1
|
Ojo A, Bello D, Heavner K, Lucas K, Bello A. Self-reported Symptoms Associated With the Use of Printer and Photocopier Machines: Results From the Nano-Control, International Foundation Survey. J Occup Environ Med 2024; 66:891-902. [PMID: 39095051 DOI: 10.1097/jom.0000000000003197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVES This study aimed to document adverse health effects among office, copy, and print shop workers using the Nano-Control, International Foundation Survey. METHODS Self-reported information on 16 health outcomes and three surrogate exposure variables were collected from 1998 individuals between 1999 and 2010. Logistic regression models, adjusted for age, gender, and smoking status, assessed the association between printer exposure and health symptoms. RESULTS Among the participants, 61.9% were office workers, 5.5% were technicians, and 23.3% held other professions. Technicians had a higher risk for cancer compared to office workers (odds ratio [OR], 2.5; P < 0.01). Visible toner dust exposure was associated with chronic fatigue (OR, 9.6; P < 0.01), bronchial hyperresponsiveness (OR, 5.1; P < 0.01), cardiovascular diseases (OR, 3.6; P < 0.01), asthma, allergies, and other diseases (OR range, 1.4-3.2; P < 0.01). CONCLUSIONS The increased chronic and acute health risks among these workers warrant further investigations of causal associations.
Collapse
Affiliation(s)
- Abimbola Ojo
- From the Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, Massachusetts (A.O., K.H., A.B.); Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, Massachusetts (D.B.); and Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany (K.L.)
| | | | | | | | | |
Collapse
|
2
|
Ochoa-Leite C, Rodrigues S, Ramos AS, Ribeiro F, Barbosa J, Jerónimo C, de Pinho PG, Dinis-Oliveira RJ, Costa JT. Metabolomics and proteomics in occupational medicine: a comprehensive systematic review. J Occup Med Toxicol 2024; 19:38. [PMID: 39407251 PMCID: PMC11479568 DOI: 10.1186/s12995-024-00436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/14/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Occupational biomonitoring is essential for assessing health risks linked to workplace exposures. The use of 'omics' technologies, such as metabolomics and proteomics, has become crucial in detecting subtle biological alterations induced by occupational hazards, thereby opening novel avenues for biomarker discovery. AIMS This systematic review aims to evaluate the application of metabolomics and proteomics in occupational health. METHODS Following the PRISMA guidelines, we conducted a comprehensive search on PubMed, Scopus, and Web of Science for original human studies that use metabolomics or proteomics to assess occupational exposure biomarkers. The risk of bias was assessed by adapting the Cochrane Collaboration tool and the Newcastle-Ottawa Quality Assessment Scale. RESULTS Of 2311 initially identified articles, 85 met the eligibility criteria. These studies were mainly conducted in China, Europe, and the United States of America, covering a wide range of occupational exposures. The findings revealed that metabolomics and proteomics approaches effectively identified biomarkers related to chemical, physical, biomechanical, and psychosocial hazards. Analytical methods varied, with mass spectrometry-based techniques emerging as the most prevalent. The risk of bias was generally low to moderate, with specific concerns about exposure measurement and confounding factors. CONCLUSIONS Integrating metabolomics and proteomics in occupational health biomonitoring significantly advances our understanding of exposure effects and facilitates the development of personalized preventive interventions. However, challenges remain regarding the complexity of data analysis, biomarker specificity, and the translation of findings into preventive measures. Future research should focus on longitudinal studies and biomarker validation across diverse populations to improve the reliability and applicability of occupational health interventions.
Collapse
Affiliation(s)
- Carlos Ochoa-Leite
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, 4585-116, Portugal.
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, 4585-116, Portugal.
- Occupational Medicine Office and Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal.
| | - Sara Rodrigues
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto - Rua do Campo Alegre, Porto, 823, 4150-180, Portugal
| | - Ana Sofia Ramos
- Occupational Medicine Office, Portuguese Oncology Institute of Porto (IPO Porto), Porto, 4200-072, Portugal
- Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| | - Flávio Ribeiro
- Occupational Medicine Office, Portuguese Oncology Institute of Porto (IPO Porto), Porto, 4200-072, Portugal
| | - João Barbosa
- Occupational Medicine Office, Portuguese Oncology Institute of Porto (IPO Porto), Porto, 4200-072, Portugal
| | - Carmen Jerónimo
- Department of Pathology & Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Porto, 4050-313, Portugal
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, 4585-116, Portugal.
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, 4585-116, Portugal.
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal.
- FOREN - Forensic Science Experts, Dr. Mário Moutinho Avenue, no. 33-A, Lisbon, 1400-136, Portugal.
| | - José Torres Costa
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| |
Collapse
|
3
|
Wang X, Jia W. Bio-based material-edible rosemary induced biodegradation of aflatoxin B1 via altering endogenous protective enzymes signatures in animal-derived foods. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132021. [PMID: 37437484 DOI: 10.1016/j.jhazmat.2023.132021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Aflatoxin B1 (AFB1) is the most hazardous mycotoxin, posing risks to public health. Utilization of bio-based materials to biodegrade AFB1 is a green strategy to overcome this issue. The investigation aimed to screen for endogenous protective enzymes in bio-based material-edible rosemary based on ultra-high performance liquid chromatography coupled to hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS)-proteomics and ascertain their impacts on the biodegradation and biotransformation of AFB1, and the trade-offs of multilevel metabolism of the animal-derived foods through untargeted metabolomics. The proteomics results verified that bio-based material-edible rosemary (0.20%, w/w) significantly up-regulated glutathione S-transferase and stimulated the down-regulation of cytochrome P450 1A2 levels via activating AhR nuclear translocation in rosemary-pickled AFB1-contaminated goat meat. Metabolomics results demonstrated that edible rosemary substantially increased histidine and glutathione implicated in the antioxidant status of goat meat. More importantly, edible rosemary with high endogenous protective enzyme content could efficiently biodegrade AFB1 in goat meat. We first unveiled that rosemary could not only efficiently biodegrade AFB1 up to 90.20% (20.00-1.96 μg kg-1) but also elevate the bio-ingestion quality of goat meat. These findings suggest that the bio-based material-rosemary is an efficient and environmentally friendly approach for biodegrading AFB1 and elevating the bio-ingestion composition of goat meat.
Collapse
Affiliation(s)
- Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
4
|
Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. NANOSCALE ADVANCES 2023; 5:2674-2723. [PMID: 37205285 PMCID: PMC10186990 DOI: 10.1039/d2na00534d] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/27/2023] [Indexed: 05/21/2023]
Abstract
Nowadays, nanomaterials (NMs) are widely present in daily life due to their significant benefits, as demonstrated by their application in many fields such as biomedicine, engineering, food, cosmetics, sensing, and energy. However, the increasing production of NMs multiplies the chances of their release into the surrounding environment, making human exposure to NMs inevitable. Currently, nanotoxicology is a crucial field, which focuses on studying the toxicity of NMs. The toxicity or effects of nanoparticles (NPs) on the environment and humans can be preliminary assessed in vitro using cell models. However, the conventional cytotoxicity assays, such as the MTT assay, have some drawbacks including the possibility of interference with the studied NPs. Therefore, it is necessary to employ more advanced techniques that provide high throughput analysis and avoid interferences. In this case, metabolomics is one of the most powerful bioanalytical strategies to assess the toxicity of different materials. By measuring the metabolic change upon the introduction of a stimulus, this technique can reveal the molecular information of the toxicity induced by NPs. This provides the opportunity to design novel and efficient nanodrugs and minimizes the risks of NPs used in industry and other fields. Initially, this review summarizes the ways that NPs and cells interact and the NP parameters that play a role in this interaction, and then the assessment of these interactions using conventional assays and the challenges encountered are discussed. Subsequently, in the main part, we introduce the recent studies employing metabolomics for the assessment of these interactions in vitro.
Collapse
Affiliation(s)
- Mohammad Awashra
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| |
Collapse
|
5
|
Yan L, Mao J, Shi W, Ren L, Li J, Geng B, Wang H, Zhang J, Tian Y, Zhang B, Gao F, Zhang X, Chen J, Zhu J. Subchronic toxicity study of ferric oxide nanoparticles through intragastric administration: A 94-d, repeated dose study in Sprague Dawley rats. Regul Toxicol Pharmacol 2023; 140:105381. [PMID: 36963718 DOI: 10.1016/j.yrtph.2023.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/08/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
In this study, the toxicity of ferric oxide nanoparticles (Fe2O3 NPs) administered through gavage to Sprague Dawley (SD) rats for 94 d, consecutively and the recovery after Fe2O3 NPs withdrawal for 30 d were evaluated. The vehicle control group, low-, medium-, and high-dose groups were administered with the vehicle (0.5% sodium carboxymethyl cellulose [CMC-Na]), 125, 250, and 500 mg/kg of Fe2O3 NPs, respectively, administered every morning for 94 d. There was no significant difference in the body weight, food intake, hematological, blood biochemical, and urine indices of SD rats in each administration group and the control group (P > 0.05). There was no significant difference in organ weight, organ indices, and the coefficient of the visceral brain between the SD rats in the different dosage groups and the SD rats in the vehicle control group (P > 0.05). Histopathological observations showed that there was no correlation between the pathological lesions of the organs observed in this study and the dose of Fe2O3 NPs (P > 0.05). The no-observed-adverse-effect level (NOAEL) dose of Fe2O3 NPs was initially determined to be 500 mg/kg administered to SD rats through oral gavage for 94 d, consecutively, followed by recovery after Fe2O3 NPs withdrawal for 30 d.
Collapse
Affiliation(s)
- Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jingjing Mao
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wenjing Shi
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Lijun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jinfeng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bijiang Geng
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Haoneng Wang
- Department of Marine Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jiqianzhu Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yijun Tian
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bin Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Fangyuan Gao
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiaofang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jikuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jiangbo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Lyashenko EN, Uzbekova LD, Polovinkina VV, Dorofeeva AK, Ibragimov SUSU, Tatamov AA, Avkaeva AG, Mikhailova AA, Tuaeva IS, Esiev RK, Mezentsev SD, Gubanova MA, Bondarenko NG, Maslova AY. Study of the Embryonic Toxicity of TiO 2 and ZrO 2 Nanoparticles. MICROMACHINES 2023; 14:363. [PMID: 36838065 PMCID: PMC9961787 DOI: 10.3390/mi14020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Currently, the widespread use of TiO2 and ZrO2 nanoparticles (NPs) in various industries poses a risk in terms of their potential toxicity. A number of experimental studies provide evidence of the toxic effect of TiO2 and ZrO2 NPs on biological objects. In order to supplement the level of knowledge and assess the risks of toxicity and danger of TiO2 and ZrO2 NPs, we decided to conduct a comprehensive experiment to study the embryonic toxicity of TiO2 and ZrO2 NPs in pregnant rats. For the experiment, mongrel white rats during pregnancy received aqueous dispersions of powders of TiO2 and ZrO2 NPs at a dose of 100 mg/kg/day. To characterize the effect of TiO2 and ZrO2 NPs on females and the postnatal ontogenesis of offspring, a complex of physiological and biochemical research methods was used. The results of the experiment showed that TiO2 NPs as ZrO2 NPs (100 mg/kg per os) cause few shifts of similar orientation in the maternal body. Neither TiO2 NPs nor ZrO2 NPs have an embryonic and teratogenic effect on the offspring in utero, but both modify its postnatal development.
Collapse
Affiliation(s)
- Elena Nikolaevna Lyashenko
- Department of Obstetrics and Gynecology, Faculty of Pediatrics, S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University, 295007 Simferopol, Russia
| | | | - Valeri Vladimirovna Polovinkina
- Department of Obstetrics and Gynecology, Faculty of Pediatrics, S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University, 295007 Simferopol, Russia
| | | | - Said-Umar Sithalil-ugli Ibragimov
- Department of Obstetrics and Gynecology, Faculty of Pediatrics, S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University, 295007 Simferopol, Russia
| | | | | | | | - Inga Shamilevna Tuaeva
- Department of Hygiene, Faculty of Medicine and Prevention, North Ossetian State Medical Academy, 362019 Vladikavkaz, Russia
| | | | | | | | - Natalya Grigorevna Bondarenko
- Department of Philosophy of History of Law, Pyatigorsk Branch of North Caucasus Federal University, 357502 Pyatigorsk, Russia
| | - Alina Yurievna Maslova
- Faculty of Medicine, Stavropol State Medical University, 355017 Stavropol, Russia
- SocMedica, 121205 Moscow, Russia
| |
Collapse
|
7
|
Bello D, Chanetsa L, Christophi CA, Singh D, Setyawati MI, Christiani DC, Chotirmall SH, Ng KW, Demokritou P. Biomarkers of oxidative stress in urine and plasma of operators at six Singapore printing centers and their association with several metrics of printer-emitted nanoparticle exposures. Nanotoxicology 2022; 16:913-934. [PMID: 36774544 DOI: 10.1080/17435390.2023.2175735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Inhalation of nanoparticles emitted from toner-based printing equipment (TPE), such as laser printers and photocopiers, also known as PEPs, has been associated with systemic inflammation, hypertension, cardiovascular disease, respiratory disorders, and genotoxicity. Global serum metabolomics analysis in 19 healthy TPE operators found 52 dysregulated biomolecules involved in upregulation of inflammation, immune, and antioxidant responses and downregulation of cellular energetics and cell proliferation. Here, we build on the metabolomics study by investigating the association of a panel of nine urinary OS biomarkers reflecting DNA/RNA damage (8OHdG, 8OHG, and 5OHMeU), protein/amino acid oxidation (o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine), and lipid oxidation (8-isoprostane, 4-hydroxy nonenal, and malondialdehyde [MDA]), as well as plasma total MDA and total protein carbonyl (TPC), with several nanoparticle exposure metrics in the same 19 healthy TPE operators. Plasma total MDA, urinary 5OHMeU, 3-chlorotyrosine, and 3-nitrotyrosine were positively, whereas o-tyrosine inversely and statistically significantly associated with PEPs exposure in multivariate models, after adjusting for age and urinary creatinine. Urinary 8OHdG, 8OHG, 5OHMeU, and total MDA in urine and plasma had group mean values higher than expected in healthy controls without PEPs exposure and comparable to those of workers experiencing low to moderate levels of oxidative stress (OS). The highest exposure group had OS biomarker values, most notably 8OHdG, 8OHG, and total MDA, that compared to workers exposed to welding fumes and titanium dioxide. Particle number concentration was the most sensitive and robust exposure metric. A combination of nanoparticle number concentration and OS potential of fresh aerosols is recommended for larger scale future studies.
Collapse
Affiliation(s)
- Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, USA.,Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lucia Chanetsa
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Costas A Christophi
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - David C Christiani
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.,Department of Medicine, Pulmonary and Critical Care Division, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Tschiche HR, Bierkandt FS, Creutzenberg O, Fessard V, Franz R, Greiner R, Gruber-Traub C, Haas KH, Haase A, Hartwig A, Hesse B, Hund-Rinke K, Iden P, Kromer C, Loeschner K, Mutz D, Rakow A, Rasmussen K, Rauscher H, Richter H, Schoon J, Schmid O, Som C, Spindler LM, Tovar GEM, Westerhoff P, Wohlleben W, Luch A, Laux P. Analytical and toxicological aspects of nanomaterials in different product groups: Challenges and opportunities. NANOIMPACT 2022; 28:100416. [PMID: 35995388 DOI: 10.1016/j.impact.2022.100416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/15/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected.
Collapse
Affiliation(s)
- Harald R Tschiche
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany.
| | - Frank S Bierkandt
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Valerie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of contaminants Unit, Fougères, France
| | - Roland Franz
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
| | - Carmen Gruber-Traub
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Karl-Heinz Haas
- Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Hartwig
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences (IAB), Food Chemistry and Toxicology, Germany
| | - Bernhard Hesse
- European Synchrotron Radiation Facility, Grenoble, France
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg, Germany
| | | | - Charlotte Kromer
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Diana Mutz
- German Federal Institute for Risk Assessment (BfR), Research Strategy and Coordination, Berlin, Germany
| | - Anastasia Rakow
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Hannes Richter
- Fraunhofer IKTS - Institute for Ceramic Technologies and Systems, Hermsdorf, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Som
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Lena M Spindler
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Günter E M Tovar
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP), Stuttgart, Germany
| | - Paul Westerhoff
- Arizona State University, Tempe, AZ, United States of America
| | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| |
Collapse
|