1
|
Tokatlı C, Ustaoğlu F, Muhammad S, Yüksel B. Spatiotemporal variations, source identification, and risk assessment of potentially toxic elements in the surface water of Felent Stream impacted by the silver mine. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:870. [PMID: 39215907 DOI: 10.1007/s10661-024-13013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The silver deposits located in the upper basin of the Felent Stream are currently the largest producing mine in the Türkiye. It is also significantly impacted by industrial, agricultural, and thermal spring-related waste in Kütahya Province. The main objectives of this study were to examine the spatiotemporal variations of 12 dissolved potentially toxic elements (PTEs) in the surface water of Felent Stream, to identify their possible sources, and to assess their probable risks. As a result of this study, among investigated PTEs, the highest mean concentrations of 3592-14,388 µg/L for Mg and the lowest of 0.15-0.19 µg/L for Cd were noted in Felent Stream water. The average concentrations of PTEs were found in the order of Mg > Ca > Na > As > Mn > B > Zn > Ni > Cu > Pb > Cr > Cd. Remarkably, during the dry season, there was a conspicuous escalation in the average PTEs contents of water, with an approximately multifold amplification. PTEs in stream water were evaluated for their potential ecotoxicological risks and possible sources. Based on ecological risk assessment indices, the stream exhibited low pollution levels during the wet season but displayed elevated pollution levels during the dry season, indicating a general shift towards heightened pollution conditions. The hazard index (HI) data for As exhibited significant potential noncarcinogenic risks across all monitoring stations. Conversely, the carcinogenic risk (CR) data underscored the imperative nature of addressing the health risks associated with As in the waters of the studied region. Mining activities were identified as the primary origin of PTEs based on principal component analysis (PCA). Moreover, upstream regions, proximal to the mining site, emerged as the most heavily contaminated areas according to cluster analysis (CA).
Collapse
Affiliation(s)
- Cem Tokatlı
- Department of Laboratory Technology, Ipsala Vocational School, Trakya University, Evrenos Gazi Campus, Edirne, Turkey
| | - Fikret Ustaoğlu
- Faculty of Arts and Sciences, Department of Biology, Giresun University, Giresun, Turkey
| | - Said Muhammad
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan.
| | - Bayram Yüksel
- Faculty of Arts and Sciences, Department of Biology, Giresun University, Giresun, Turkey
| |
Collapse
|
2
|
Deliboran A, Varol M, Aytop H. Evaluation of ecological and health risks of trace elements in soils of olive orchards and apportionment of their sources using the APCS-MLR receptor model. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:320. [PMID: 39012557 PMCID: PMC11252231 DOI: 10.1007/s10653-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
İzmir, Turkey's third most populous city, is in an important position in terms of both agriculture and industry. The province, which contributes 9.3% to the country's industrial production, also has an important potential in terms of olive cultivation. However, until now, no research has been undertaken to analyze the content of trace elements (TEs) in the soil of olive orchards in İzmir. This study was carried out to determine the pollution level and ecological risks of TEs in the olive orchards soils of İzmir province, to reveal their potential sources and to evaluate their health risks. Among the TEs, the average content of only Ni (37.9 mg/kg) exceeded the world soil average content (29 mg/kg), while the average content of only Cd (0.176 mg/kg) exceeded the upper continental crust content (0.09 mg/kg). Enrichment factor revealed that there was significant enrichment for Cd in 73.6%, Ni in 11.6% and Cr in 5.4% of olive orchards, respectively, due to polluted irrigation water and agrochemicals. Similarly, ecological risk factor indicated that there were moderate and considerable ecological risks for Cd in 48.8% and 23.3% of olive orchards, respectively. Absolute principal component scores-multiple linear regression (APCS-MLR) model showed that Ni and Cr in the study area are affected by agricultural sources, Al, Co, Cu, Fe, Mn, Pb and Zn originate from lithogenic sources, and Cd originates from mixed sources. Based on health risk evaluation methods, non-carcinogenic and carcinogenic effects would not be expected for residents. This study provides significant knowledge for evaluating soil TE pollution in olive orchards and serves a model for source apportionment and human health risk evaluation of TEs in other agricultural regions.
Collapse
Affiliation(s)
| | - Memet Varol
- Faculty of Agriculture, Malatya Turgut Özal University, Malatya, Turkey.
| | - Halil Aytop
- Kahramanmaraş East Mediterranean Transitional Zone Agricultural Research of Institute, Kahramanmaraş, Turkey
| |
Collapse
|
3
|
Boumaza B, Kechiched R, Chekushina TV, Benabdeslam N, Senouci K, Hamitouche AE, Merzeg FA, Rezgui W, Rebouh NY, Harizi K. Geochemical distribution and environmental assessment of potentially toxic elements in farmland soils, sediments, and tailings from phosphate industrial area (NE Algeria). JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133110. [PMID: 38086303 DOI: 10.1016/j.jhazmat.2023.133110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 02/08/2024]
Abstract
This study investigates the extent and spatial distribution of Potentially Toxic Elements (PTEs) in the Djebel Onk phosphate mine area in south-eastern Algeria, as well as the associated risks to human health. Various scales are considered and sampled, including tailing waste (n = 8), surrounding farmland soil (n = 21), and sediments (n = 5). The samples were mineralogically and chemically analyzed using XRD, FTIR, XRF, and ICP-MS techniques. Principal Component Analysis (PCA) was applied after transforming the raw data into centered-log ratios (clr) to identify the dominant factors controlling the distribution of PTEs. Furthermore, pollution assessment was conducted using several indices, including geo-accumulation, pollution load, contamination security indices, and enrichment and contamination factors. The results reveal that the analyzed samples are mostly P-enriched in the mine tailings, farmland soil, and sediments, with P2O5 concentrations ranging from 13.37 wt% to 26.17 wt%, 0.91-21.70 wt%, and 17.04-29.41 wt%, respectively. The spatial distribution of PTEs exhibits clearly a decrease in the contents of CaO, P2O5, Cr, Sr, Cd, and U with increasing distance from the mine discharge site, while other oxides, such as MgO, Al2O3, SiO2, K2O, and Fe2O3, and associated elements (Cu, Co, Pb, and Zn), show an increase. PCA confirms the influence of minerals such as, apatite, dolomite, and silicates on the distribution PTEs. It denoted that the highest contamination level of all PTEs in soils and sediments was observed in the southern part of the plant and mine tailings compared to the northern part. In terms of human health risks, the assessment reveals that the hazard index (HI) values for both non-carcinogenic and carcinogenic risks associated with PTEs in the study area are below 1, suggesting no significant risk. However, regardless of the sample type, the lifetime cancer risk (LCR) values vary from 1.69E-05-2.11E-03 and from 1.03E-04-2.27E-04 for Cr, Ni, As (children) and Cd (adults), respectively, exceeding the safe levels recommended by the United States Environmental Protection Agency. The study highlights that oral ingestion poses the greatest risk, followed by dermal contact and particle inhalation. Importantly, all these indices decrease with increasing distance from the sampling site to the waste discharge point and the factory, which indicates that the phosphate mining activity had caused some extent risks. These findings provide valuable insights for mitigating the adverse health impacts and guiding environmental management efforts.
Collapse
Affiliation(s)
- Bilal Boumaza
- Academy of Engineering (RUDN University), Miklukho-Maklaya St, Moscow 117198, Russian Federation.
| | - Rabah Kechiched
- Laboratoire des Réservoirs Souterrains: Pétroliers, Gaziers et Aquifères, Université Kasdi Merbah Ouargla, 30000, Algeria
| | - Tatiana Vladimirovna Chekushina
- Academy of Engineering (RUDN University), Miklukho-Maklaya St, Moscow 117198, Russian Federation; Research Institute for Comprehensive Exploitation of Mineral Resources-IPKON, Russian Academy of Sciences, Kryukovskii tupik 4, Moscow 111020, Russia
| | - Nouara Benabdeslam
- Laboratoire de Technologie des Matériaux et de Génie des Procédés (LTMGP), Université Abderrahmane Mira Béjaïa, 06000, Algeria
| | - Khouloud Senouci
- Laboratory of Valorization of Mining Resources and Environment (LAVAMINE), University of Badji Mokhtar Annaba, 23000, Algeria
| | - Adh'ya-Eddine Hamitouche
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, 42004 Tipaza, Algeria
| | - Farid Ait Merzeg
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, 42004 Tipaza, Algeria
| | - Walid Rezgui
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, 42004 Tipaza, Algeria
| | - Nazih Yacer Rebouh
- Department of Environmental Management, Institute of Environmental Engineering (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Khaled Harizi
- Laboratoire de mobilisation et de gestion des ressources en eau (LMGRE), Université Batna II, 05000 Algeria
| |
Collapse
|
4
|
Liu Y, Huang W, Wang Y, Wen Q, Zhou J, Wu S, Liu H, Chen G, Qiu R. Effects of naturally aged microplastics on the distribution and bioavailability of arsenic in soil aggregates and its accumulation in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169964. [PMID: 38211862 DOI: 10.1016/j.scitotenv.2024.169964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Naturally aged microplastics (NAMPs) and arsenic (As) have been reported to coexist in and threaten potentially to soil-plant ecosystem. The research explored the combined toxic effects of NAMPs and As to lettuce (Lactuca sativa L.) growth, and the distribution, accumulation and bioavailability of As in soil aggregates. The As contaminated soil with low, medium and high concentrations (L-As, M-As, H-As) were treated with or without NAMPs, and a total of six treatments. The results displayed that, in comparison to separate treatments of L-As and M-As, the presence of NAMPs increased the total biomass of lettuce grown at these two As concentrations by 68.9 % and 55.4 %, respectively. Simultaneous exposure of NAMPs and L-As or M-As led to a decrease in As content in shoot (0.45-2.17 mg kg-1) and root (5.68-14.66 mg kg-1) of lettuce, indicating an antagonistic effect between them. In contrast, co-exposure to H-As and NAMPs showed synergistic toxicity, and the leaf chlorophyll and nutritional quality of lettuce were also reduced. NAMPs altered the ratio of different soil aggregate fractions and the distribution of bioavailable As within them, which influenced the absorption of As by lettuce. In conclusion, these direct observations assist us in enhancing the comprehend of the As migration and enrichment characteristics in soil-plant system under the influence of NAMPs.
Collapse
Affiliation(s)
- Yanwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weigang Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujue Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qian Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Juanjuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shengze Wu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Hui Liu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Tziouvalekas M, Noulas C, Thalassinos G, Shaheen SM, Rinklebe J, Antoniadis V. Temperature-induced changes in DTPA-extractable trace elements: Predicting the potential impact of climate change on the availability of soil elements. CHEMOSPHERE 2024; 350:141064. [PMID: 38159738 DOI: 10.1016/j.chemosphere.2023.141064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The extraction of trace elements from soil with DTPA is a widely used protocol across laboratories. There is a possible "hidden" discrepancy regarding the results obtained from the extractions, i.e., ambient laboratory temperature and soil properties. In this study, the possible influence of these factors on the extractability of the available forms of Cu, Fe, Pb, Mn, Ni, and Zn, measured with DTPA were studied. Α series of extractions was carried out on a soil sample under normal laboratory temperatures, which fluctuated throughout the year, from 15 to 33.9 °C. In other 144 soil samples, the prevailing physico-chemical properties of soil were evaluated (pH, organic C, clay, CaCO3) that affected the percentage of DTPA extractability relative to the pseudo-total determined content. A strong positive correlation of all metals versus increased ambient temperature was found. Cu had an R2 of 0.897, Fe 0.970, Mn 0.957, Ni 0.938, Pb 0.876, and, Zn 0.922, all highly significant. Extracted Mn exhibited a 6.5-fold increase at the highest temperature of 33.9 οC compared to the lowest. Similar increasing trend was observed for Fe, and Ni, and smaller for Cu, Zn, and Pb. Inherent soil properties affected the percentage of extractability relative to the total content: extractability of Cu, Fe, Mn, and Ni was affected negatively by pH, and the extractability of the studied metals with CaCO3 content. Other soil properties (organic C and clay/sand content) also had an effect, not as pronounced as that of pH and CaCO3. This signifies the necessity of employing standard conditions for routine extractions such as DTPA so that data may be comparable. Also these identified discrepancies may have consequences in the extractability and availability of soil micronutrients and toxic elements regarding climate change. This study aspires to play the role of an initial step towards more robust investigations that would suggest ways of correcting temperature and soil characteristics discrepancies across laboratories.
Collapse
Affiliation(s)
- Miltiadis Tziouvalekas
- Hellenic Agricultural Organization "Demeter", Institute of Industrial and Forage Crops (IIFC), 1 Theophrastos str., 41335, Larissa, Greece.
| | - Christos Noulas
- Hellenic Agricultural Organization "Demeter", Institute of Industrial and Forage Crops (IIFC), 1 Theophrastos str., 41335, Larissa, Greece
| | - Georgios Thalassinos
- University of Thessaly, Department of Agricultural Crop Production, and Rural Environment, Fytokou Street, 384 46, N. Ionia, Volos, Greece
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Vasileios Antoniadis
- University of Thessaly, Department of Agricultural Crop Production, and Rural Environment, Fytokou Street, 384 46, N. Ionia, Volos, Greece
| |
Collapse
|
6
|
Konanç MU. Monitoring trace element concentrations with environmentally friendly biomonitors in Artvin, Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1001. [PMID: 37498404 DOI: 10.1007/s10661-023-11587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Air pollution is the change in air composition that disrupts human health and environmental balance. Although natural and anthropogenic processes include crustal movements, photosynthesis, and plant and animal emissions, other sources of contamination also include industrial operations, transportation activities, household resources, and the chemical and metal industries. Thus, biomonitoring can be employed as a quick, affordable, and efficient method for estimating air pollution. In this study, some inorganic pollutants were detected using olive trees (Olea europaea L.) at eleven different points, depending on the traffic density in Artvin, Turkey. Trace element concentrations (Cr, Ti, Fe, Ni, Co, Cu, Zn, Pb, Al, and Mn) were measured in soil once a year and seasonally in plant samples with ICP-OES. Furthermore, basic component analyses total carbon (TC), total nitrogen (TN), total hydrogen (TH), and total sulfur (TS) were done with an elemental analyzer, total chlorophyll contents with a portable chlorophyll meter, and morphological and particle-based plant analyses with SEM-EDS. The pollution levels of these metals were calculated using the enrichment factor (EF) and geoaccumulation index (Igeo) parameters. Furthermore, the accuracy and validity tests of the analyses for trace metals were tested by applying certified reference materials (CRM) (ERM-CD281) for the plant samples and CRM (LGC-6187) for soil samples. Results indicated that soil trace element pollution distributions were ranked according to the following descending order: Fe (37,873.33 mg/kg) > Al (13,300 mg/kg) > Mn (1101.33 mg/kg) > Ti (353.5 mg/kg) > Zn (252.86 mg/kg) > Cu (87.77 mg/kg) > Cr (30.52 mg/kg) > Pb (19.65 mg/kg) > Ni (17.07 mg/kg) > Co (7.65 mg/kg). Moreover, air pollution from anthropogenic sources substantially increased average trace metal concentrations and sulfur emissions in autumn and winter. The average highest values of Fe (321.08 mg/kg) > Al (304.05 mg/kg) > Mn (32.75 mg/kg) > Zn (31.01 mg/kg) > Cu (17.92 mg/kg) > Ti (11.07 mg/kg) Cr (2.57 mg/kg) > Ni (17.07 mg/kg) were found in leaf samples taken from the roadside in autumn and winter. According to the EF and Igeo values, the main polluting trace elements in the soil were Zn, Cu, and Pb, while in the plant, these were detected as Fe, Al, Ti, Cr, Ni, and Cu. Kruskal-Wallis and correlation analysis statistically supported this relationship among metals. Results show that olive leaves are an effective bioindicator for detecting urban air pollution.
Collapse
Affiliation(s)
- Mustafa Umut Konanç
- Science-Technology Research and Application Center, Artvin Coruh University, Artvin, 08000, Turkey.
- Artvin Vocational School, Chemistry and Chemical Technology Department, Artvin Çoruh University, Artvin, Turkey.
| |
Collapse
|
7
|
Bedoya-Perales NS, Escobedo-Pacheco E, Maus D, Neimaier A, Pumi G. Dataset of metals and metalloids in food crops and soils sampled across the mining region of Moquegua in Peru. Sci Data 2023; 10:483. [PMID: 37491548 PMCID: PMC10368736 DOI: 10.1038/s41597-023-02363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
In recent years, there has been an increase in interest in the accumulation of heavy metals and metal(loid)s (HMM) in areas where agriculture and mining exist side by side. As a contribution to this body of knowledge, we report the first dataset into HMM concentrations in food crops and agricultural soils in Moquegua, which is a typical mining region and contains one of Peru's largest copper deposits. Thanks to its geographic diversity, samples were taken in different agroecological regions at altitudes between 9 and 3,934 m. For food crops, 31 elements were measured using inductively coupled plasma mass spectrometry and atomic absorption spectrometry. For soils, 23 elements were measured using inductively coupled plasma optical emission spectrometry. Thus, the dataset includes a total of 13,828 observations from 341 sampling sites. We hope that this dataset will facilitate a wide range of agricultural and food safety studies, as well as serving as a reference for monitoring changes in pollution over time or comparing HMM levels with other farmlands influenced by mining activities.
Collapse
Affiliation(s)
| | | | - Diogo Maus
- Instituto Federal Farroupilha; Alameda Santiago do Chile, 195 - Nossa Sra. das Dores, 97050-685, Santa Maria, RS, Brazil
| | - Alisson Neimaier
- Programa de Pós-Graduação em Estatística - Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves avenue, 91509-900, Porto Alegre, RS, Brazil
| | - Guilherme Pumi
- Programa de Pós-Graduação em Estatística - Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves avenue, 91509-900, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Wang X, Liu E, Yan M, Zheng S, Fan Y, Sun Y, Li Z, Xu J. Contamination and source apportionment of metals in urban road dust (Jinan, China) integrating the enrichment factor, receptor models (FA-NNC and PMF), local Moran's index, Pb isotopes and source-oriented health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163211. [PMID: 37003334 DOI: 10.1016/j.scitotenv.2023.163211] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Contamination and source identifications of metals in urban road dust are critical for remediation and health protection. Receptor models are commonly used for metal source identification, whereas the results are usually subjective and not verified by other indicators. Here we present and discuss a comprehensive approach to study metal contamination and sources in urban road dust (Jinan) in spring and winter by integrating the enrichment factor (EF), receptor models (positive matrix factorization (PMF) and factor analysis with nonnegative constraints (FA-NNC)), local Moran's index, traffic factors and Pb isotopes. Cadmium, Cr, Cu, Pb, Sb, Sn and Zn were the main contaminants, with mean EFs of 2.0-7.1. The EFs were 1.0-1.6 times higher in winter than in spring but exhibited similar spatial trends. Chromium contamination hotspots occurred in the northern area, with other metal contamination hotspots in the central, southeastern and eastern areas. The FA-NNC results indicated Cr contamination primarily resulting from industrial sources and other metal contamination primarily originating from traffic emissions during the two seasons. Coal burning emissions also contributed to Cd, Pb and Zn contamination in winter. FA-NNC model-identified metal sources were verified via traffic factors, atmospheric monitoring and Pb isotopes. The PMF model failed to differentiate Cr contamination from other detrital metals and the above anthropogenic sources, largely due to the model grouping metals by emphasizing hotspots. Considering the FA-NNC results, industrial and traffic sources accounted for 28.5 % (23.3 %) and 44.7 % (28.4 %), respectively, of the metal concentrations in spring (winter), and coal burning emissions contributed 34.3 % in winter. Industrial emissions primarily contributed to the health risks of metals due to the high Cr loading factor, but traffic emissions dominated metal contamination. Through Monte Carlo simulations, Cr had 4.8 % and 0.4 % possibilities posing noncarcinogenic and 18.8 % and 8.2 % possibilities posing carcinogenic risks for children in spring and winter, respectively.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China.
| | - Mengxia Yan
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Shuwei Zheng
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Ying Fan
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Yingxue Sun
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Zijun Li
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China.
| |
Collapse
|
9
|
You Y, Wang L, Ju C, Wang X, Wang Y. How does phosphorus influence Cd tolerance strategy in arbuscular mycorrhizal - Phragmites australis symbiotic system? JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131318. [PMID: 37011447 DOI: 10.1016/j.jhazmat.2023.131318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
To clarify how phosphorus (P) influences arbuscular mycorrhizal fungi (AMF) interactions with host plants, we measured the effects of variation in environmental P levels and AMF colonization on photosynthesis, element absorption, ultrastructure, antioxidant capacity, and transcription mechanisms in Phragmites australis (P. australis) under cadmium (Cd) stress. AMF maintained photosynthetic stability, element balance, subcellular integrity and enhanced antioxidant capacity by upregulating antioxidant gene expression. Specifically, AMF overcame Cd-induced stomatal limitation, and mycorrhizal dependence peaked in the high Cd-moderate P treatment (156.08%). Antioxidants and compatible solutes responded to P-level changes: the primary driving forces of removing reactive oxygen species (ROS) and maintaining osmotic balance were superoxide dismutase, catalase, and sugars at limited P levels and total polyphenol, flavonoid, peroxidase, and proline at abundant P levels, we refer to this phenomenon as "functional link." AMF and phosphorus enhanced Cd tolerance in P. australis, but the regulation of AMF was P-dependent. Phosphorus prevented increases in total glutathione content and AMF-induced GSH/GSSG ratio (reduced to oxidized glutathione ratio) by inhibiting the expression of assimilatory sulfate reduction and glutathione reductase genes. The AMF-induced flavonoid synthesis pathway was regulated by P, and AMF activated Cd-tolerance mechanisms by inducing P-dependent signaling.
Collapse
Affiliation(s)
- Yongqiang You
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China.
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China.
| | - Chang Ju
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| | - Xin Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| | - Yujiao Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| |
Collapse
|
10
|
Zhang S, Li Y, Wang P, Zhang H, Ali EF, Li R, Shaheen SM, Zhang Z. Lactic acid bacteria promoted soil quality and enhanced phytoextraction of Cd and Zn by mustard: A trial for bioengineering of toxic metal contaminated mining soils. ENVIRONMENTAL RESEARCH 2023; 216:114646. [PMID: 36332671 DOI: 10.1016/j.envres.2022.114646] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/25/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Microbial-assisted phytoremediation provides a green approach for remediation of metal contaminated soils. However, the impacts of mono and co-applications of lactic acid bacteria (LAB) on soil biochemical properties and phytoavailability of toxic metals in contaminated mining soils have not yet been sufficiently examined. Consequently, here we studied the effects of Lactobacillus plantarum (P), Lactobacillus acidophilus (A), and Lactobacillus rhamnosus (R) applications alone and in combination on soil enzyme activities and bioavailability and uptake of Cd and Zn by mustard (Brassica juncea) in a smelter-contaminated soil under greenhouse conditions. Among the studied bacteria, P was the most tolerant to Cd-and-Zn contamination. As compared to control, R increased the fresh and dry weight of mustard plants by 53.5% and 63.2%, respectively. Co-application of P + A increased the chlorophyll content by 28.6%, as compared to control. Addition of LAB to soil increased the activity of soil urease, alkaline phosphatase and β-D glucosidase increased by 1.86-fold (P + R), 1.80-fold (R) and 55.16% (P + R), respectively. Application of P + A + R enhanced catalase activity (19.3%) and superoxide dismutase activity (51.2%), while addition of A alone increased peroxidase activity (POD: 15.7%). Addition of P alone and together with A (P + A) enhanced Cd and Zn phytoextraction by mustard shoots up to 51.5% and 52.5%, respectively. We conclude that the single and/or co-application of LAB decreased soil pH, promoted plant growth, antioxidant and enzyme activities, and enhanced the phytoavailability of Cd and Zn in the studied contaminated soil. These findings might be an aid for enhancing the phytoremediation of Cd and Zn using LAB and mustard as a bioenergy crop, which may offer new ideas for field treatment of toxic metals contaminated soils.
Collapse
Affiliation(s)
- Shuqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiman Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Shaheen SM, Mosa A, Natasha, Arockiam Jeyasundar PGS, Hassan NEE, Yang X, Antoniadis V, Li R, Wang J, Zhang T, Niazi NK, Shahid M, Sharma G, Alessi DS, Vithanage M, Hseu ZY, Sarmah AK, Sarkar B, Zhang Z, Hou D, Gao B, Wang H, Bolan N, Rinklebe J. Pros and Cons of Biochar to Soil Potentially Toxic Element Mobilization and Phytoavailability: Environmental Implications. EARTH SYSTEMS AND ENVIRONMENT 2023; 7:321-345. [DOI: 10.1007/s41748-022-00336-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 08/20/2023]
Abstract
AbstractWhile the potential of biochar (BC) to immobilize potentially toxic elements (PTEs) in contaminated soils has been studied and reviewed, no review has focused on the potential use of BC for enhancing the phytoremediation efficacy of PTE-contaminated soils. Consequently, the overarching purpose in this study is to critically review the effects of BC on the mobilization, phytoextraction, phytostabilization, and bioremediation of PTEs in contaminated soils. Potential mechanisms of the interactions between BC and PTEs in soils are also reviewed in detail. We discuss the promises and challenges of various approaches, including potential environmental implications, of BC application to PTE-contaminated soils. The properties of BC (e.g., surface functional groups, mineral content, ionic content, and π-electrons) govern its impact on the (im)mobilization of PTEs, which is complex and highly element-specific. This review demonstrates the contrary effects of BC on PTE mobilization and highlights possible opportunities for using BC as a mobilizing agent for enhancing phytoremediation of PTEs-contaminated soils.
Collapse
|
12
|
Esbrí JM, Minang CM, Rivera S, Madrid-Illescas M, García-Noguero E, González-Valoys A, Maguregui M, Thouin H, Battaglia-Brunet F, Gloaguen E, Higueras PL. Evaluation of antimony availability in a mining context: Impact for the environment, and for mineral exploration and exploitation. CHEMOSPHERE 2023; 311:137086. [PMID: 36334736 DOI: 10.1016/j.chemosphere.2022.137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
This work aims to establish Sb mobility, its transfer to biota and its effect on soil health in a semi-arid climate. The results show the presence of stibnite (Sb2S3) as the main primary Sb compound, bindhemite (Pb2Sb2O6(O,OH)), and minor proportions of stibiconite (Sb3+(Sb5+)2O6(OH)) as oxidised Sb species. This research also observes very high total Sb contents in mining materials (max: 20,000 mg kg-1) and soils (400-3000 mg kg-1), with physical dispersion around mining materials restricted to 450 m. The soil-to-plant transfer is very low, (bioaccumulation factor: 0.0002-0.1520). Most Sb remains in a residual fraction (99.9%), a very low fraction is bound to Fe and Mn oxy-hydroxides or organic matter, and a negligible proportion of Sb is leachable. The higher Sb mobility rates has been found under oxidising conditions with a long contact time between solids and water. The main factors that explain the poor Sb mobility and dispersion in the mining area are the low annual rainfall rates that slow down the Sb mobilisation process and the scarce formation of oxidised Sb compounds. All these data suggest poor Sb (III) formation and a low toxicological risk in the area associated with past mining activities. The low mobility of Sb suggests advantages for future sustainable mining of such ore deposits in a semi-arid climate and is also indicative of the limitations of geochemical exploration in the search for new Sb deposits.
Collapse
Affiliation(s)
- José María Esbrí
- Instituto de Geología Aplicada, Escuela de Ingeniería Minera e Industrial de Almadén, Universidad de Castilla-La Mancha, Plaza M. Meca 1, Almadén, Ciudad Real 13400, Spain; Departamento de Mineralogía y Petrología, Universidad Complutense de Madrid, José Antonio Novais 12, 28040 Madrid, Spain.
| | - Carmelo M Minang
- Instituto de Geología Aplicada, Escuela de Ingeniería Minera e Industrial de Almadén, Universidad de Castilla-La Mancha, Plaza M. Meca 1, Almadén, Ciudad Real 13400, Spain
| | - Sofía Rivera
- Instituto de Geología Aplicada, Escuela de Ingeniería Minera e Industrial de Almadén, Universidad de Castilla-La Mancha, Plaza M. Meca 1, Almadén, Ciudad Real 13400, Spain
| | - Mercedes Madrid-Illescas
- Instituto de Geología Aplicada, Escuela de Ingeniería Minera e Industrial de Almadén, Universidad de Castilla-La Mancha, Plaza M. Meca 1, Almadén, Ciudad Real 13400, Spain; Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, E.I.M.I. 13400 Almadén, Ciudad Real, Spain
| | - Eva García-Noguero
- Instituto de Geología Aplicada, Escuela de Ingeniería Minera e Industrial de Almadén, Universidad de Castilla-La Mancha, Plaza M. Meca 1, Almadén, Ciudad Real 13400, Spain
| | - Ana González-Valoys
- Instituto de Geología Aplicada, Escuela de Ingeniería Minera e Industrial de Almadén, Universidad de Castilla-La Mancha, Plaza M. Meca 1, Almadén, Ciudad Real 13400, Spain; Centro Experimental de Ingeniería, Universidad Tecnológica de Panamá, Vía Tocumen, 0819-07289 Panama City, Panama
| | - Maite Maguregui
- Departamento de Química Analítica, Universidad del País Vasco, Facultad de Farmacia, P.° de la Universidad, 7, 01006 Vitoria-Gasteiz, Álava, Spain
| | - Hugues Thouin
- ISTO, UMR7327, Université d'Orléans, CNRS, BRGM, F-45071 Orléans, France
| | | | - Eric Gloaguen
- ISTO, UMR7327, Université d'Orléans, CNRS, BRGM, F-45071 Orléans, France
| | - Pablo León Higueras
- Instituto de Geología Aplicada, Escuela de Ingeniería Minera e Industrial de Almadén, Universidad de Castilla-La Mancha, Plaza M. Meca 1, Almadén, Ciudad Real 13400, Spain
| |
Collapse
|
13
|
Shaheen SM, Chen HY, Song H, Rinklebe J, Hseu ZY. Release and mobilization of Ni, Co, and Cr under dynamic redox changes in a geogenic contaminated soil: Assessing the potential risk in serpentine paddy environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158087. [PMID: 35981572 DOI: 10.1016/j.scitotenv.2022.158087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The release dynamics and mobilization of geogenic Ni, Co, and Cr in serpentine paddy soils under fluctuating redox conditions have not yet been well studied. Here we investigated the release dynamics of Cr, Co, and Ni and controlling factors (e.g., Fe, Mn, Mg, Cl-, PO43-, SO42-, and dissolved organic carbon (DOC)) in a geogenic-contaminated serpentine soil under wide range of redox potential (EH) changes. The effects of re-oxidation process have been also investigated. The soil was incubated for 28 days and EH was controlled from oxidation (+200 mV) to reduction (-200 mV) and re-oxidation (+240 mV) using a microcosm setup in duplicates. The slurry pH increased, along with decreasing EH. The average concentration of dissolved Co (17.1-23.6 μg L-1) decreased under low EH/high pH and vice versa. The average concentration of dissolved Cr decreased sharply from 624 μg L-1 to 54.4 μg L-1 with decreasing EH from +200 mV to 0 mV and the associated increase of pH from 7.8 to 8.5; then, it was constant around 24.5 μg L-1. Concentration of dissolved Ni was lower (73.5-84.6 μg L-1) under high EH at the first week of incubation; then, increased to 108.5 μg L-1 under low EH (-200 mV); thereafter, increased more at the end up to 124.5 μg L-1 at high EH (+240 mV), because of the pH decrease. A factor analysis identified that Cr and Co formed one group with Mn and Mg, while Ni was clustered together with Cl-, DOC, and SO42-. This indicates that the redox-induced release dynamic of Cr and Co was mainly governed by MnMg compounds, while the release of Ni was mainly affected by the aliphatic compounds of DOC and the redox chemistry of chlorides and sulfur in this soil. The re-oxidation increased the mobilization of Ni and Co and did not affect the release of Cr. These findings suggest that the redox-induced mobilization of geogenic Co, Ni, and Cr from soil to water in serpentine rice soils should be considered due to the high solubility and thus the associated bioavailability and potential environmental and human health risks, when such metal-enriched soils will be used for agricultural flood-dry cycle systems.
Collapse
Affiliation(s)
- Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India.
| | - Hsin-Yu Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
14
|
Santos FHD, Soares MB, Alleoni LRF. Pristine and biochar-supported nano zero-valent iron to immobilize As, Zn and Pb in soil contaminated by smelting activities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116017. [PMID: 36027729 DOI: 10.1016/j.jenvman.2022.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Nano zero-valent iron (nZVI) is one of the most studied nanomaterials for environmental remediation during the past 20 years. However, few studies have focused on nZVI combination with other materials (e.g., biochar) for enhancement of soil remediation. In this study, pristine nZVI and a composite of wood sawdust biochar (BC) and nZVI (nZVI-BC) were added to a highly contaminated soil to compare their efficacy in immobilizing available arsenic (As = 28.6 mg kg-1), zinc (Zn = 1707 mg kg-1), and lead (Pb = 6759 mg kg-1). Sediment quality guidelines were used to evaluate the extent of soil contamination and ascertain its source. The mineralogy of soil and slags were assessed by X-ray Diffractometry Spectroscopy (XRD), and the geochemical fractions of Pb, Zn, and As were obtained by chemical sequential extractions. The average Pollution Load Index (PLI) was 10.66, indicating elevated multi-elemental contamination. Contamination Factor (CF) values for As, Zn, Pb, cadmium (Cd), and copper (Cu) were all higher than 6 which implies extreme contamination. Secondary minerals frequently found in Pb/Zn smelter sites, such as cerussite and anglesite, were detected in the slags through XRD. Pb and Zn were mainly bound to carbonates and residual fractions in soil and presented a high risk considering the sediment quality guidelines, sequential extraction results, and XRD analysis. The treatment with nZVI-BC was more effective than pristine nZVI on concurrently decreasing 97% of available As, 84% of Pb and 81% of Zn compared to control. The application of nZVI-BC is a promising green and sustainable remediation technique for soils contaminated with potentially toxic elements of distinct chemical behavior.
Collapse
Affiliation(s)
- Felipe Hipólito Dos Santos
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil.
| | - Matheus Bortolanza Soares
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Luís Reynaldo Ferracciú Alleoni
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| |
Collapse
|
15
|
Natasha N, Shahid M, Murtaza B, Bibi I, Khalid S, Al-Kahtani AA, Naz R, Ali EF, Niazi NK, Rinklebe J, Shaheen SM. Accumulation pattern and risk assessment of potentially toxic elements in selected wastewater-irrigated soils and plants in Vehari, Pakistan. ENVIRONMENTAL RESEARCH 2022; 214:114033. [PMID: 35952735 DOI: 10.1016/j.envres.2022.114033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
There are scarce data about the accumulation pattern and risk assessment of potentially toxic elements (PTEs) in soil and associated potential ecological risks, especially in less-developed countries. This study aims to assess the pollution levels and potential ecological risks of PTEs (As, Cr, Cd, Cu, Ni, Mn, Pb and Zn) in wastewater-irrigated arable soils and different edible-grown plants in selected areas of Vehari, Pakistan. The results revealed that the values of PTEs in soil samples were higher than their respective limit values by 20% for As, 87% for Cd, 15% for Cu, 2% for Cr, 83% for Mn, 98% for Fe, and 7% for Zn. The values of soil risk indices such as the potential ecological risk (PERI >380 for all samples), pollution load index (PLI >4 for 94% of studied samples), and degree of contamination (Dc > 24 for all samples) showed severe soil contamination in the study area. Some vegetables exhibited a high metal accumulation index (e.g., 8.1 for onion), signifying potential associated health hazards. Thus, long-term wastewater irrigation has led to severe soil contamination, which can pose potential ecological risks via PTE accumulation in crops, particularly Cd. Therefore, to ensure food safety, frequent wastewater irrigation practices need to be minimized and managed in the study area.
Collapse
Affiliation(s)
- Natasha Natasha
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Abdullah A Al-Kahtani
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water- and Waste-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water- and Waste-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212 Himachal Pradesh, India.
| |
Collapse
|