The surface coronas have been found to impact the transportation, uptake, distribution, biotransformation and toxicity of particulates. Different from conventional toxins, packages on M/NPs rather than bare particles are more dangerous. We, therefore, recommend seriously consideration of the role of surface coronas in safety assessments. This review summarizes recent progress on the eco-coronas and bio-coronas of M/NPs, and further discusses the analytical methods to interpret corona structures, highlights the impacts of the corona on toxicity and provides future perspectives.
Collapse
Affiliation(s)
- Jiayu Cao
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qing Yang
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa
| | - Aliaksei Kadushkin
- Department of Biological Chemistry, Belarusian State Medical University, 220116, Minsk, Belarus
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rawil Fakhrullin
- Kazan Federal University, Institute of Fundamental Medicine & Biology, Kreml Uramı 18, Kazan, Republic of Tatarstan, Russian Federation, 420008
| | - Fangjun Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, Liaoning, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
29
|
Malinowska K, Bukowska B, Piwoński I, Foksiński M, Kisielewska A, Zarakowska E, Gackowski D, Sicińska P. Polystyrene nanoparticles: the mechanism of their genotoxicity in human peripheral blood mononuclear cells. Nanotoxicology 2022; 16:791-811. [PMID: 36427221 DOI: 10.1080/17435390.2022.2149360] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plastic nanoparticles are widely spread in the biosphere, but health risk associated with their effect on the human organism has not yet been assessed. The purpose of this study was to determine the genotoxic potential of non-functionalized polystyrene nanoparticles (PS-NPs) of different diameters of 29, 44, and 72 nm in human peripheral blood mononuclear cells (PBMCs) (in vitro). To select non-cytotoxic concentrations of tested PS-NPs, we analyzed metabolic activity of PBMCs incubated with these particles in concentrations ranging from 0.001 to 1000 µg/mL. Then, PS-NPs were used in concentrations from 0.0001 to 100 μg/mL and incubated with tested cells for 24 h. Physico-chemical properties of PS-NPs in media and suspension were analyzed using dynamic light scattering (DLS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and zeta potential. For the first time, we investigated the mechanism of genotoxic action of PS-NPs based on detection of single/double DNA strand-breaks and 8-oxo-2'-deoxyguanosine (8-oxodG) formation, as well as determination of oxidative modification of purines and pyrimidines and repair efficiency of DNA damage. Obtained results have shown that PS-NPs caused a decrease in PBMCs metabolic activity, increased single/double-strand break formation, oxidized purines and pyrimidines and increased 8oxodG levels. The resulting damage was completely repaired in the case of the largest PS-NPs. It was also found that extent of genotoxic changes in PBMCs depended on the size of tested particles and their ζ-potential value.
Collapse
Affiliation(s)
- Kinga Malinowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ireneusz Piwoński
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Aneta Kisielewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
30
|
Witzmann T, Ramsperger AFRM, Wieland S, Laforsch C, Kress H, Fery A, Auernhammer GK. Repulsive Interactions of Eco-corona-Covered Microplastic Particles Quantitatively Follow Modeling of Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8748-8756. [PMID: 35736564 DOI: 10.1021/acs.langmuir.1c03204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The environmental fate and toxicity of microplastic particles are dominated by their surface properties. In the environment, an adsorbed layer of biomolecules and natural organic matter forms the so-called eco-corona. A quantitative description of how this eco-corona changes the particles' colloidal interactions is still missing. Here, we demonstrate with colloidal probe-atomic force microscopy that eco-corona formation on microplastic particles introduces a compressible film on the surface, which changes the mechanical behavior. We measure single particle-particle interactions and find a pronounced increase of long-range repulsive interactions upon eco-corona formation. These force-separation characteristics follow the Alexander-de Gennes (AdG) polymer brush model under certain conditions. We further compare the obtained fitting parameters to known systems like polyelectrolyte multilayers and propose these as model systems for the eco-corona. Our results show that concepts of fundamental polymer physics, like the AdG model, also help in understanding more complex systems like biomolecules adsorbed to surfaces, i.e., the eco-corona.
Collapse
Affiliation(s)
- Thomas Witzmann
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| | - Anja F R M Ramsperger
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Simon Wieland
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Andreas Fery
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Günter K Auernhammer
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
31
|
Microplastics Affect the Inflammation Pathway in Human Gingival Fibroblasts: A Study in the Adriatic Sea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137782. [PMID: 35805437 PMCID: PMC9266176 DOI: 10.3390/ijerph19137782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
The level of environmental microplastics in the sea is constantly increasing. They can enter the human body with food, be absorbed through the gut and have negative effects on the organism’s health after its digestion. To date, microplastics (MPs) are considered new environmental pollutants in the air sea and they are attracting wide attention. The possible toxic effects of MPs isolated at different sea depths of 1, 24 and 78 m were explored in an in vitro model of human gingival fibroblasts (hGFs). MPs isolated from the sea showed different size and were then divided into different sample groups: 1, 24 and 78 m. The results obtained revealed that MPs are able to activate the inflammatory pathway NFkB/MyD88/NLRP3. In detail, the exposure to MPs from 1 and 78 m led to increased levels of inflammatory markers NFkB, MyD88 and NLRP3 in terms of proteins and gene expression. Moreover, cells exposed to MPs showed a lower metabolic activity rate compared to unexposed cells. In conclusion, these findings demonstrate that the inflammation process is stimulated by MPs exposure, providing a new perspective to better understand the intracellular mechanism.
Collapse
|
32
|
Bioanalytical approaches for the detection, characterization, and risk assessment of micro/nanoplastics in agriculture and food systems. Anal Bioanal Chem 2022; 414:4591-4612. [PMID: 35459968 DOI: 10.1007/s00216-022-04069-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022]
Abstract
This review discusses the most recent literature (mostly since 2019) on the presence and impact of microplastics (MPs, particle size of 1 μm to 5 mm) and nanoplastics (NPs, particle size of 1 to 1000 nm) throughout the agricultural and food supply chain, focusing on the methods and technologies for the detection and characterization of these materials at key entry points. Methods for the detection of M/NPs include electron and atomic force microscopy, vibrational spectroscopy (FTIR and Raman), hyperspectral (bright field and dark field) and fluorescence imaging, and pyrolysis-gas chromatography coupled to mass spectrometry. Microfluidic biosensors and risk assessment assays of MP/NP for in vitro, in vivo, and in silico models have also been used. Advantages and limitations of each method or approach in specific application scenarios are discussed to highlight the scientific and technological obstacles to be overcome in future research. Although progress in recent years has increased our understanding of the mechanisms and the extent to which MP/NP affects health and the environment, many challenges remain largely due to the lack of standardized and reliable detection and characterization methods. Most of the methods available today are low-throughput, which limits their practical application to food and agricultural samples. Development of rapid and high-throughput field-deployable methods for onsite screening of MP/NPs is therefore a high priority. Based on the current literature, we conclude that detecting the presence and understanding the impact of MP/NP throughout the agricultural and food supply chain require the development of novel deployable analytical methods and sensors, the combination of high-precision lab analysis with rapid onsite screening, and a data hub(s) that hosts and curates data for future analysis.
Collapse
|
33
|
Mauel A, Pötzschner B, Meides N, Siegel R, Strohriegl P, Senker J. Quantification of photooxidative defects in weathered microplastics using 13C multiCP NMR spectroscopy. RSC Adv 2022; 12:10875-10885. [PMID: 35425044 PMCID: PMC8988274 DOI: 10.1039/d2ra00470d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Weathering of microplastics made of commodity plastics like polystyrene, polypropylene and polyethylene introduces polar polymer defects as a result of photooxidation and mechanical stress. Thus, hydrophobic microplastic particles gradually become hydrophilic, consisting of polar oligomers with a significant amount of oxygen-bearing functional groups. This turnover continuously changes interactions between microplastics and natural colloidal matter. To be able to develop a better understanding of this complex weathering process, quantification of the corresponding defect proportions is a first and essential step. Using polystyrene, 13C enriched at the α position to 23%, we demonstrate that 13C cross polarisation (CP) NMR spectroscopy allows for probing the typical alcohol, peroxo, keto and carboxyl defects. Even the discrimination between in- and end-chain ketones, carboxylic acids and esters as well as ketal functions was possible. Combined with multiCP excitation, defect proportions could be determined with excellent accuracy down to 0.1%. For materials with 13C in natural abundance, this accounts for a detection limit of roughly 1%. The best trade-off between measurement time and accuracy for the quantification of the defect intensities for multiCP excitation was obtained for CP block lengths shorter than 250 μs and total build-up times longer than 2 ms. Further measurement time reduction is possible by using multiCP excitation to calibrate intensities obtained from series of 13C CP MAS NMR spectra. As photooxidation is an important degradation mechanism for microplastics in the environment, we expect these parameters to be transferable for probing defect proportions of weathered microplastics in general. We demonstrate an efficient strategy to characterise weathering-induced photooxidative defects in microplastics. The central 13C cross polarisation NMR spectra offer high resolution and are quantitative when combined with multiple excitation.![]()
Collapse
Affiliation(s)
- Anika Mauel
- Department of Inorganic Chemistry III, University of Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| | - Björn Pötzschner
- Department of Inorganic Chemistry III, University of Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| | - Nora Meides
- Department of Macromolecular Chemistry I, University of Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| | - Renée Siegel
- Department of Inorganic Chemistry III, University of Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| | - Peter Strohriegl
- Department of Macromolecular Chemistry I, University of Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| | - Jürgen Senker
- Department of Inorganic Chemistry III, University of Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|