1
|
Zhu Y, Wu R, Li A, Hui J, Zhang Z, Wei S. Constructing surface oxygen vacancy in the [Bi2O2]2+ layer defects mediated Bi2MoO6 enhanced visible light responsive photocatalytic activity. J Chem Phys 2024; 161:184707. [PMID: 39526745 DOI: 10.1063/5.0228635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Bi2MoO6 nanospheres with surface oxygen vacancies (SOVs) controlled by the calcination process were prepared in this study. Performance testing revealed that the Bi2MoO6-4 sample (Bi2MoO6 calcined at 350 °C for 4 h) with SOVs achieved a remarkable photocatalytic degradation efficiency up to 99.16% for Rhodamine B (RhB) within 50 min, which is 2.19 times higher than that of pure Bi2MoO6. The higher photocatalytic performance of the Bi2MoO6-4 sample is attributed to the SOVs' defect level located at the Bi2MoO6 bandgap, narrowing the bandgap to effectively promote the photogenerated charge separation. The promotion of photocarrier separation and electron were transferred due to the Bi-O bond breakage in the Bi2MoO6-4 [Bi2O2]2+ layer, which mediates the defect level of SOVs in the band structure. The density functional theory calculation results reveal the possible formation site of the oxygen vacancy and the vacancy-induced defect states. This study provides a new approach for fabricating new photocatalysts with surface oxygen defects.
Collapse
Affiliation(s)
- Yali Zhu
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Rong Wu
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Aolin Li
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Jialei Hui
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Zhilong Zhang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Shunhang Wei
- School of Mathematical Information, Shaoxing University, Shaoxing, Zhejiang 312000, People's Republic of China
| |
Collapse
|
2
|
Zhao X, Xiao S, Yao B, Chen Y, Yu S. DFT-Based Mechanistic Exploration and Application in Photocatalytic Heterojunctions. J Chem Theory Comput 2024. [PMID: 39509594 DOI: 10.1021/acs.jctc.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Density functional theory (DFT) is one of the most widely used methods in the field of computational materials and has become an important research method for photocatalytic heterojunctions. Based on the research progress of DFT in the field of photocatalytic heterojunctions, this review introduces three kinds of heterojunction modeling in detail as well as the problems encountered in the construction process and the solutions. It provides a comprehensive review of the calculation methods of important parameters related to photocatalytic heterojunctions. Comparison, analysis, and discussion were conducted on some functional selections and calculation results based on experimental data. Finally, the limitations and shortcomings of DFT in the field of photocatalytic heterojunctions are pointed out. This review will provide valuable guidance for the calculation and analysis of the performance of photocatalytic heterojunctions and help promote the wider application of DFT in the field of photocatalysis.
Collapse
Affiliation(s)
- Xiang Zhao
- College of Material Science and Engineering, North China University of Science and Technology, Hebei, Tangshan 063210, China
| | - Shujuan Xiao
- College of Material Science and Engineering, North China University of Science and Technology, Hebei, Tangshan 063210, China
| | - Bingming Yao
- College of Material Science and Engineering, North China University of Science and Technology, Hebei, Tangshan 063210, China
| | - Yifu Chen
- College of Material Science and Engineering, North China University of Science and Technology, Hebei, Tangshan 063210, China
| | - Shouwu Yu
- College of Material Science and Engineering, North China University of Science and Technology, Hebei, Tangshan 063210, China
| |
Collapse
|
3
|
Zhang X, Wang Y, Lin Z, Chen Q, Liu M, Liu D, Li Z, Chen P, Lv W, Liu G. Enhancing interfacial electron transfer and photoelectrochemical kinetics for efficient water-treatment strategy through N-doped carbon dots modified PhC 2Cu. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124579. [PMID: 39032547 DOI: 10.1016/j.envpol.2024.124579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
To improve the water environment quality, the development of an effective photocatalyst for pollutant removal was considered a promising strategy. The aim of the development of a novel photocatalyst PNC is pursued by modifying copper-phenylacetylide (PhC2Cu) with nitrogen-doped carbon quantum dots (N-CDs). Leading to a remarkable improvement in its light absorption capability, electron transfer efficiency and photoelectrochemical properties. Importantly, PNC possesses the characteristic of straightforward synthesis and demonstrates remarkable performance in the photodegradation of 99.87% sulfamethoxazole (SMX) within just 15 min, with a 3.95-fold increase in the photocatalytic rate. Analysis of the active substances revealed that 1O2, O2·-, and h+ are the generated active species by PNC. Active sites and degradation pathways of SMX were explored through density functional theory (DFT) calculations and intermediate analysis. Key evidence regarding the direction of electron transfer within the system was obtained through in-situ irradiated X-ray (ISI-XPS) techniques. This study deepened our understanding of the electron transfer characteristics of phenylacetylene copper and provided new insights for the modification of photocatalysts.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yishun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zili Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qingman Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Minghao Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dezhu Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenchao Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Han R, Wang K, Jiang Q, Zhang G, Lu Q, Guo E. 0D/1D CuWO 4/Mn 0.3Cd 0.7S S-scheme heterojunctions for full-spectrum bifunctional photocatalytic degradation and hydrogen production. J Colloid Interface Sci 2024; 671:680-691. [PMID: 38823109 DOI: 10.1016/j.jcis.2024.05.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Integrating photocatalytic oxidation for pollutant removal with hydrogen production via photocatalysis presents a promising approach for sustainable water purification and renewable energy generation, circumventing the sluggish multi-electron transfer inherent in photocatalytic water oxidation. This study introduces novel zero-/one-dimensional (0D/1D) CuWO4/Mn0.3Cd0.7S step-scheme (S-scheme) heterojunctions that exhibit exceptional bifunctional capabilities in photocatalytic degradation and hydrogen production under full-spectrum illumination. The degradation efficiency for tetracycline (TC) using 5 %-CuWO4/Mn0.3Cd0.7S reaches 94.3 % and 94.5 % within 60 min and 6 h, respectively, under ultraviolet-visible (UV-Vis) and near-infrared (NIR) light. Notably, these 0D/1D CuWO4/Mn0.3Cd0.7S S-scheme heterojunctions demonstrate superior hydrogen production, achieving rates of 12442.03 μL g-1h-1 and 2418.54 μL g-1h-1 under UV-Vis light and NIR light irradiation, respectively-these rates are 2.3 times and 55.2 times higher than that of Mn0.3Cd0.7S alone. This performance enhancement is attributed to the intrinsic dimensional effects, transitions of transition metal d-d orbitals, and S-scheme hole/electron (h+/e-) separation characteristics. Additionally, experimental results and density functional theory (DFT) calculations have clarified the modulation of electronic configurations, band alignment, and interfacial interactions via 0D/1D S-scheme heterojunction engineering. This study sheds light on the electron transfer mechanism within S-scheme heterojunction and enhances the effectiveness, economy, and sustainability of recalcitrant pollutant removal and hydrogen production.
Collapse
Affiliation(s)
- Ruoting Han
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Ke Wang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qichuan Jiang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Guangxuan Zhang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qifang Lu
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Enyan Guo
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
5
|
Zhu J, Lu XF, Luan D, Lou XWD. Metal-Organic Frameworks Derived Carbon-Supported Metal Electrocatalysts for Energy-Related Reduction Reactions. Angew Chem Int Ed Engl 2024; 63:e202408846. [PMID: 39031731 DOI: 10.1002/anie.202408846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Electrochemical reduction reactions, as cathodic processes in many energy-related devices, significantly impact the overall efficiency determined mainly by the performance of electrocatalysts. Metal-organic frameworks (MOFs) derived carbon-supported metal materials have become one of star electrocatalysts due to their tunable structure and composition through ligand design and metal screening. However, for different electroreduction reactions, the required active metal species vary in phase component, electronic state, and catalytic center configuration, hence requiring effective customization. From this perspective, this review comprehensively analyzes the structural design principles, metal loading strategies, practical electroreduction performance, and complex catalytic mechanisms, thereby providing insights and guidance for the future rational design of such electroreduction catalysts.
Collapse
Affiliation(s)
- Jiawei Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
6
|
Pan X, Huang Z, Guo J, Wu Q, Wang C, Zhang H, Zhang J, Liu H. MOF-Derived Nanoparticles with Enhanced Acoustical Performance for Efficient Mechano-Sonodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400142. [PMID: 38896775 DOI: 10.1002/adma.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Ultrasound (US) generates toxic reactive oxygen species (ROS) by acting on sonosensitizers for cancer treatment, and the mechanical damage induced by cavitation effects under US is equally significant. Therefore, designing a novel sonosensitizer that simultaneously possesses efficient ROS generation and enhanced mechanical effects is promising. In this study, carbon-doped zinc oxide nanoparticles (C-ZnO) are constructed for mechano-sonodynamic cancer therapy. The presence of carbon (C) doping optimizes the electronic structure, thereby enhancing the ROS generation triggered by US, efficiently inducing tumor cell death. On the other hand, the high specific surface area and porous structure brought about by C doping enable C-ZnO to enhance the mechanical stress induced by cavitation bubbles under US irradiation, causing severe mechanical damage to tumor cells. Under the dual effects of sonodynamic therapy (SDT) and mechanical therapy mediated by C-ZnO, excellent anti-tumor efficacy is demonstrated both in vitro and in vivo, along with a high level of biological safety. This is the first instance of utilizing an inorganic nanomaterial to achieve simultaneous enhancement of ROS production and US-induced mechanical effects for cancer therapy. This holds significant importance for the future development of novel sonosensitizers and advancing the applications of US in cancer treatment.
Collapse
Affiliation(s)
- Xueting Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites Bionanomaterials & Translational Engineering Laboratory Beijing Key Laboratory of Bioprocess Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zezhong Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites Bionanomaterials & Translational Engineering Laboratory Beijing Key Laboratory of Bioprocess Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Juan Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites Bionanomaterials & Translational Engineering Laboratory Beijing Key Laboratory of Bioprocess Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites Bionanomaterials & Translational Engineering Laboratory Beijing Key Laboratory of Bioprocess Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chaohui Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites Bionanomaterials & Translational Engineering Laboratory Beijing Key Laboratory of Bioprocess Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haoyuan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites Bionanomaterials & Translational Engineering Laboratory Beijing Key Laboratory of Bioprocess Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites Bionanomaterials & Translational Engineering Laboratory Beijing Key Laboratory of Bioprocess Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites Bionanomaterials & Translational Engineering Laboratory Beijing Key Laboratory of Bioprocess Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Wang R, Wang A, Pan Y, Ni J, Deng Y, Tao Z, Liang X, Tang J, Tian X, Zha T, Liu D, Ma J. Construction of an S-scheme electron transfer channel in Cu 0/CuFe 2O 4 magnetic plate column reactor for the LEV degradation: New strategy of visible Photo-Fenton system application. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135173. [PMID: 39003812 DOI: 10.1016/j.jhazmat.2024.135173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The complicated loading process and easy falling off of powder catalysts still restrict the wide application of Photo-Fenton technology in practical water treatment. In this study, a magnetic fixed film plate column water treatment equipment is designed as a visible Photo-Fenton reactor to remove levofloxacin (LEV). The effect of magnetic force can ensure that the catalyst is firmly fixed, and the multi-level shallow column plate structure achieves full contact and efficient reaction between the catalyst and wastewater. Simultaneously, the Cu0/CuFe2O4 (STCCF) utilizes Cu0 to construct an S-scheme electron transfer channel, which improves the separation efficiency of photo-generated carriers and provides sufficient photo-generated electrons for the reduction of Fe (Ⅲ) and Cu (Ⅱ). The pseudo-first-order reaction kinetic constant k for the degradation of LEV in the visible Photo-Fenton system is 0.0349 min-1, which is 15.9 times that of the photocatalytic system and 4.8 times that of the Fenton system. After continuous operation for 72 h, the magnetic fixed film plate column reactor can still remove more than 90 % of LEV and 82 % of COD in the secondary effluent of simulated antibiotic pharmaceutical wastewater treatment process, and the effluent is stable and meets the standard. The magnetic fixed film plate column reactor can be used for advanced treatment of antibiotic pharmaceutical wastewater. This study provides a new insight into the application of the Photo-Fenton process.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Aiwen Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiaxin Ni
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yingjie Deng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhe Tao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiongying Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jingrui Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xunming Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tiancheng Zha
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
8
|
Liu X, Wang J. Decolorization and degradation of crystal violet dye by electron beam radiation: Performance, degradation pathways, and synergetic effect with peroxymonosulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124037. [PMID: 38677457 DOI: 10.1016/j.envpol.2024.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Ionizing radiation (mainly including gamma ray and electron beam) technology provides a more efficient and ecological option for dye-containing wastewater treatment, which is supported by its successful achievements in industrial-scale applications. However, the degradation pathway of triphenylmethane dyes by radiation technology is still unclear. In this study, crystal violet (CV) was selected as representative cationic triphenylmethane dye, the decolorization and degradation performance by electron beam radiation technology was systematically evaluated. The results showed that CV can be efficiently decolorized and mineralized by radiation, and its degradation kinetics followed the first-order kinetic model. The effect of inorganic anions and chelating agents commonly existed in dye-containing wastewater on CV decolorization and total organic carbon (TOC) removal was explored. Quenching experiments, density functional theory (DFT) calculation and high performance liquid chromatography mass spectrometry (HPLC-MS) analysis were employed to reveal CV decolorization and degradation mechanism and pathway, which mainly included N-demethylation, triphenylmethane chromophore cleavage, ring-opening of aromatic products and further oxidation to carboxylic acid, and mineralization to CO2 and H2O. Additionally, electron beam radiation/PMS process was explored to decrease the absorbed dose required for decolorization and degradation, and the synergetic effect of radiation with PMS was elucidated. More importantly, the findings of this study would provide the support for treating actual dyeing wastewater by electron beam radiation technology.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Wu X, Li J, Li X, Niu L, Zhang F, Li X, Li J, Shao C, Liu Y. Synergistic Engineering of Energy Band Alignment and Interfacial Electric Field Distribution over Bi-bismuth-Based Hetero-nanofibers for Boosting Visible-Light-Driven Photocatalytic Ammonia Synthesis and Antibiotic Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11263-11276. [PMID: 38743290 DOI: 10.1021/acs.langmuir.4c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Synergistic engineering of energy band alignment and interfacial electric field distribution is essential for photocatalyst design but is still challenging because of the limitation on refined regulation in the nanoscale. This study addresses the issue by employing surface modification and thermal-induced phase transformation in Bi2MoO6/BixOyIz hetero-nanofiber frameworks. The energy band alignment switches from a type-II interface to a Z-scheme contact with stronger redox potentials and inhibited electron traps, and the optimized built-in electric field distribution could be reached based on experimental and theoretical investigations. The engineered hetero-nanofibers exhibit outstanding visible-light-driven photocatalytic nitrogen reduction activity (605 μmol/g/h) and tetracycline hydrochloride removal rate (81.5% within 30 min), ranking them among the top-performing bismuth series materials. Furthermore, the photocatalysts show promise in activating advanced oxidants for efficient organic pollutant degradation. Moreover, the Bi2MoO6/Bi5O7I hetero-nanofibers possess good recycling stability owing to their three-dimensional network structure. This research offers valuable insights into heterojunction design for environmental remediation and industrial applications.
Collapse
Affiliation(s)
- Xi Wu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Jing Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Xinghua Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Luyao Niu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Fang Zhang
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Xiaowei Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Jiaxing Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Changlu Shao
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| |
Collapse
|
10
|
Takahashi Y, Kobayashi M, Kawase Y. Photocatalytic degradation process of antibiotic sulfamethoxazole by ZnO in aquatic systems: a dynamic kinetic model based on contributions of OH radical, oxygenated radical intermediates and dissolved oxygen. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:113-124. [PMID: 38619314 DOI: 10.1080/10934529.2024.2339171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
The photocatalytic degradation process of sulfamethoxazole (SMX) using ZnO in aquatic systems has been systematically studied by varying initial SMX concentration from 0 to 15 mgL-1, ZnO dosage from 0 to 4 gL-1 and UV light intensity at the light source from 0 to 18 W(m-lamp length)-1 at natural pH. Almost complete degradations of SMX were achieved within 120 min for the initial SMX concentration ≤15 mgL-1 with ZnO dosage of 3 gL-1 and UV light intensity of 18 W(m-lamp length)-1. The photocatalytic degradation process was found to be interacted with the dissolved oxygen (DO) consumption. With oxygen supply through the gas-liquid free-surface, the DO concentration decreased significantly in the initial SMX degradation phase and increased asymptotically to the saturated DO concentration after achieving about 80% SMX degradation. The change in DO concentration was probably controlled by the oxygen consumption in the formation of oxygenated radical intermediates. A novel dynamic kinetic model based on the fundamental reactions of photocatalysis and the formation of oxygenated radical intermediates was developed. In the modeling the dynamic concentration profiles of OH radical and DO are considered. The dynamics of SMX degradation process by ZnO was simulated reasonably by the proposed model.
Collapse
Affiliation(s)
- Yuka Takahashi
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, Japan
| | - Maki Kobayashi
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, Japan
| | - Yoshinori Kawase
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, Japan
| |
Collapse
|
11
|
Zhou Z, Ye G, Zong Y, Zhao Z, Wu D. Improvement of Fe(Ⅲ)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132924. [PMID: 37984133 DOI: 10.1016/j.jhazmat.2023.132924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
The homogeneous sodium percarbonate (SPC) systems are limited by narrow pH range, ineffective consumption of oxidant, and weak reusability of catalyst. Herein, molybdenum (Mo) powder and sodium tripolyphosphate (STPP) were selected to overcome these challenges. Sulfamethoxazole (SMX), as a model contaminant, was almost completely degraded in 60 min with higher removal rate (0.1367 min-1) than the Mo or STPP-absent system. In addition, Mo/STPP-Fe(Ⅲ)/SPC system was cost-effective in terms of oxidant consumption, requiring only 0.2 mM SPC. About activation mechanism, the main active species for SMX degradation was pH-dependent, with hydroxyl radical (·OH) as the dominant active species at pHi = 7 and ·OH, carbonate radical (CO3·-), and superoxide radical (O2·-) derived from a series of chain reaction at pHi = 10, respectively. Due to the generation of various electrophilic free radical, the system exhibited excellent performance towards electron-rich pollutants under a wide pH range. Furthermore, Mo exhibited excellent stability and reusability. SMX was degraded through hydroxylation, N-S cleavage, amino and sulfanilamide oxidation into intermediates whose toxicities were evaluated by Toxicity Estimation Software Tool (T.E.S.T.) software. This work provided new insights to Fe/SPC system towards high-efficiency and low consumption treatment of practical application.
Collapse
Affiliation(s)
- Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Guojie Ye
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
12
|
Fu S, Xi W, Ren J, Wei H, Sun W. Study on the Photocatalytic Properties of Metal-Organic Framework-Derived C-, N-Co-Doped ZnO. MATERIALS (BASEL, SWITZERLAND) 2024; 17:855. [PMID: 38399106 PMCID: PMC10890417 DOI: 10.3390/ma17040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
In this study, C- and N-co-doped ZnO photocatalysts were prepared through pyrolysis using metal-organic frameworks (MOFs) as precursor materials. The crystal structure, morphology, and surface chemical composition of the samples were characterised via X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Their activities in photocatalytic reactions were also evaluated through photocatalytic experiments. The results show that C-, N-co-doped ZnO has a high specific surface area, which is favourable for a photocatalytic reaction. Meanwhile, C-, N-doping can effectively modulate the energy band structure of ZnO, broaden its light absorption range, and improve the separation efficiency of photogenerated electron-hole pairs. The photocatalytic experiments show that the C/N-ZnO-500 samples, which have the optimal photocatalytic performances, have improved performances of 50% and 35%, respectively, compared with those of the blank control group and the ZIF-8 samples. The preparation of ZnO materials with a morphology change and doping using metal frameworks as precursors provides a new idea for designing efficient photocatalysts.
Collapse
Affiliation(s)
- Su Fu
- School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China; (S.F.)
| | - Wenkui Xi
- School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China; (S.F.)
| | - Jinlong Ren
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hangxin Wei
- School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China; (S.F.)
| | - Wen Sun
- School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China; (S.F.)
| |
Collapse
|
13
|
Tang M, Wan J, Wang Y, Ye G, Yan Z, Ma Y, Sun J. Overlooked role of void-nanoconfined effect in emerging pollutant degradation: Modulating the electronic structure of active sites to accelerate catalytic oxidation. WATER RESEARCH 2024; 249:120950. [PMID: 38056201 DOI: 10.1016/j.watres.2023.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The efficient removal of emerging pollutant from water is the ultimate frontiers of advanced oxidation processes (AOPs), yet it is challenging to obtain higher catalytic activity and oxidation rate. Herein, a sustainable solution was proposed by optimizing the curvature of confined structure to modulate the electronic state of the active sites in nanochannels for improving the catalytic activity. In addition, the confined effect can enhance the oxidation rate by shorting the mass transfer of active species and pollutants. A void-nanoconfined nanoreactor was prepared by loading Fe2O3 into the nanochannels (<5 nm) of the hollow carbon sphere. An enhancement of 3 orders of magnitude was obtained in the degradation rate constant of void-nanoconfined catalytic system toward sulfamethoxazole (SMX) (6.25 min-1) compared with the non-confined system. The kinetics enhancement was attributed to the larger electron potential difference between the outer and inner nanochannel caused by the curvature increase of carbon sphere, accelerating the electron transfer, so that the energy barrier of SMX degradation reaction was reduced by 31 kcal/mol with the assistance of confinement energy. Importantly, the NC-IN/PDS system exhibited outstanding removal efficiency for the actual river water using a continuous flow reactor. This work provides a new insight into designing an efficient and stable catalytic nanoreactor, enriching the domain of advanced wastewater treatment strategies.
Collapse
Affiliation(s)
- Min Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Gang Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jian Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Ye H, Luo Y, Yu S, Shi G, Zheng A, Huang Y, Xue M, Yin Z, Hong Z, Li X, Xie X, Gao B. 2D/2D Bi 2MoO 6/CoAl LDH S-scheme heterojunction for enhanced removal of tetracycline: Performance, toxicity, and mechanism. CHEMOSPHERE 2024; 349:140932. [PMID: 38096991 DOI: 10.1016/j.chemosphere.2023.140932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
In this paper, the two-dimensional (2D) layered CoAl LDH (CoAl) was coupled with Bi2MoO6 (BMO) nanoplate and used for tetracycline (TC) degradation. Based on the results of UV-visible diffuse reflectance spectrum (UV-vis DRS), Motty-Schottky curves, and in situ X-ray photoelectron spectroscopy (XPS), a novel 2D/2D Bi2MoO6/CoAl LDH S-scheme heterojunction photocatalyst was built. The photodegradation rate constant of TC by the optimized sample BMO/CoAl30 was 3.637 × 10-2 min-1, which was 1.26 times and 4.01 times higher than that of Bi2MoO6 and CoAl LDH, respectively. The favorable photocatalytic performance of the heterojunction was attributed to the increased interfacial contact area of the 2D/2D structure. Besides, the transfer of photogenerated electrons from Bi2MoO6 to CoAl LDH under the effect of the built-in electric field (BIEF) reduced the recombination of photogenerated carriers and further improved the photocatalytic performance. The reactive species of h+, ·O2-, and 1O2 exhibited critical roles to degrade TC molecules by reactive radicals capture experiments and electron spin resonance (ESR) tests. The intermediate products of TC degradation and toxicity of intermediates were analyzed by liquid chromatography-mass spectrometer (LC-MS) and Toxicity Estimation Software Tool (T.E.S.T). Additionally, the BMO/CoAl composite photocatalysts showed high stability and environmental tolerance during the testing of cycles and environmental impacts with various water sources, organic contaminants, initial pH, and inorganic ions. This work provides a new protocol for designing and constructing novel 2D/2D S-scheme heterojunction photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
- Huiyin Ye
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yidan Luo
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
| | - Shuohan Yu
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Guangying Shi
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Aofeng Zheng
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yong Huang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Mingshan Xue
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Zuozhu Yin
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Zhen Hong
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xibao Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
15
|
Peng Y, Lin J, Niu JL, Guo X, Chen Y, Hu T, Cheng J, Hu Y. Synergistic Effect of Ion Doping and Type-II Heterojunction Construction and Ciprofloxacin Degradation by MIL-68(In,Bi)-NH 2@BiOBr under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2351-2364. [PMID: 38175742 DOI: 10.1021/acsami.3c16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Heterojunction structure and ion doping techniques are viable tactics in facilitating the generation and separation of photogenerated electrons and holes in photocatalysis. In the current study, a novel Bi ion-doped MIL-68(In,Bi)-NH2@BiOBr (MIBN@BOB) type-II heterojunction was first synthesized in a one-step solvothermal reaction. Doping of Bi ions not only broadened the light-sensing range but also provided reliable anchor sites for the in situ growth of BiOBr. Meanwhile, the heterostructure supplied new channels for photogenerated carriers, accelerating the transfer and inhibiting the recombination of photogenerated electron-hole. The obtained MIBN@BOB exhibited enhanced photocatalytic performance (91.1%) than MIL-68(In)-NH2 (40.8%) and BiOBr (57.5%) in ciprofloxacin (CIP) degradation under visible light, with excellent reusability. Photocatalysts were characterized in detail, and a series of photoelectrochemical tests were utilized to analyze the photoelectric properties. MIBN@BOB were deduced to conform the electron conduction mechanism of conventional type-II heterojunctions. More importantly, based on the above experiments and density functional theory (DFT) calculation, BiOBr-Bi in MIBN@BOB can serve as the major active sites of CIP enrichment, and •O2- and 1O2 generated at the BiOBr interface can react with the adsorbed CIP directly. Lastly, the possible degradation products and pathways of CIP were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS). This study provides a reference for the construction of ion-doping-modified metal-organic framework (MOF)-based heterojunction photocatalysts and their application in antibiotic removal.
Collapse
Affiliation(s)
- Yongjun Peng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jialiang Lin
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ji-Liang Niu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaolan Guo
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yazhen Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tongke Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- South China Institute of Collaborative Innovation, Dongguan 523808, China
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Wang A, Du M, Ni J, Liu D, Pan Y, Liang X, Liu D, Ma J, Wang J, Wang W. Enhanced and synergistic catalytic activation by photoexcitation driven S-scheme heterojunction hydrogel interface electric field. Nat Commun 2023; 14:6733. [PMID: 37872207 PMCID: PMC10593843 DOI: 10.1038/s41467-023-42542-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
The regulation of heterogeneous material properties to enhance the peroxymonosulfate (PMS) activation to degrade emerging organic pollutants remains a challenge. To solve this problem, we synthesize S-scheme heterojunction PBA/MoS2@chitosan hydrogel to achieve photoexcitation synergistic PMS activation. The constructed heterojunction photoexcited carriers undergo redox conversion with PMS through S-scheme transfer pathway driven by the directional interface electric field. Multiple synergistic pathways greatly enhance the reactive oxygen species generation, leading to a significant increase in doxycycline degradation rate. Meanwhile, the 3D polymer chain spatial structure of chitosan hydrogel is conducive to rapid PMS capture and electron transport in advanced oxidation process, reducing the use of transition metal activator and limiting the leaching of metal ions. There is reason to believe that the synergistic activation of PMS by S-scheme heterojunction regulated by photoexcitation will provide a new perspective for future material design and research on enhancing heterologous catalysis oxidation process.
Collapse
Affiliation(s)
- Aiwen Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Meng Du
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jiaxin Ni
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xiongying Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich, 8093, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland.
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| |
Collapse
|
17
|
Ning J, Zhang B, Siqin L, Liu G, Wu Q, Xue S, Shao T, Zhang F, Zhang W, Liu X. Designing advanced S-scheme CdS QDs/La-Bi 2WO 6 photocatalysts for efficient degradation of RhB. EXPLORATION (BEIJING, CHINA) 2023; 3:20230050. [PMID: 37933284 PMCID: PMC10582608 DOI: 10.1002/exp.20230050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/20/2023] [Indexed: 11/08/2023]
Abstract
Finding effective strategies to design efficient photocatalysts and decompose refractory organic compounds in wastewater is a challenging problem. Herein, by coupling element doping and constructing heterostructures, S-scheme CdS QDs/La-Bi2WO6 (CS/LBWO) photocatalysts are designed and synthesized by a simple hydrothermal method. As a result, the RhB degradation efficiency of the optimized 5% CS/LBWO reached 99% within 70 min of illumination with excellent stability and recyclability. CS/LBWO shows improvement in the adsorption range of visible light and promotes electron-hole pair generation/migration/separation, attributing the superior degradation performance. The degradation RhB mechanism is proposed by a free radical capture experiment, electron paramagnetic resonance, and high-performance liquid chromatography-mass spectrometry results, indicating that h+ and •O2 - play a significant role during four degradation processes: de-ethylation, chromophore cleavage, ring opening, and mineralization. Based on in situ irradiated X-ray photoelectron spectroscopy, Mulliken electronegativity theory, and the work function results, the S-scheme heterojunction of CS/LBWO promotes the transfer of photogenerated electron-hole pairs and promotes the generation of reactive radicals. This work not only reports that 5% CS/LBWO is a promising photocatalyst for degradation experiments but also provides an approach to design advanced photocatalysts by coupling element doping and constructing heterostructures.
Collapse
Affiliation(s)
- Jing Ning
- School of Physics and Electronic InformationYan'an UniversityYan'anPeople's Republic of China
| | - Bohang Zhang
- School of Physics and Electronic InformationYan'an UniversityYan'anPeople's Republic of China
| | - Letu Siqin
- Key Laboratory of Semiconductor Photovoltaic at Universities of Inner Mongolia Autonomous Region, School of Physical Science and TechnologyInner Mongolia UniversityHuhhotInner MongoliaPeople's Republic of China
| | - Gaihui Liu
- School of Physics and Electronic InformationYan'an UniversityYan'anPeople's Republic of China
| | - Qiao Wu
- Network Information CenterYan'an UniversityYan'anPeople's Republic of China
| | - Suqin Xue
- Network Information CenterYan'an UniversityYan'anPeople's Republic of China
| | - Tingting Shao
- School of Physics and Electronic InformationYan'an UniversityYan'anPeople's Republic of China
| | - Fuchun Zhang
- School of Physics and Electronic InformationYan'an UniversityYan'anPeople's Republic of China
| | - Weibin Zhang
- Yunnan Key Laboratory of Opto‐Electronic Information TechnologyCollege of Physics and Electronics InformationYunnan Normal UniversityKunmingPeople's Republic of China
| | - Xinghui Liu
- Department of Materials Science and EngineeringCity University of Hong KongKowloonHong KongPeople's Republic of China
- Department of Materials PhysicsSaveetha School of EngineeringSaveetha Institute of Medical and Technical Sciences (SIMTS)ChennaiTamil NaduIndia
| |
Collapse
|
18
|
Xiao C, Hu Y, Li Q, Liu J, Li X, Shi Y, Chen Y, Cheng J, Zhu X, Wang G, Xie J. Degradation of sulfamethoxazole by super-hydrophilic MoS 2 sponge co-catalytic Fenton: Enhancing Fe 2+/Fe 3+ cycle and mass transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131878. [PMID: 37379606 DOI: 10.1016/j.jhazmat.2023.131878] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
To promote the cycle of Fe2+/Fe3+ in co-catalytic Fenton and enhance mass transfer in an external circulation sequencing batch packed bed reactor (ECSPBR), super-hydrophilicity MoS2 sponge (TMS) modified by tungstosilicic acid (TA) was prepared for efficiently degrading sulfamethoxazole (SMX) antibiotics in aqueous solution. The influence of hydrophilicity of co-catalyst on co-catalytic Fenton and the advantages of ECSPBR were systematically studied through comparative research methods. The results showed that the super hydrophilicity increased the contact between Fe2+ and Fe3+ with TMS, then accelerated Fe2+/Fe3+ cycle. The max Fe2+/Fe3+ ratio of TMS co-catalytic Fenton (TMS/Fe2+/H2O2) was 1.7 times that of hydrophobic MoS2 sponge (CMS) co-catalytic Fenton. SMX degradation efficiency could reach over 90% under suitable conditions. The structure of TMS remained unchanged during the process, and the max dissolved concentration of Mo was lower than 0.06 mg/L. Additionally, the catalytic activity of TMS could be restored by a simple re-impregnation. The external circulation of the reactor was conducive to improving the mass transfer and the utilization rate of Fe2+ and H2O2 during the process. This study offered new insights to prepare a recyclable and hydrophilic co-catalyst and develop an efficient co-catalytic Fenton reactor for organic wastewater treatment.
Collapse
Affiliation(s)
- Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Qitian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jingyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yueyue Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
19
|
Tan JX, Chen ZY, Chen CH, Hsieh MF, Lin AYC, Chen SS, Wu KCW. Efficient adsorption and photocatalytic degradation of water emerging contaminants through nanoarchitectonics of pore sizes and optical properties of zirconium-based MOFs. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131113. [PMID: 36907060 DOI: 10.1016/j.jhazmat.2023.131113] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Over the past decades, the presence of pharmaceutical emerging contaminants in water bodies is receiving increasing attention due to the high concentration detected from wastewater effluent. Water systems contain a wide range of components coexisting together, which increases the difficulty of removing pollutants from the water. In order to achieve selective photodegradation and to enhance the photocatalytic activity of the photocatalyst on emerging contaminants, a Zr-based metal-organic framework (MOF), termed VNU-1 (VNU represents Vietnam National University) constructed with ditopic linker 1,4-bis(2-[4-carboxyphenyl]ethynyl)benzene (H2CPEB), with enlarged pore size and ameliorated optical properties, was synthesized and applied in this study. When compared to UiO-66 MOFs, which only had 30% photodegradation of sulfamethoxazole, VNU-1 had 7.5 times higher adsorption and reached 100% photodegradation in 10 min. The tailored pore size of VNU-1 resulted in size-selective properties between small-molecule antibiotics and big-molecule humic acid, and VNU-1 maintained high photodegradation performance after 5 cycles. Based on the toxicity test and the scavenger test, the products after photodegradation had no toxic effect on V. fischeri bacteria, and the superoxide radical (·O2-) and holes (h+) generated from VNU-1 dominated the photodegradation reaction. These results demonstrate that VNU-1 is a promising photocatalyst and provide a new insight for developing MOF photocatalyst to remove emerging contaminants in the wastewater systems.
Collapse
Affiliation(s)
- Jia-Xuan Tan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Zih-Yu Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Celine H Chen
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Ming-Feng Hsieh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Season S Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China.
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
20
|
Zhang Y, Li Y, Yuan Y. Enhanced sulfamethoxazole photodegradation by N-SrTiO 3/NH 4V 4O 10 S-scheme photocatalyst: DFT calculation and photocatalytic mechanism insight. J Colloid Interface Sci 2023; 645:860-869. [PMID: 37178563 DOI: 10.1016/j.jcis.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
In this study, we synthesized a N-SrTiO3/NH4V4O10 S-scheme photocatalyst by modifying NH4V4O10 nanosheets with various proportions of N-doped SrTiO3 nanoparticles using a mild hydrothermal method.Density Functional Theory(DFT) calculations were employed to elucidate thephotocatalytic mechanism, while the electron-hole transfer and separation of the S-type heterojunction were further characterized experimentally. The photocatalyst was applied to the photodegradation of sulfamethoxazole (SMX), a common water pollutant. Among all the prepared photocatalysts, 30 wt% N-SrTiO3/NH4V4O10 (NSN-30) displayed the highest photocatalytic performance. This was attributed to the facile electron transfer mechanism of the S-scheme heterojunction, which facilitated the effective separation of electron-holes and preserved the strong redox property of the catalyst. The possible intermediates anddegradation pathwaysin thephotocatalytic systemwere explored usingelectron paramagnetic resonance(EPR) and DFT calculations. Our findings demonstrate the potential of semiconductor catalysts to remove antibiotics from aqueous environments usinggreen energy.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yue Li
- Micro/Nanotechnology Research Centre, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuan Yuan
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
21
|
Poonia K, Patial S, Raizada P, Ahamad T, Parwaz Khan AA, Van Le Q, Nguyen VH, Hussain CM, Singh P. Recent advances in Metal Organic Framework (MOF)-based hierarchical composites for water treatment by adsorptional photocatalysis: A review. ENVIRONMENTAL RESEARCH 2023; 222:115349. [PMID: 36709022 DOI: 10.1016/j.envres.2023.115349] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Architecting a desirable and highly efficient nanocomposite for applications like adsorption, catalysis, etc. has always been a challenge. Metal Organic Framework (MOF)-based hierarchical composite has perceived popularity as an advanced adsorbent and catalyst. Hierarchically structured MOF material can be modulated to allow the surface interaction (external or internal) of MOF with the molecules of interest. They are well endowed with tunable functionality, high porosity, and increased surface area epitomizing mass transfer and mechanical stability of the fabricated nanostructure. Additionally, the anticipated optimization of nanocomposite can only be acquired by a thorough understanding of the synthesis techniques. This review starts with a brief introduction to MOF and the requirement for advanced nanocomposites after the setback faced by conventional MOF structures. Further, we discussed the background of MOF-based hierarchical composites followed by synthetic techniques including chemical and thermal treatment. It is important to rationally validate the successful nanocomposite fabrication by characterization techniques, an overview of challenges, and future perspectives associated with MOF-based hierarchically structured nanocomposite.
Collapse
Affiliation(s)
- Komal Poonia
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia.
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Quyet Van Le
- Faculty of Department of Materials Science and Engineering, Korea University, 145, Anam13 Ro Seongbuk-gu, Seoul, 02841, South Korea.
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
22
|
Chen X, Du S, Gao L, Shao K, Li Z, Liu B. A hydrangea-like nitrogen-doped ZnO/BiOI nanocomposite for photocatalytic degradation of tetracycline hydrochloride. NANOSCALE ADVANCES 2023; 5:1936-1942. [PMID: 36998661 PMCID: PMC10044580 DOI: 10.1039/d2na00896c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
The effectiveness of photocatalysts can be impacted by the high compounding efficiency of photogenerated carriers, which depends on the morphology of the photocatalyst. Here, a hydrangea-like N-ZnO/BiOI composite has been prepared for achieving efficient photocatalytic degradation of tetracycline hydrochloride (TCH) under visible light. The N-ZnO/BiOI exhibits a high photocatalytic performance, degrading nearly 90% of TCH within 160 min. After 3 cycling runs, the photodegradation efficiency remained above 80%, demonstrating its good recyclability and stability. The major active species at work are superoxide radicals (·O2 -) and photo-induced holes (h+) in the photocatalytic degradation of TCH. This work provides not only a new idea for the design of photodegradable materials but also a new method for the effective degradation of organic pollutants.
Collapse
Affiliation(s)
- Xiujuan Chen
- School of Stomatology, Lanzhou University Lanzhou 730000 China
| | - Shaobo Du
- College of Life Science and Technology, Gansu Agricultural University Lanzhou 730070 China
| | - Lei Gao
- School of Stomatology, Lanzhou University Lanzhou 730000 China
| | - Kejin Shao
- School of Nuclear Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Zhan Li
- School of Nuclear Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Bin Liu
- School of Stomatology, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
23
|
Wang J, Wang M, Kang J, Tang Y, Xu Z, Dong Q, Ma T, Zhu J. Sulfamethoxazole degradation by Ni2+ doped Fe2O3 on a nickel foam in peroxymonosulfate assisting photoelectrochemical oxidation system: Performance, mechanism and degradation pathway. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
24
|
Three-Dimensional Printing of Poly-L-Lactic Acid Composite Scaffolds with Enhanced Bioactivity and Controllable Zn Ion Release Capability by Coupling with Carbon-ZnO. Bioengineering (Basel) 2023; 10:bioengineering10030307. [PMID: 36978698 PMCID: PMC10045836 DOI: 10.3390/bioengineering10030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Poly-L-lactic acid (PLLA) has gained great popularity with researchers in regenerative medicine owing to its superior biocompatibility and biodegradability, although its inadequate bioactivity inhibits the further use of PLLA in the field of bone regeneration. Zinc oxide (ZnO) has been utilized to improve the biological performance of biopolymers because of its renowned osteogenic activity. However, ZnO nanoparticles tend to agglomerate in the polymer matrix due to high surface energy, which would lead to the burst release of the Zn ion and, thus, cytotoxicity. In this study, to address this problem, carbon–ZnO (C–ZnO) was first synthesized through the carbonization of ZIF-8. Then, C–ZnO was introduced to PLLA powder before it was manufactured as scaffolds (PLLA/C–ZnO) by a selective laser sintering 3D printing technique. The results showed that the PLLA/C–ZnO scaffold was able to continuously release Zn ions in a reasonable range, which can be attributed to the interaction of Zn–N bonding and the shielding action of the PLLA scaffold. The controlled release of Zn ions from the scaffold further facilitated cell adhesion and proliferation and improved the osteogenic differentiation ability at the same time. In addition, C–ZnO endowed the scaffold with favorable photodynamic antibacterial ability, which was manifested by an efficient antibacterial rate of over 95%.
Collapse
|
25
|
Development of attapulgite based catalytic membrane for activation of peroxymonosulfate: a singlet oxygen-dominated catalytic oxidation process for sulfamethoxazole degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
26
|
Wang X, Wang F, Xu B, Yang B. Effect of Bi3+ incoporation on up/downconversion luminescence and photocatalytic activity of Gd2O3. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Xie Z, Xiao G, Zeng X, Yang M, Yao J. Ion-exchange synthesis Ag@Bi2WO6/FeWO4 nanosheet with white-LED-light-driven for efficient activation of peroxymonosulfate: synthesis, characterization, and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
28
|
Wu L, Sun C, Jiao S, Hu J, Yang J, Jiao F. Internal Electric-Field-Driven CoAl-LDH Coupled N-Rich Carbon Nitride of C 3N 5 for Improved Photocatalytic Performance. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lixu Wu
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Chun Sun
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Shancheng Jiao
- School of Materials Science and Engineering, Central South University, Changsha410083, P. R. China
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Jia Yang
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Feipeng Jiao
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| |
Collapse
|
29
|
Luo Y, Huang G, Li Y, Yao Y, Huang J, Zhang P, Ren S, Shen J, Zhang Z. Removal of pharmaceutical and personal care products (PPCPs) by MOF-derived carbons: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159279. [PMID: 36209883 DOI: 10.1016/j.scitotenv.2022.159279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, the increasing demand for pharmaceuticals and personal care products (PPCPs) has resulted in the uncontrolled release of large amounts of PPCPs into the environment, which poses a great challenge to the existing wastewater treatment technologies. Therefore, novel materials for efficient treatment of PPCPs need to be developed urgently. MOF-derived carbons (MDCs), have many advantages such as high mechanical strength, excellent water stability, large specific surface area, excellent electron transfer capability, and environmental friendliness. These advantages give MDCs an excellent ability to remove PPCPs. In this review, the effects of different substances on the properties and functions of MDCs are discussed. In addition, representative applications of MDCs and composites for the removal of PPCPs in the field of adsorption and catalysis are summarized. Finally, the future challenges of MDCs and composites are foreseen.
Collapse
Affiliation(s)
- Yifei Luo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Guohe Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing 100875, China; Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Yongping Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yao Yao
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jing Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Peng Zhang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Shaojie Ren
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Shen
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zixin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
30
|
Xiao W, Cheng M, Liu Y, Wang J, Zhang G, Wei Z, Li L, Du L, Wang G, Liu H. Functional Metal/Carbon Composites Derived from Metal–Organic Frameworks: Insight into Structures, Properties, Performances, and Mechanisms. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wenjun Xiao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jun Wang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Gaoxia Zhang
- Carbon Neutrality Research Institute of Power China Jiangxi Electric Power Construction Co., Ltd., Nanchang 330001, China
| | - Zhen Wei
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Hongda Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| |
Collapse
|
31
|
Zhang G, Yang J, Huang Z, Pan G, Xie B, Ni Z, Xia S. Construction dual vacancies to regulate the energy band structure of ZnIn 2S 4 for enhanced visible light-driven photodegradation of 4-NP. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129916. [PMID: 36103766 DOI: 10.1016/j.jhazmat.2022.129916] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Most of the intrinsic photocatalysts with visible light response can only generate one active radical due to the limitation of their band structures, which is immediate cause limiting their photocatalytic degradation performance. In this work, ZnIn2S4 with Zn vacancy and S vacancy (VZn+S-ZnIn2S4) was prepared for the first time. As expected, the VZn+S-ZnIn2S4 exhibits remarkable photocatalytic performance for 4-Nitrophenol (4-NP) degradation under visible light and the apparent rate constant is about 11 times that of pristine ZnIn2S4. The construction of dual vacancies can regulate the energy band structure of the ZnIn2S4, enabling it to generate •OH and •O2- simultaneously. Meanwhile, dual vacancies system can also extremely improve the separation efficiency of carriers. It is worth noting that Zn vacancy and S vacancy can capture photogenerated holes and photogenerated electrons, respectively, which is beneficial for photogenerated carriers to participate in radical generation reactions. In addition, a possible 4-NP degradation pathway was proposed based on HPLC-MS analysis. This work provides a new way to construct photocatalysts for photodegradation of pollutants in wastewater.
Collapse
Affiliation(s)
- Guanhua Zhang
- Department of Chemistry, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, Shandong, PR China
| | - Jieyi Yang
- Department of Chemistry, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Zhiling Huang
- Department of Life and Health Sciences, Huzhou College, 313000 Huzhou, PR China
| | - Guoxiang Pan
- School of Engineering, Huzhou University, 759 East Erhuan Road, Huzhou 313000, PR China
| | - Bo Xie
- Department of Chemistry, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Zheming Ni
- Department of Chemistry, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Shengjie Xia
- Department of Chemistry, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China.
| |
Collapse
|
32
|
Su C, Jia M, Xue X, Tang C, Li L, Hu X. Core-shell magnetic CFO@COF composites toward peroxymonosulfate activation for degradation of sulfamethoxazole from aqueous solution: A comparative study and mechanistic consideration. CHEMOSPHERE 2023; 311:137159. [PMID: 36343735 DOI: 10.1016/j.chemosphere.2022.137159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
A core-shell covalent organic framework encapsulated Co1.2Fe1.8O4 magnetic particles (CFO@COF) was designed and prepared successfully to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) degradation. It displays amazing catalytic reactivity since the unique interior structure and synergistic effect between COF shell and CFO core, reaching 99.8% removal of SMX (10 mg/L) within 30 min and 90.8% TOC removal. The synergy between bimetals vests high reactivity to CFO core. And the outer COF shell can stabilize the CFO core under intricate reaction conditions to restrain the leaching of Co ions (decreased from 0.75 to 0.25 mg/L). Further investigation compared the activation mechanism in two different system, CFO/PMS system and CFO@COF/PMS system. The result showed that the radical mechanism controlled by SO4⋅- guided the SMX degradation in CFO/PMS system whereas the 1O2 played a pivotal role in CFO@COF/PMS system called non-radical leading. The influences of various factors on degradation experiments and SMX degradation pathway were also studied. Most importantly, risk assessment in CFO@COF/PMS/SMX system was estimated via "ecological structure activity relationships". In most case, the toxicities of intermediates were lower than the initial samples, which confirmed the effectiveness of CFO@COF/PMS/SMX system in the reduction of toxicity of SMX.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Muhan Jia
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiaofei Xue
- Beijing Enterprises Water Group (China) Limited, Beijing, 100102, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Lingyun Li
- Beijing Enterprises Water Group (China) Limited, Beijing, 100102, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
33
|
A spiral shape microfluidic photoreactor with MOF(NiFe)-derived NiSe-Fe3O4/C heterostructure for photodegradation of tetracycline: Mechanism conception and DFT calculation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Selectivity of CO2, carbonic acid and bicarbonate electroreduction over Iron-porphyrin catalyst: a DFT study. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
MOF-templated core–shell CoSx@BiOBr Z-type heterojunction degradation of multiple antibiotics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Zhang X, Yuan N, Chen T, Li B, Wang Q. Fabrication of hydrangea-shaped Bi 2WO 6/ZIF-8 visible-light responsive photocatalysts for degradation of methylene blue. CHEMOSPHERE 2022; 307:135949. [PMID: 35961452 DOI: 10.1016/j.chemosphere.2022.135949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the hydrangea-shaped Bi2WO6/ZIF-8 (BWOZ) visible light photocatalysts have been prepared via a facile synthetic strategy for the first time. The constructed BWOZ composites were systematically studied by a series of characterization techniques. The SEM results manifested the octahedral ZIF-8 coated the flower-like Bi2WO6 uniformly and the composition of BWOZ composites had been confirmed by XPS measurement. And the photocatalytic activity was evaluated by eliminating methylene blue with the help of visible light. The results showed that 7%-BWOZ (7.0 wt% Bi2WO6) exhibited better photodegradation capability than pure Bi2WO6 and ZIF-8. Compared with Bi2WO6, the photocatalytic degradation of methylene blue by 7%-BWOZ could reach 85.7%. In addition, the pseudo-first-order kinetic constant of 7%-BWOZ was 23.00 and 1.61 times that of pristine Bi2WO6 and ZIF-8, respectively. The improved photocatalytic ability of BWOZ systems may be due to the construction of heterojunctions between Bi2WO6 and ZIF-8, which resulted in the rapid separation of photogenerated carriers. Additionally, the specific surface area of the formed BWOZ system was also improved in comparison with the flower-shaped Bi2WO6, and thus more active sites could be provided to contact with methylene blue molecules, thereby achieving better removal capacity. Moreover, trapping experiments and electron spin resonance results further illustrated that the coexistence of multiple free radicals realized efficient degradation of methylene blue. More importantly, the photocatalytic property of the 7%-BWOZ composite remained even after three cycles. Furthermore, a feasible photodegradation mechanism was also explored in depth.
Collapse
Affiliation(s)
- Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Tianxiang Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Bowen Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Qibao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
37
|
Zheng MW, Yang SJ, Pu YC, Liu SH. Mechanisms of biochar enhanced Cu 2O photocatalysts in the visible-light photodegradation of sulfamethoxazole. CHEMOSPHERE 2022; 307:135984. [PMID: 35964722 DOI: 10.1016/j.chemosphere.2022.135984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/16/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Cu2O nanoparticles are decorated with biochars derived from spent coffee grounds (denoted as Cu2O/SCG) and applied as visible-light-active photocatalysts in the sulfamethoxazole (SMX) degradation. The physicochemical properties of Cu2O/SCG are identified by various spectral analysis, electrochemical and photochemical techniques. As a result, the Cu2O/SCG exhibits the higher removal efficiency of SMX than the pristine Cu2O under visible light irradiation. We can observe that Cu2O could be incorporated onto the SCG biochars with rich oxygen vacancies/adsorbed hydroxyl groups. In addition, the Cu2O/SCG has the lower charge transfer resistance, faster interfacial electron transfer kinetics, decreased recombination of charge carriers and superior absorbance of visible light. The construction of band diagrams for Cu2O/SCG and pristine Cu2O via UV-vis spectra and Mott-Schottky plots suggest that the band energy shifts and higher carrier density of Cu2O/SCG may be responsible for the photocatalytic activity enhancements. From the radical scavenger experiments and electron paramagnetic resonance spectra, the aforementioned energy shifts could decrease the energy requirement of transferring photoinduced electrons to the potential for the formation of active superoxide radicals (·O2-) via one and two-electron reduction routes in the photocatalytic reaction. A proposed degradation pathway shows that ·O2- and h+ are two main active species which can efficiently degrade SMX into reaction intermediates by oxidation, hydroxylation, and ring opening. This research demonstrates the alternative replacement of conventional carbon materials for the preparation of biochar-assisted Cu2O photocatalysts which are applied in the environmental decontamination by using solar energy.
Collapse
Affiliation(s)
- Meng-Wei Zheng
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shan-Jen Yang
- Department of Materials Science, National University of Tainan, Tainan, 70005, Taiwan
| | - Ying-Chih Pu
- Department of Materials Science, National University of Tainan, Tainan, 70005, Taiwan
| | - Shou-Heng Liu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
38
|
Hu J, Zhao GQ, Wu LX, Sun C, Long X, Long XQ, Jiao FP. Designing and Fabricating a Vulcanized ZnAl LDH-Modified g-C 3N 4 Heterojunction for Enhanced Visible-Light-Driven Photocatalytic Degradation Activity. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Hu
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, People’s Republic of China
| | - Guo-qing Zhao
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, People’s Republic of China
| | - Li-xu Wu
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, People’s Republic of China
| | - Chun Sun
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, People’s Republic of China
| | - Xuan Long
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, People’s Republic of China
| | - Xin-qi Long
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, People’s Republic of China
| | - Fei-peng Jiao
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, People’s Republic of China
| |
Collapse
|
39
|
Liang L, Wang Y, Li N, Yan B, Chen G, Hou L. Breaking rate-limiting steps in a red mud-sewage sludge carbon catalyst activated peroxymonosulfate system: Effect of pyrolysis temperature. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Zhou Q, Zhang L, Zhang L, Jiang B, Sun Y. In-situ constructed 2D/2D ZnIn 2S 4/Bi 4Ti 3O 12 S-scheme heterojunction for degradation of tetracycline: Performance and mechanism insights. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129438. [PMID: 35820333 DOI: 10.1016/j.jhazmat.2022.129438] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Semiconductor materials dominated photocatalytic technology is one of the most efficient approaches to degrade organic pollutants. However, the limited light absorption range and rapid recombination of photogenerated carriers greatly restrict the application of photocatalysts. Rational design of photocatalysts to achieve high catalytic activity and stability is of great importance. Herein, ZnIn2S4/Bi4Ti3O12 S-scheme heterojunction is synthesized by growing the ZnIn2S4 nanosheets on the sheet-like Bi4Ti3O12 surface via a low-temperature solvothermal method. The TC removal efficiency of optimized heterojunction reaches 82.1% within 60 min under visible light, and the rate constant is nearly 6.8 times than that of pristine ZnIn2S4. The favorable photocatalytic performance of heterojunction is attributed to the tight contact interface and efficient separation of photogenerated carriers. Besides, the difference in work function between ZnIn2S4 and Bi4Ti3O12 leads to band bending and the establishment of built-in electric field on the contact interface of heterojunction, which facilitates the migration and separation of photogenerated carriers. Furthermore, the cycling test demonstrates the attractive stability of heterojunction. The possible TC photodegradation pathways and toxicity assessment of the intermediates are also analyzed. In conclusion, this work provides an effective strategy to prepare S-scheme heterojunction photocatalysts with favorable photocatalytic activity, which can enhance wastewater purification efficiency.
Collapse
Affiliation(s)
- Qi Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Luhong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Longfei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Bin Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yongli Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
41
|
Talati A, Haghighi M. Hard-templating design of mesoporous ZnAl2O4 via in-situ microwave combustion method as an efficient solar-light-responsive nanophotocatalyst for photo-decomposition of organic dyes from aqueous solution. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Wang Y, Liu M, Wu C, Gao J, Li M, Xing Z, Li Z, Zhou W. Hollow Nanoboxes Cu 2-x S@ZnIn 2 S 4 Core-Shell S-Scheme Heterojunction with Broad-Spectrum Response and Enhanced Photothermal-Photocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202544. [PMID: 35691938 DOI: 10.1002/smll.202202544] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/18/2022] [Indexed: 05/19/2023]
Abstract
Major issues in photocatalysis include improving charge carrier separation efficiency at the interface of semiconductor photocatalysts and rationally developing efficient hierarchical heterostructures. Surface continuous growth deposition is used to make hollow Cu2-x S nanoboxes, and then simple hydrothermal reaction is used to make core-shell Cu2-x S@ZnIn2 S4 S-scheme heterojunctions. The photothermal and photocatalytic performance of Cu2-x S@ZnIn2 S4 is improved. In an experimental hydrogen production test, the Cu2-x S@ZnIn2 S4 photocatalyst produces 4653.43 µmol h-1 g-1 of hydrogen, which is 137.6 and 13.8 times higher than pure Cu2-x S and ZnIn2 S4 , respectively. Furthermore, the photocatalyst exhibits a high tetracycline degradation efficiency in the water of up to 98.8%. For photocatalytic reactions, the hollow core-shell configuration gives a large specific surface area and more reactive sites. The photocatalytic response range is broadened, infrared light absorption enhanced, the photothermal effect is outstanding, and the photocatalytic process is promoted. Meanwhile, characterizations, degradation studies, active species trapping investigations, energy band structure analysis, and theoretical calculations all reveal that the S-scheme heterojunction can efficiently increase photogenerated carrier separation. This research opens up new possibilities for future S-scheme heterojunction catalyst design and development.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Environmental Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Meijie Liu
- Department of Environmental Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Chunxu Wu
- Department of Environmental Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jiapeng Gao
- Department of Environmental Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Min Li
- Department of Environmental Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zipeng Xing
- Department of Environmental Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Wei Zhou
- Department of Environmental Science, Heilongjiang University, Harbin, 150080, P. R. China
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
43
|
Reconstruction of Electronic Structure of MOF-525 via Metalloporphyrin for Enhanced Photoelectro-Fenton Process. Catalysts 2022. [DOI: 10.3390/catal12060671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photoelectro-Fenton (PEF) process can continuously promote the occurrence of Fenton reaction and the generation of active species, which is an advanced oxidation technology for pollutant degradation. However, the lack of bifunctional catalysts restricts the development of PEF technology. In this study, the electronic rearrangement MOF-525 modified by metalloporphyrin (named MOF-525-Fe/Zr) was prepared, to load on the carbon felt as a novel cathode catalyst, which is used in PEF process. A series of characterization and photoelectric chemical properties tests combined with DFT calculation showed that the modification of MOF-525 could not only have the large specific surface area and multistage pore structure but also co-stimulate the metal-to-ligand charge transfer (MLCT) and ligand-to-cluster charge transfer (LCCT) by photoelectric synergy. These charge transitions provide periodic electron donor-acceptor conduction paths in MOF-525-Fe/Zr, which can improve the active species formation and transfer efficiency. Owing to their favorable pore and electronic structure as well as stability, MOF-525-Fe/Zr shows great promise for the application in the catalytic process of PEF. Sulfamethoxazole (SMX) degradation was enhanced by MOF-525-Fe/Zr with the TOC removal rate above 75% both in river water and tap water. Finally, the reasonable pathway of PEF catalytic degradation of SMX was proposed by HPLC-MS analysis. In conclusion, this study provides a new idea for reconstructing the electronic structure of MOFs catalyst and broadening the practical application of PEF technology.
Collapse
|
44
|
Alzard RH, Siddig LA, Alhatti N, Abdallah I, Aljabri L, Alblooshi A, Alzamly A. Titania Derived from NH 2-MIL-125(Ti) Metal–Organic Framework for Selective Photocatalytic Conversion of CO 2 to Propylene Carbonate. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2085692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Nada Alhatti
- Department of Chemistry, UAE University, Al-Ain, UAE
| | | | | | | | - Ahmed Alzamly
- Department of Chemistry, UAE University, Al-Ain, UAE
| |
Collapse
|
45
|
Tang Y, Wang M, Liu J, Li S, Kang J, Wang J, Xu Z. Electro-enhanced sulfamethoxazole degradation efficiency via carbon embedding iron growing on nickel foam cathode activating peroxymonosulfate: Mechanism and degradation pathway. J Colloid Interface Sci 2022; 624:24-39. [PMID: 35660892 DOI: 10.1016/j.jcis.2022.05.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
The combination of peroxymonosulfate (PMS) activation by hetero-catalysis and electrolysis (EC) attracted incremental concerns as an efficient antibiotics degradation method. In this work, carbon embedding iron (C@Fe) catalysts growing on nickel foam (NF) composite cathode (C@Fe/NF) was prepared via in-situsolvothermal growth and carbonization method and used to activate PMS toward sulfamethoxazole (SMX) degradation. The EC-[C@Fe/NF(II)]-PMS system exhibited an excellent PMS activation, with 100% SMX removal efficiency achieving within 30 min. Reactive oxygen species (ROS) generation and their roles in SMX degradation were confirmed by quenching experiments and electron paramagnetic resonance. It was found that singlet oxygen (1O2) and surface-bound radicals were responsible for SMX degradation, and 1O2 contributed the most. Furthermore, the possible SMX degradation pathways were proposed on the base of the detected degradation intermediates and density functional theory (DFT) calculation. Toxicity changes were also assessed by the Ecological Structure Activity Relationships (ESAR). This work provides a practicable strategy for synergistically enhancing PMS activation efficiency and promoting antibiotics removal.
Collapse
Affiliation(s)
- Yiwu Tang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Min Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China.
| | - Jiayun Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Siyan Li
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Jin Kang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Jiadian Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Zhenqi Xu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| |
Collapse
|
46
|
Zhu P, Lou C, Shi Y, Wang C. Study on Preparation of Ag/AgCl/ZIF-8 Composite and Photocatalytic NO Oxidation Performance. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22060266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Wu J, Ding B, Qian X, Mao L, Zheng H, Zhang L, Zheng S, Zhang J. Nanosheets loaded on tetrahedral surfaces form a Z-type Bi 2MoO 6/γ-Bi 2O 3 heterojunction to enhance the photocatalytic degradation activity of lomefloxacin and Rhodamine B. Dalton Trans 2022; 51:15797-15805. [DOI: 10.1039/d2dt02687b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosheets loading on tetrahedral surfaces of a Bi2MoO6/γ-Bi2O3 heterojunction forming a Z-type energy band to enhance the photocatalytic degradation activity.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Bangfu Ding
- Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Xin Qian
- College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Liang Mao
- School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Huibin Zheng
- School of Mathematics and Physics, Anyang Institute of Technology, Anyang 455099, China
| | - Lei Zhang
- Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Shukai Zheng
- Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Junying Zhang
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
48
|
Bian J, Zhu Q, Wang A, Sun Y, Pang K, Li X, Lang Z. Adsorption of nitrate from water by quaternized chitosan wrinkled microspheres@MgFe-LDHs core-shell composite. NEW J CHEM 2022. [DOI: 10.1039/d2nj01902g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, nitrate pollution in water became one of the global ecological problems. In this study, a new core-shell composite (GCS@CTA@MgFe-LDHs) was prepared by in-situ growth of MgFe-Cl--LDHs plates...
Collapse
|