1
|
Wasilewska M, Derylo-Marczewska A, Marczewski AW. Equilibrium and Kinetic Studies on Adsorption of Neutral and Ionic Species of Organic Adsorbates from Aqueous Solutions on Activated Carbon. Molecules 2024; 29:3032. [PMID: 38998985 PMCID: PMC11243464 DOI: 10.3390/molecules29133032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This work presents comprehensive studies of the adsorption of neutral and ionic forms of organic adsorbates from aqueous solutions on activated carbon. The influence of pH on the equilibrium and kinetics of the adsorption of methylene blue (MB) and organic acids, benzoic (BA), 2-nitrobenzoic (2-NBA), 3-nitrobenzoic (3-NBA), and 4-nitrobenzoic (4-NBA) acid, was investigated. Experimental adsorption isotherms were analyzed using the generalized Langmuir isotherm equation (R2 = 0.932-0.995). Adsorption rate data were studied using multiple adsorption kinetics equations, of which the multi-exponential equation gave the best fit quality (R2 - 1 = (6.3 × 10-6)-(2.1 × 10-3)). The half-time was also used to represent the effect of pH on adsorption kinetics. Strong dependences of the adsorption efficiency on the solution pH were demonstrated. In the case of organic acid adsorption, the amount and rate of this process increased with a decrease in pH. Moreover, larger adsorbed amounts of methylene blue were recorded in an alkaline environment in a relatively short time. The maximum absorbed amounts were 11.59 mmol/g, 6.57 mmol/g, 9.38 mmol/g, 2.70 mmol/g, and 0.24 mmol/g for BA, 2NBA, 3-NBA, 4-NBA, and MB. The pure activated carbon and the selected samples after adsorption were investigated using thermal analysis and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Małgorzata Wasilewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Anna Derylo-Marczewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | | |
Collapse
|
2
|
Aumeier BM, Georgi A, Saeidi N, Sigmund G. Is sorption technology fit for the removal of persistent and mobile organic contaminants from water? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163343. [PMID: 37030383 DOI: 10.1016/j.scitotenv.2023.163343] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Persistent, Mobile, and Toxic (PMT) and very persistent and very mobile (vPvM) substances are a growing threat to water security and safety. Many of these substances are distinctively different from other more traditional contaminants in terms of their charge, polarity, and aromaticity. This results in distinctively different sorption affinities towards traditional sorbents such as activated carbon. Additionally, an increasing awareness on the environmental impact and carbon footprint of sorption technologies puts some of the more energy-intensive practices in water treatment into question. Commonly used approaches may thus need to be readjusted to become fit for purpose to remove some of the more challenging PMT and vPvM substances, including for example short chained per- and polyfluoroalkyl substances (PFAS). We here critically review the interactions that drive sorption of organic compounds to activated carbon and related sorbent materials and identify opportunities and limitations of tailoring activated carbon for PMT and vPvM removal. Other less traditional sorbent materials, including ion exchange resins, modified cyclodextrins, zeolites and metal-organic frameworks are then discussed for potential alternative or complementary use in water treatment scenarios. Sorbent regeneration approaches are evaluated in terms of their potential, considering reusability, potential for on-site regeneration, and potential for local production. In this context, we also discuss the benefits of coupling sorption to destructive technologies or to other separation technologies. Finally, we sketch out possible future trends in the evolution of sorption technologies for PMT and vPvM removal from water.
Collapse
Affiliation(s)
- Benedikt M Aumeier
- RWTH Aachen University, Institute of Environmental Engineering, Mies-van-der-Rohe-Strasse 1, 52074 Aachen, Germany.
| | - Anett Georgi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Navid Saeidi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Wien, Austria; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
4
|
Sigmund G, Arp HPH, Aumeier BM, Bucheli TD, Chefetz B, Chen W, Droge STJ, Endo S, Escher BI, Hale SE, Hofmann T, Pignatello J, Reemtsma T, Schmidt TC, Schönsee CD, Scheringer M. Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4702-4710. [PMID: 35353522 PMCID: PMC9022425 DOI: 10.1021/acs.est.2c00570] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.
Collapse
Affiliation(s)
- Gabriel Sigmund
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, 1090 Wien, Austria
| | - Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadion, N-0806 Oslo, Norway
- Norwegian
University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Benedikt M. Aumeier
- RWTH
Aachen University, Institute of Environmental Engineering, Mies-van-der-Rohe Straße 1, 52074 Aachen, Germany
| | | | - Benny Chefetz
- Department
of Soil and Water Sciences, Institute of Environmental Sciences; Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Wei Chen
- College
of Environmental Science and Engineering, Ministry of Education Key
Laboratory of Pollution Processes and Environmental Criteria, Tianjin
Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Steven T. J. Droge
- Wageningen
Environmental Research, Wageningen University
and Research, P.O. Box 47, 6700AA, Wageningen, Netherlands
| | - Satoshi Endo
- Health
and Environmental Risk Division, National
Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki Japan
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoser Strasse 15, DE-04318 Leipzig, Germany
- Environmental
Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Sarah E. Hale
- Norwegian
Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadion, N-0806 Oslo, Norway
| | - Thilo Hofmann
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, 1090 Wien, Austria
| | - Joseph Pignatello
- Department
of Environmental Sciences, The Connecticut
Agricultural Experiment Station, New Haven; 123 Huntington St., New Haven, Connecticut 06504-1106, United States
| | - Thorsten Reemtsma
- Department
of Analytical Chemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute for Analytical Chemistry, University
of Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| | - Torsten C. Schmidt
- Instrumental
Analytical Chemistry and Centre for Water and Environmental Research
(ZWU), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | | | - Martin Scheringer
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|