1
|
Santás-Miguel V, Lalín-Pousa V, Conde-Cid M, Rodríguez-Seijo A, Pérez-Rodríguez P. Use of Biopowders as Adsorbents of Potentially Toxic Elements Present in Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2025; 18:625. [PMID: 39942291 PMCID: PMC11819779 DOI: 10.3390/ma18030625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
This study examines the adsorption and desorption behaviors of phosphorus (P), arsenic (As), fluoride (F), and chromium (Cr) in aqueous solutions on green materials such as cork bark (CB) and pine bark (PB). These materials are characterized by active functional groups and net negative charges on their surfaces and porous structures. The evaluation considers variations in contaminant concentrations (0.01-10 mM) and pH (3.5-12). Cork bark exhibited higher adsorption capacity for As and F, while PB was more effective for P and Cr. Adsorption isotherms followed the Freundlich and Langmuir models, indicating surface heterogeneity and multilayer adsorption for most potentially toxic elements (PTEs). Desorption tests demonstrated low rates, with CB retaining up to 99% of F and 85% of As, and PB achieving up to 86% retention for Cr and 70% for P. The influence of pH was minimal for As, P, and F, but acidic conditions significantly enhanced Cr adsorption, showing similar behavior for both biopowders. These findings suggest that CB and PB biopowders are promising, environmentally friendly biosorbents for the removal of PTEs from aqueous solutions. Their effectiveness varies depending on the specific contaminant. This study highlights the potential of these natural materials for sustainable applications in water treatment and soil remediation.
Collapse
Affiliation(s)
- Vanesa Santás-Miguel
- Department of Plant Biology and Soil Science, Area of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain; (V.S.-M.); (V.L.-P.); (M.C.-C.); (A.R.-S.)
- Agroecology and Food Institute (IAA), University of Vigo—Campus Auga, 32004 Ourense, Spain
- Microbial Ecology, Department of Biology, Lund University, Ecology Building, 22362 Lund, Sweden
| | - Vanesa Lalín-Pousa
- Department of Plant Biology and Soil Science, Area of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain; (V.S.-M.); (V.L.-P.); (M.C.-C.); (A.R.-S.)
- Agroecology and Food Institute (IAA), University of Vigo—Campus Auga, 32004 Ourense, Spain
| | - Manuel Conde-Cid
- Department of Plant Biology and Soil Science, Area of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain; (V.S.-M.); (V.L.-P.); (M.C.-C.); (A.R.-S.)
- Agroecology and Food Institute (IAA), University of Vigo—Campus Auga, 32004 Ourense, Spain
| | - Andrés Rodríguez-Seijo
- Department of Plant Biology and Soil Science, Area of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain; (V.S.-M.); (V.L.-P.); (M.C.-C.); (A.R.-S.)
- Agroecology and Food Institute (IAA), University of Vigo—Campus Auga, 32004 Ourense, Spain
| | - Paula Pérez-Rodríguez
- Department of Plant Biology and Soil Science, Area of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain; (V.S.-M.); (V.L.-P.); (M.C.-C.); (A.R.-S.)
- Agroecology and Food Institute (IAA), University of Vigo—Campus Auga, 32004 Ourense, Spain
| |
Collapse
|
2
|
Raza MB, Datta SP, Golui D, Barman M, Ray P, Upadhyay D, Mishra R, Roy A, Dash AK. Enhancing soil arsenic immobilization with organic and inorganic amendments: insights from sorption-desorption study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:76. [PMID: 39702627 DOI: 10.1007/s10661-024-13492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
The retention and mobility of arsenic (As) in soil depend on various physical and chemical factors. The knowledge of the sorption-desorption chemistry of As in soil is necessary for predicting the fate and behavior of As in soil environments. Therefore, this study assessed different organic (sugarcane bagasse and vermicompost) and inorganic amendments (steel slag and fly ash) for their impact on sorption-desorption of As in texturally different contaminated soils (of sandy clay (SC) and sandy clay loam (SCL) texture) to understand the effect of amendments on As retention and mobility. The results showed that the sorption data fitted well with both Langmuir and Freundlich isotherm equations. The As sorption capacity was significantly enhanced with the application of all amendments. At 30 °C, the adsorption maxima (qmax) of SC soils enhanced to a greater extent following the order: steel slag (278 mg kg-1) > sugarcane bagasse (264 mg kg-1) > vermicompost (246 mg kg-1) > fly ash (242 mg kg-1). Whereas, in SCL, the order of qmax was steel slag (145 mg kg-1) > sugarcane bagasse (132 mg kg-1) > fly ash (120 mg kg-1) > vermicompost (118 mg kg-1). Desorption index (DI) was invariably to > 1 at both temperatures with the application of amendments indicating hysteretic desorption of As. The free energy change (ΔG°) was negative in all treatments and soils (indicating a favorable sorption process) with positive entropy change (ΔS°) values. The study recommends steel slag as the most effective amendment for enhancing As (V) retention in contaminated soils, due to its higher sorption capacity compared to other amendments like sugarcane bagasse, vermicompost, and fly ash. The amendments generally improved As sorption in both soils, reducing As mobility and potentially limiting its environmental spread.
Collapse
Affiliation(s)
- Md Basit Raza
- ICAR-Directorate of Floricultural Research, Pune, 411036, Maharashtra, India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Siba Prasad Datta
- ICAR-Indian Institute of Soil Science, Bhopal, 462038, Madhya Pradesh, India.
| | - Debasis Golui
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mandira Barman
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prasenjit Ray
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Devi Upadhyay
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rahul Mishra
- ICAR-Indian Institute of Soil Science, Bhopal, 462038, Madhya Pradesh, India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Arkaprava Roy
- ICAR-National Institute of Biotic Stress Management, Raipur, 493225, Chhattisgarh, India
| | - Amit K Dash
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| |
Collapse
|
3
|
György B, Bujdoš M, Vojtková H, Diviš P, Slaný M, Matúš P, Urík M. Comparative Study of Water and Milk Kefir Grains as Biopolymeric Adsorbents for Copper(II) and Arsenic(V) Removal from Aqueous Solutions. Polymers (Basel) 2024; 16:3340. [PMID: 39684085 DOI: 10.3390/polym16233340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the biosorption capabilities of kefir grains, a polysaccharide-based byproduct of the fermentation process, for removing copper(II) and arsenic(V) from contaminated water. Unlike traditional heavy-metal removal methods, which are typically expensive and involve environmentally harmful chemicals, biopolymeric materials such as kefir grains provide a sustainable and cost-effective alternative for adsorbing hazardous inorganic pollutants from aqueous solutions. Our experimental results revealed significant differences in the sorption capacities of two types of kefir grains. Grains of milk kefir outperformed water kefir, particularly in copper(II) removal, achieving up to 95% efficiency at low copper concentrations (0.16 mmol·L-1) and demonstrating a maximum sorption capacity of 49 µmol·g-1. In contrast, water kefir grains achieved only 35.5% maximum removal efficiency and exhibited lower sorption capacity. For arsenic(V) removal, milk kefir grains also showed superior performance, removing up to 56% of arsenic in diluted solution with experimental sorption capacities reaching up to 20 µmol·g-1, whereas water kefir grains achieved a maximum removal efficiency of 34.5%. However, these findings also suggest that while kefir grains show potential as low-cost biosorbents, further modifications are needed to enhance their competitiveness for large-scale water treatment applications.
Collapse
Affiliation(s)
- Balázs György
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Pavel Diviš
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - Michal Slaný
- Department of Materials Engineering and Physics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 810 05 Bratislava, Slovakia
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
4
|
Mendizábal E, Ríos-Donato N, Ventura-Muñoz MG, Hernández-Montelongo R, Verduzco-Navarro IP. Use of Chitosan-Iron Oxide Gels for the Removal of Cd 2+ Ions from Aqueous Solutions. Gels 2024; 10:630. [PMID: 39451283 PMCID: PMC11506979 DOI: 10.3390/gels10100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
High-quality water availability is substantial for sustaining life, so its contamination presents a serious problem that has been the focus of several studies. The presence of heavy metals, such as cadmium, is frequently studied due to the increase in the contamination levels caused by fast industrial expansion. Cadmium ions were removed from aqueous solutions at pH 7.0 by chitosan-magnetite (ChM) xerogel beads and chitosan-FeO (ChF) xerogel beads in batch systems. Kinetic studies were best modeled by the Elovich model. The adsorption isotherms obtained showed an inflection point suggesting the formation of a second layer, and the BET model adjusted to liquid-solid systems was adequate for the description of the experimental data. Maximum uptake capacities of 36.97 ± 0.77 and 28.60 ± 2.09 mg Cd/g xerogel were obtained for ChM and ChF, respectively. The studied composites are considered promising adsorbent materials for removing cadmium ions from aqueous systems.
Collapse
Affiliation(s)
- Eduardo Mendizábal
- Department of Chemistry, CUCEI, University of Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico; (E.M.); (N.R.-D.)
| | - Nely Ríos-Donato
- Department of Chemistry, CUCEI, University of Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico; (E.M.); (N.R.-D.)
| | - Minerva Guadalupe Ventura-Muñoz
- Department of Innovation Based on Information and Knowledge, CUCEI, University of Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico;
| | - Rosaura Hernández-Montelongo
- Department of Translational Bioengineering, CUCEI, University of Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico;
| | - Ilse Paulina Verduzco-Navarro
- Department of Chemistry, CUCEI, University of Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico; (E.M.); (N.R.-D.)
| |
Collapse
|
5
|
Liao X, Miranda Avilés R, Serafin Muñoz AH, Rocha Amador DO, Perez Rodriguez RY, Hernández Anguiano JH, Julia Navarro C, Zha X, Moncada D, de Jesús Puy Alquiza M, Vinod Kshirsagar P, Li Y. Efficient arsenic removal from water using iron-impregnated low-temperature biochar derived from henequen fibers: performance, mechanism, and LCA analysis. Sci Rep 2024; 14:20769. [PMID: 39237582 PMCID: PMC11377532 DOI: 10.1038/s41598-024-69769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
The present study aims to investigate the low-energy consumption and high-efficiency removal of arsenic from aqueous solutions. The designed adsorbent Fe/TBC was synthesized by impregnating iron on torrefaction henequen fibers. Isothermal adsorption experiments indicated maximum adsorption capacities of 7.30 mg/g and 8.98 mg/g for arsenic(V) at 25.0 °C and 40.0 °C, respectively. The interference testing showed that elevated levels of pH, HCO3- concentration, and humic acid content in the solution could inhibit the adsorption of arsenic by Fe/TBC. Characterization of the adsorbent before and after adsorption using FTIR and SEM-EDS techniques confirmed arsenic adsorption mechanisms, including pore filling, electrostatic interaction, surface complexation, and H-bond adhesion. Column experiments were conducted to treat arsenic-spiked water and natural groundwater, with effective treatment volumes of 550 mL and 8792 mL, respectively. Lastly, the life cycle assessment (LCA) using OpenLCA 2.0.3 software was performed to treat 1 m3 of natural groundwater as the functional unit. The results indicated relatively significant environmental impacts during the Fe/TBC synthesis stage. The global warming potential resulting from the entire life cycle process was determined to be 0.8 kg CO2-eq. The results from batch and column experiments, regeneration studies, and LCA analysis indicate that Fe/TBC could be a promising adsorbent for arsenic(V).
Collapse
Affiliation(s)
- Xu Liao
- Doctoral Program of Water Science and Technology, Engineering Division, University of Guanajuato, 36000, Guanajuato, Guanajuato, Mexico
| | - Raúl Miranda Avilés
- Department of Mining, Metallurgy and Geology Engineering, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico.
- Laboratory for Research and Characterization of Minerals and Materials, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico.
| | | | | | | | | | - Carmen Julia Navarro
- Faculty of Engineering, University Autonomous of Chihuahua, 31000, Chihuahua, Chihuahua, Mexico
| | - Xiaoxiao Zha
- Doctoral Program of Water Science and Technology, Engineering Division, University of Guanajuato, 36000, Guanajuato, Guanajuato, Mexico
| | - Daniela Moncada
- Laboratory for Research and Characterization of Minerals and Materials, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico
| | - María de Jesús Puy Alquiza
- Department of Mining, Metallurgy and Geology Engineering, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico
| | - Pooja Vinod Kshirsagar
- Department of Mining, Metallurgy and Geology Engineering, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico
| | - Yanmei Li
- Department of Mining, Metallurgy and Geology Engineering, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
6
|
Wang J, Zhu W, Liu H, Wang W, Yang T. α-FeOOH-Modified Sn/N-Codoped TiO 2 Bifunctional Composites for As(III) Removal through Photocatalytic Oxidation and Simultaneous Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15252-15262. [PMID: 39001853 DOI: 10.1021/acs.langmuir.4c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Photocatalytic oxidation technology is one of the most efficient and green methods to convert highly toxic As(III) into lowly toxic As(V) for arsenic-polluted wastewater. However, the obtained As(V) may be reduced to As(III) again in the environment, causing secondary pollution. In order to resolve these issues, a bifunctional composite consisting of needle-like α-FeOOH-modified Sn/N-codoped TiO2 granules (SNT-FeOOH) has been synthesized. After modifying, the band gap of SNT-FeOOH narrowed from 2.94 eV (SNT) to 2.29 eV. When the composites were applied to As(III) removal, 10 mg of SNT-FeOOH could totally photocatalytically oxidize 40 mL of As(III) solution with a concentration of 10,000 μg/L within 15 min and synchronously achieve complete adsorption of the produced As(V), which is much more efficient than pure Sn/N-codoped TiO2 [21 min for As(III) photocatalytic oxidation and only 20.01% of total arsenic removal efficiency]. Based on the characterizations, α-FeOOH modification plays a significant role in the promoted performances of photocatalytic oxidation and adsorption of SNT-FeOOH, leading to arsenic removal. On one hand, the Fe-O-Ti interfacial chemical interactions formed between α-FeOOH and Sn/N-codoped TiO2 can further boost the separation rate of photogenerated carriers, hence increasing the photocatalytic oxidation efficiency. On the other hand, α-FeOOH surface hydroxyl groups adsorb the generated As(V) by forming Fe-O-As bonds. The SNT-FeOOH bifunctional composites, prepared in this paper, with dual performances of photocatalytic oxidation and adsorption provide a new strategy to achieve arsenic removal from wastewater.
Collapse
Affiliation(s)
- Juntao Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, P. R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Wenke Zhu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hanyu Liu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenlei Wang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ting Yang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
7
|
Carneiro MA, Pintor AMA, Boaventura RAR, Botelho CMS. Arsenic and antimony desorption in water treatment processes: Scaling up challenges with emerging adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172602. [PMID: 38653411 DOI: 10.1016/j.scitotenv.2024.172602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The metalloids arsenic (As) and antimony (Sb) belong to the pnictogen group of the periodic table; they share many characteristics, including their toxic and carcinogenic properties; and rank as high-priority pollutants in the United States and the European Union. Adsorption is one of the most effective techniques for removing both elements and desorption, for further reuse, is a part of the process to make adsorption more sustainable and feasible. This review presents the current state of knowledge on arsenic and antimony desorption from exhausted adsorbents previously used in water treatment, that has been reported in the literature. The application of different types of eluents to desorb As and Sb and their desorption performance are described. The regeneration of saturated adsorbents and adsorbate recovery techniques are outlined, including the fate of spent media and possible alternatives for waste disposal of exhausted materials. Future research directions are discussed, as well as current issues including the lack of environmental impact analysis of emerging adsorbents.
Collapse
Affiliation(s)
- Mariko A Carneiro
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Ariana M A Pintor
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cidália M S Botelho
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
8
|
Futalan CCM, Quiton KGN, Choi AES. Arsenate removal using chitosan-coated bentonite via fixed-bed system: a process integration by fuzzy optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31042-31053. [PMID: 38622419 DOI: 10.1007/s11356-024-33301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Groundwater contamination is a global concern that has detrimental effect on public health and the environment. Sustainable groundwater treatment technologies such as adsorption require attaining a high removal efficiency at a minimal cost. This study investigated the adsorption of arsenate from groundwater utilizing chitosan-coated bentonite (CCB) under a fixed-bed column setup. Fuzzy multi-objective optimization was applied to identify the most favorable conditions for process variables, including volumetric flow rate, initial arsenate concentration, and CCB dosage. Empirical models were employed to examine how initial concentration, flow rate, and adsorbent dosage affect adsorption capacity at breakthrough, energy consumption, and total operational cost during optimization. The ε-constraint process was used in identifying the Pareto frontier, effectively illustrating the trade-off between adsorption capacity at breakthrough and the cost of the fixed-bed system. The integration of fuzzy optimization for adsorption capacity and its total operating cost utilized the global solver function in LINGO 20 software. A crucial equation derived from the Box-Behnken design and a cost equation based on energy and material usage in the fixed-bed system was employed. The results from identifying the Pareto front determined boundary limits for adsorption capacity at breakthrough (ranging from 12.96 ± 0.19 to 12.34 ± 0.42 μg/g) and total operating cost (ranging from 955.83 to 1106.32 USD/kg). An overall satisfaction level of 35.46% was achieved in the fuzzy optimization process. This results in a compromise solution of 12.90 μg/g for adsorption capacity at breakthrough and 1052.96 USD/kg for total operating cost. Henceforth, this can allow a suitable strategic decision-making approach for key stakeholders in future applications of the adsorption fixed-bed system.
Collapse
Affiliation(s)
| | - Khyle Glainmer Nagtalon Quiton
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, 1002, Intramuros, Manila, Philippines
| | - Angelo Earvin Sy Choi
- Department of Chemical Engineering, De La Salle University, 2401 Taft Avenue, 0922, Malate, Manila, Philippines.
| |
Collapse
|
9
|
Chen D, Song Y, Li H, Ma M, Nan F, Huang P, Zhan W. Remarkable adsorption of As(V) by Fe 3+ and Mg 2+ modified alginate porous beads (Fe/Mg-SA) via a facile method. Int J Biol Macromol 2024; 254:127994. [PMID: 37952800 DOI: 10.1016/j.ijbiomac.2023.127994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Although sodium alginate (SA) is frequently utilized because of its good gelling properties, the substance's dearth of adsorption active sites prevents it from effectively removing heavy metals. Herein, SA was used as the base material to form a cross-linked structure with Fe3+ and Mg2+, and gel beads with a diameter of 2.0 ± 0.1 mm with specific adsorption on As(V) were synthesized as adsorbent (Fe/Mg-SA). Fe/Mg-SA was systematically characterized, and its adsorption properties were investigated by varying several conditions. Fe/Mg-SA had a wide pH application range. The adsorption kinetics revealed that a quasi-secondary kinetic model was followed. The adsorption process is linked to the complexation of hydroxyl and AsO43-, chemisorption predominated the adsorption process. The maximal adsorption capacity of Fe/Mg-SA is determined by fitting the Langmuir model to be 37.4 mg/g. Compared to other adsorbents, it is simpler to synthesis, more effective and cheaper. Each treatment of 1 m3 wastewater of Fe/Mg-SA only costs ¥ 38.612. The novel gel beads synthesized provides a better option for purifying groundwater contaminated with As(V).
Collapse
Affiliation(s)
- Donghui Chen
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Yanqing Song
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Hong Li
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Mengyu Ma
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Fangming Nan
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Ping Huang
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Wei Zhan
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Khoddam MA, Norouzbeigi R, Velayi E, Cavallaro G. Facile synthesis of ZnO/Hal nanocomposite for arsenite (As(III)) removal from aqueous media. Sci Rep 2023; 13:21280. [PMID: 38042903 PMCID: PMC10693565 DOI: 10.1038/s41598-023-48531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Arsenite (As(III)) is the most toxic form of arsenic that is a serious concern for water contamination worldwide. Herein a ZnO/Halloysite (Hal) nanocomposite was prepared by the chemical bath deposition method (CBD) through seed-mediated ZnO growth on the halloysite for eliminating As(III) from the aqueous solution. The growth of ZnO on seeded halloysite was investigated based on the HMTA: Zn2+ molar ratio in the solution. An optimum molar ratio of HMTA:Zn for nucleation and growth of ZnO upon halloysite was obtained 1:2 based on morphological analysis. The TGA results confirmed that thermal stability of HNT was enhanced by ZnO decoration. The prepared ZnO/Hal nanocomposite at optimal conditions was employed for arsenite (As(III)) removal from aqueous solutions. Experimental data were evaluated with different isothermal, thermodynamic, and kinetic models. Based on the zeta potential results, Hal nanocomposites had a greater negative value than pure Hal. Therefore, the ZnO/Hal nanocomposite exhibited efficient As(III) adsorption with a removal efficiency of 76% compared to pure Hal with a removal efficiency of 5%. Adsorption isotherm was well correlated by both non-linear Langmuir and Sips models, exhibiting maximum adsorption capacity of As(III) at 42.07 mg/g, and 42.5 mg/g, respectively. As a result of the study, it was found that the fabricated Hal nanocomposite with low toxicity can be used effectively in water treatment.
Collapse
Affiliation(s)
- Mohammad Ali Khoddam
- Nanomaterials and Surface Technology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, P.B. 16765-163, Tehran, Iran
| | - Reza Norouzbeigi
- Nanomaterials and Surface Technology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, P.B. 16765-163, Tehran, Iran.
| | - Elmira Velayi
- Department of Chemical Engineering, Faculty of Engineering, Azarbaijan Shahid Madani University, P.O.Box: 537517-1379, Tabriz, Iran
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128, Palermo, Italy
| |
Collapse
|
11
|
Mendizabal E, Ríos-Donato N, Jasso-Gastinel CF, Verduzco-Navarro IP. Removal of Arsenate by Fixed-Bed Columns Using Chitosan-Magnetite Hydrogel Beads and Chitosan Hydrogel Beads: Effect of the Operating Conditions on Column Efficiency. Gels 2023; 9:825. [PMID: 37888398 PMCID: PMC10606665 DOI: 10.3390/gels9100825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
Fixed-bed columns packed with chitosan-magnetite (ChM) hydrogel and chitosan (Ch) hydrogel were used for the removal of arsenate ions from aqueous solutions at a pH of 7.0. The effect of flow rate (13, 20, and 25 mL/h), height of the columns (13 and 33 cm), and initial arsenate concentration (2, 5 and 10 mg/L) on the column's efficiency for the removal of As(V) is reported. The maximum adsorption capacity (qb), obtained before the allowed concentration of contaminant is exceeded, the adsorption capacity (qe) when the column is exhausted, and the mass transfer zone were determined. With this information, the efficiency of the column was calculated, which is given by the HL/HLUB ratio. The higher this ratio, the higher the efficiency of the column. The highest efficiency and the highest uptake capacity value at breakthrough point were obtained when using the lower flow rate, lower initial arsenate concentration, and longer bed length. When 33 cm-high columns were fed with a 10 mg As(V)/L solution at 13 mL/h, the maximum uptake capacity values at exhaustion obtained for Ch and ChM were 1.24 and 3.84 mg/g, respectively. A pH increase of the solution at the column's exit was observed and is attributed to the proton transfer from the aqueous solution to the amino and hydroxyl groups of chitosan. The incorporation of magnetite into Ch hydrogels significantly increases their capacity to remove As(V) due to the formation of complexes between arsenic and the magnetite surface. Experimental data were fitted to the Thomas model, the Yoon-Nelson model and the Bohart-Adams model using non-linear regression analysis.
Collapse
Affiliation(s)
- Eduardo Mendizabal
- Chemistry Department, CUCEI, University of Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico; (E.M.); (N.R.-D.)
| | - Nely Ríos-Donato
- Chemistry Department, CUCEI, University of Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico; (E.M.); (N.R.-D.)
| | - Carlos Federico Jasso-Gastinel
- Chemical Engineering Department, CUCEI, University of Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico;
| | - Ilse Paulina Verduzco-Navarro
- Chemistry Department, CUCEI, University of Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico; (E.M.); (N.R.-D.)
| |
Collapse
|
12
|
Chen D, Li R, Nan F, Li H, Huang P, Zhan W. Co-adsorption mechanisms of As(V) and Cd(II) by three-dimensional flower-like Mg/Al/Fe-CLDH synthesized by "memory effect". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103044-103061. [PMID: 37676456 DOI: 10.1007/s11356-023-29673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Due to the different physical and chemical properties such as surface charge and ion morphology between As(V) and Cd(II), it is challenging to remove As(V) and Cd(II), especially at low concentrations. This study constructed a novel three-dimension nanocomposite adsorbent Mg/Al/Fe-CLDH (CFMA) by "hydrothermal + calcination method". And different initial concentration ratios (Cd: As=1: 2, 1: 1, 2: 1) were used to investigate the removal performance of CFMA for Cd(II) and As(V). When the concentration ratio Cd: As=1: 2, the residual concentrations of As(V) and Cd(II) were 8.7 μg/L and 4.2 μg/L, respectively, which met the drinking water standard; In the co-adsorption system, As(V) and Cd(II) influence each other's adsorption behavior due to the anionic bridge and shielding effect of As(V) on Cd(II), As(V) gradually changed from monolayer adsorption to multi-layer adsorption dominant, while Cd(II) gradually changed from multi-layer adsorption to monolayer adsorption dominant. In this paper, the structure-activity relationship between material structure and synchronous removal of arsenic and cadmium was clarified, and the mechanism of synchronous removal was revealed, which provided technical guidance for synchronous removal of As(V) and Cd(II) from non-ferrous metal smelting wastewater.
Collapse
Affiliation(s)
- Donghui Chen
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Ruiyue Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Fangming Nan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Hong Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Ping Huang
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Wei Zhan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China.
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China.
| |
Collapse
|
13
|
Das S, Lizon F, Gevaert F, Bialais C, Duong G, Ouddane B, Souissi S. Assessing indicators of arsenic toxicity using variable fluorescence in a commercially valuable microalgae: Physiological and toxicological aspects. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131215. [PMID: 37001210 DOI: 10.1016/j.jhazmat.2023.131215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Indicators signaling Arsenic (As) stress through physiology of microalgae using non-destructive methods like variable fluorescence are rare but requisite. This study reports stress markers indicating arsenic (As) toxicity (in two concentrations 11.25 µg/L and 22.5 µg/L compared to a control) exposed to a microalga (Diacronema lutheri), using fast repetition rate fluorometry (FRRf). Growth and physiological parameters such as cell density, chl a and the maximum quantum yield Fv/Fm showed coherence and impeded after the exponential phase (day 9 - day 12) in As treatments compared to the control (p < 0.05). On contrary photo-physiological constants were elevated showing higher optical (aLHII) and functional [Sigma (σPSII)] absorption cross-section for the As treatments (p < 0.05) further implying the lack of biomass production yet an increase in light absorption. In addition, As exposure increased the energy dissipation by heat (NPQ-NSV) showing a strong relationship with the de-epoxidation ratio (DR) involving photoprotective pigments. Total As bioaccumulation by D. lutheri showed a strong affinity with Fe adsorption throughout the algal growth curve. This study suggests some prompt photo-physiological proxies signaling As contamination and endorsing its usefulness in risk assessments, given the high toxicity and ubiquitous presence of As in the ecosystem.
Collapse
Affiliation(s)
- Shagnika Das
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Amity Institute of Marine Science and Technology, Amity Institute of Biotechnology, Amity University, Noida, UP, India.
| | - Fabrice Lizon
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - François Gevaert
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Capucine Bialais
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Gwendoline Duong
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Baghdad Ouddane
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Equipe Physico-chimie de l'Environnement, Bâtiment C8, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| |
Collapse
|
14
|
Mahamallik P, Swain R. A mini-review on arsenic remediation techniques from water and future trends. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:3108-3123. [PMID: 37387434 PMCID: wst_2023_190 DOI: 10.2166/wst.2023.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Arsenic contamination is a severe issue because of its toxicity and related health risks. This review article presents an overview of the sources, health hazards, and treatment options for arsenic pollution. Conventional approaches to achieving the permitted level of 10 ppb set by the WHO, such as chemical oxidation, biological oxidation, and coagulation-flocculation, are ineffective and time-consuming. The paper analyses the advantages and disadvantages of various advanced treatment technologies, including membrane filtration, ion exchange, advanced oxidation, phytoremediation, and adsorption. This paper summarized the effectiveness of hybrid arsenic remediation techniques in removing arsenic and its operating conditions. This study is a helpful tool for putting remediation strategies into practice. This article describes arsenic pollution's damaging effects on human health, underscoring the necessity for careful treatment. The article addresses numerous treatment technologies, each with advantages and disadvantages preventing widespread use. Due to these limitations, deciding the best technique for arsenic remediation is difficult. As a result, hybrid treatment systems are urgently needed, with photocatalysis-adsorption being the most popular approach. The relevance of adaptable, user-friendly, low-maintenance hybrid technologies that are versatile, easy to use, and provide affordable arsenic removal options, especially for poor populations, is highlighted by prospects.
Collapse
Affiliation(s)
- Prateeksha Mahamallik
- Department of Civil Engineering, National Institute of Technology, Rourkela 769008, India E-mail:
| | - Ratnakar Swain
- Department of Civil Engineering, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
15
|
Yu W, Cao Y, Yan S, Guo H. New insights into arsenate removal during siderite oxidation by dissolved oxygen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163556. [PMID: 37080317 DOI: 10.1016/j.scitotenv.2023.163556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Nowadays, arsenic (As) pollution in aquatic environments severely threatens the health of human beings. Although it has been known that siderite is capable of As adsorption and dissolved oxygen (DO) enhances the adsorption, effects of DO concentrations on As(V) adsorption onto siderite remain elusive. In this study, As(V) removal was investigated by synthesized siderite from aqueous solutions with different DO concentrations. Arsenic(V) adsorption kinetics were conformed to the pseudo-second-order model. As(V) adsorption onto siderite was enhanced in the presence of dissolved oxygen, but the excess DO concentration did not increase As(V) adsorption since Fe(III) oxides were coated onto the pristine siderite surface, preventing the mineral from further oxidation. With the increase in DO concentration, the rate of Fe(II) oxidation decreased, which was the kinetic-limited step during As(V) removal by siderite with the presence of DO. The theoretically generated Fe(III) was stoichiometrically proportional to the consumed oxygen. Microscopic characteristics by means of XRD, SEM, TEM, FTIR and XPS indicated that the adsorption was dominated by the chemical process via the As(V) complexation with siderite and co-precipitation with produced Fe(III) oxides. This study reveals the mechanisms of As(V) adsorption during siderite oxidation under different DO concentrations and emphasizes the importance of siderite oxidation in As(V) fate in aqueous systems.
Collapse
Affiliation(s)
- Wenting Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yuanyuan Cao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Song Yan
- Beijing Water Business Doctor Co., LTD., Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
16
|
Yao B, Li Y, Zeng W, Yang G, Zeng J, Nie J, Zhou Y. Synergistic adsorption and oxidation of trivalent antimony from groundwater using biochar supported magnesium ferrite: Performances and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121318. [PMID: 36805471 DOI: 10.1016/j.envpol.2023.121318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/03/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Antimony (Sb) pollution is considered an environmental problem, since Sb is toxic and carcinogenic to humans. Here, a novel biochar supported magnesium ferrite (BC@MF) was adopted for Sb(III) removal from groundwater. The maximum adsorption capacity was 77.44 mg g-1. Together with characterization, batch experiments, kinetics, isotherms, and thermodynamic analyses suggested that inner-sphere complexation, H-bonding, and electrostatic interactions were the primary mechanisms. C-C/CC, C-O, and O-CO groups and Fe/Mg oxides might have acted as adsorption sites. The adsorbed Sb(III) was oxidized to Sb(V). The generation of reactive oxygen species, iron redox reaction, and oxidizing functional groups all contributed to Sb(III) oxidation. Furthermore, the fixed-bed column system demonstrated a satisfactory Sb removal performance; BC@MF could treat ∼6060 BV of simulated Sb-polluted groundwater. This research provides a promising approach to sufficiently remove Sb(III) from contaminated groundwater, providing new insights for the development of innovative strategies for heavy metal removal.
Collapse
Affiliation(s)
- Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yixiang Li
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Wenqing Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiahao Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Nie
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of the Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
17
|
Li MX, Li W, Xiong YS, Lu HQ, Li H, Li K. Preparation of quaternary ammonium-functionalized metal-organic framework/chitosan composite aerogel with outstanding scavenging of melanoidin. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
18
|
Xu L, Shu Z, Song J, Li T, Zhou J. Waste bamboo framework decorated with α-FeOOH nanoneedles for effective arsenic (V/III) removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160951. [PMID: 36528951 DOI: 10.1016/j.scitotenv.2022.160951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Arsenic pollution of water is one of the severest environmental challenges for human health, and adsorption is the most often used technique in investigations of selective As removal. However, the development of low-cost and easily recoverable adsorbent for aqueous arsenic adsorption remains a challenge. In this work, the α-FeOOH-decorated monolith bamboo composites (α-FeOOH/MB) were fabricated via directly decorating α-FeOOH nanoneedles on the waste bamboo framework without pre‑carbonization. As expected, the as-prepared α-FeOOH/MB exhibits considerably increased adsorption capacity for aqueous arsenic over pure α-FeOOH nanoneedles, with increases of 1.88 and 1.52 times for As(V) and As(III), respectively. Meanwhile, the α-FeOOH/MB composites exhibit positive reusability (recovering 89.73 % and 80.17 % adsorption capacity for As(V) and As(III) after 5 cycles) and are easy to separate after water treatment. Furthermore, the α-FeOOH/MB composites exhibit high arsenic adsorption selectivity even in the presence of competing anions. Overall, the as-obtained α-FeOOH/MB composites, reuse of waste bamboo, are a kind of favorable candidate for arsenic decontamination in practical application owing to the high adsorption capacity, low-cost and facile separation features.
Collapse
Affiliation(s)
- Lina Xu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| | - Zhu Shu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China; Hubei Three Gorges Laboratory, 1 Mazongling Road, Yichang 443007, China
| | - Jingyang Song
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| | - Tiantian Li
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Jun Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China; Hubei Three Gorges Laboratory, 1 Mazongling Road, Yichang 443007, China.
| |
Collapse
|
19
|
Si D, Wu H, Yang M, Fan T, Wang D, Chen L, Zhu C, Fang G, Wu S, Zhou D. Linking pyrogenic carbon redox property to arsenite oxidation: Impact of N-doping and pyrolysis temperature. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130477. [PMID: 36493646 DOI: 10.1016/j.jhazmat.2022.130477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Pyrogenic carbon-mediated arsenite (As(III)) oxidation shows great potential as a prerequisite for the efficient removal of arsenic in groundwater. Herein, the critical role of N-containing functional groups in low and high-temperature prepared pyrogenic carbons for mediating As(III) oxidation was systemically explored from an electrochemistry perspective. The pyrogenic carbon electron donating capacity and area-normalized specific capacitance were the key parameters explained the As(III) oxidation kinetics mediated by low electrical conductive 500 °C biomass-derived pyrogenic carbons (N contents of 0.36-7.72 wt%, R2 = 0.87, p < 0.001) and high electrical conductive 800 °C pyrogenic carbons (N contents of 1.00-8.00 wt%, R2 = 0.99, p < 0.001), respectively. The production of H2O2 from the reaction between electron donating phenol groups or semiquinone radicals and oxygen, and the direct electron transfer between semiquinone radicals and As(III) contributed to these pyrogenic carbons mediated As(III) oxidation. While the electron accepting quinone, pyridinic-N, and pyrrolic-N groups did not significantly contribute to the 500 °C pyrogenic carbons mediated As(III) oxidation, the direct electron conduction by these functional groups was responsible for the facilitated As(III) oxidation by the 800 °C pyrogenic carbons. Furthermore, the pyridinic-N and pyrrolic-N groups showed higher electron conduction efficiency than that of the quinone groups. The findings help to develop robust pyrogenic carbons for As(III) contaminated groundwater treatment.
Collapse
Affiliation(s)
- Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min Yang
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Tingting Fan
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Lin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
20
|
Liu Y, Chen Z, Yin X, Chen Y, Liu Y, Yang W. Selective and efficient removal of As(V) and As(III) from water by resin-based hydrated iron oxide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Poly(styrene-co-4-hydroxystyrene) nanofiber membrane for highly selective and efficient Rb+ capture from high salinity solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Capelo-Martínez JL, Lodeiro C, Lo IMC, Burger J. Post-Global Pandemic Challenges and improvements in advanced detection and removal processes of toxic pollutants: Editorial. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129768. [PMID: 36027754 PMCID: PMC9385602 DOI: 10.1016/j.jhazmat.2022.129768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Every two years, the Pollutant Toxic Ions and Molecules Conference, PTIM, meets the environmentalist, biologist, chemists and health researchers in Costa de Caparica, Portugal, to showcase the latest technologies, methodologies and research advances in pollution detection, contamination control, remediation, and related health issues, as well as policy implications.
Collapse
Affiliation(s)
- Jose Luis Capelo-Martínez
- PROTEOMASS Scientific Society, Rua dos Inventores, Caparica, Portugal; BIOSCOPE Group, Chemistry Department, NOVA School for Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Carlos Lodeiro
- PROTEOMASS Scientific Society, Rua dos Inventores, Caparica, Portugal; BIOSCOPE Group, Chemistry Department, NOVA School for Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal.
| | | | - Joanna Burger
- Rutgers University-New Brunswick, New Brunswick, United States
| |
Collapse
|
23
|
Merodio-Morales E, Mendoza-Castillo D, Bonilla-Petriciolet A, Reynel-Avila H, Milella A, di Bitonto L, Pastore C. A novel CO2 activation at room temperature to prepare an engineered lanthanum-based adsorbent for a sustainable arsenic removal from water. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Verduzco-Navarro IP, Mendizábal E, Rivera Mayorga JA, Rentería-Urquiza M, Gonzalez-Alvarez A, Rios-Donato N. Arsenate Removal from Aqueous Media Using Chitosan-Magnetite Hydrogel by Batch and Fixed-Bed Columns. Gels 2022; 8:gels8030186. [PMID: 35323299 PMCID: PMC8954141 DOI: 10.3390/gels8030186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
The removal of arsenate ions from aqueous solutions at near-neutral pH was carried out using chitosan-magnetite (ChM) hydrogel beads in batch systems. Equilibrium isotherms and kinetic studies are reported. Obtained equilibrium and kinetic data were fitted to mathematical models, estimating model parameters by non-linear regression analysis. Langmuir model was found to best fit equilibrium data; a maximum adsorption capacity of 66.9 mg As/g was estimated at pH 7.0. Pseudo-first order kinetic model was observed to best fit kinetic data. The pH of the solution was observed to increase with increasing contact time, which is attributed to protonation of amine groups present in the hydrogel. Protonation of functional groups in the ChM sorbent yields a higher number of active sites for arsenate removal, being as this a process that can’t be overlooked in future applications of ChM hydrogel for the removal or arsenate ions. Chitosan-magnetite and ChM-arsenate interactions were determined by XPS. Arsenate removal using fixed-bed column packed with ChM was carried out, reporting a non-ideal behavior attributed to pH increase of the effluent caused by proton transfer to ChM hydrogels.
Collapse
Affiliation(s)
- Ilse Paulina Verduzco-Navarro
- Chemistry Department, CUCEI, University of Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico; (I.P.V.-N.); (E.M.); (J.A.R.M.); (M.R.-U.)
| | - Eduardo Mendizábal
- Chemistry Department, CUCEI, University of Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico; (I.P.V.-N.); (E.M.); (J.A.R.M.); (M.R.-U.)
| | - José Antonio Rivera Mayorga
- Chemistry Department, CUCEI, University of Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico; (I.P.V.-N.); (E.M.); (J.A.R.M.); (M.R.-U.)
| | - Maite Rentería-Urquiza
- Chemistry Department, CUCEI, University of Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico; (I.P.V.-N.); (E.M.); (J.A.R.M.); (M.R.-U.)
| | - Alejandro Gonzalez-Alvarez
- Chemical Engineering Department, CUCEI, University of Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico;
| | - Nely Rios-Donato
- Chemistry Department, CUCEI, University of Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico; (I.P.V.-N.); (E.M.); (J.A.R.M.); (M.R.-U.)
- Correspondence: ; Tel.: +52-333-149-7277
| |
Collapse
|