1
|
Jiang X, Li H, Kong J, Li Y, Xin X, Zhou J, Zhang R, Lee KS, Jin BR, Gui Z. Comprehensive analysis of biotransformation pathways and products of chloramphenicol by Raoultella Ornithinolytica CT3: Pathway elucidation and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136199. [PMID: 39454335 DOI: 10.1016/j.jhazmat.2024.136199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Microbial degradation of chloramphenicol (CAP) has become important for reducing the adverse impact of environmental pollution with antibiotics. Although several pathways for CAP degradation have been identified in various bacteria, multiple metabolic pathways and their respective intermediate metabolites within a single strain are rarely reported. Here, Raoultella ornithinolytica CT3 was first isolated from silkworm excrement using CAP as the sole carbon source, and 100 mg/L CAP was almost completely degraded within 48 h. The biodegradation type of CAP followed first-order kinetics. Twenty-two CAP biotransformation products were identified using high-performance liquid chromatography and ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. The CAP biotransformation pathways were predicted mainly in the acetylation and auxiliary pathways of propionylation and butyrylation. The toxicity of CAP biotransformation products was evaluated using the ecological structure-activity relationship (ECOSAR) model and biological indicators. The results showed that the toxicity of the intermediate metabolites changed slightly, but the final metabolite was harmless to the environment. Genomic analysis predicted that genes encoding acetyltransferase, amido-linkage hydrolase, nitroreductase, haloacetate dehalogenase, and protocatechuate 3,4-dioxygenase were associated with CAP biodegradation. This study provides new insights into the microbial degradation pathway of CAP and constitutes an ecological safety assessment for CAP-contaminated environments.
Collapse
Affiliation(s)
- Xueping Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, China
| | - Hao Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, Jiangsu, China.
| | - Jia Kong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Yuqi Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Xiangdong Xin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Jielin Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Ran Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, Jiangsu, China
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, Jiangsu, China.
| |
Collapse
|
2
|
Lan H, Li K, Cao Q, Liang Q, Lin Y, Jegatheesan V, Yan B, Zhang H, Zhang Y. Hydroxyl radical mediated extracellular degradation of tetracycline under aerobic and anaerobic conditions stimulated by bio-FeS nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135450. [PMID: 39121737 DOI: 10.1016/j.jhazmat.2024.135450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The extracellular degradation of antibiotics facilitated by bio-nanoparticles is significant in the field of waste valorization. Among different bio-nanoparticles, bio-FeS nanoparticles stand out for their convenient and cost-effective synthesis. Nevertheless, there is a lack of understanding regarding the extracellular degradation of pollutants driven by bio-FeS nanoparticles. Hence, this study aimed to investigate the role of bio-FeS nanoparticles in the extracellular degradation of tetracycline under aerobic and anaerobic conditions. The findings demonstrated that bio-FeS nanoparticles generated hydroxyl radical (·OH), which significantly contributes to the degradation of tetracycline in both aerobic and anaerobic environments. The production of ·OH in anaerobic conditions was primarily attributed to the limited formation of FeS2 during the biosynthesis of nanoparticles, which was very different from aerobic conditions. The bio-FeS nanoparticles facilitated extracellular electron transport by promoting electron shuttles and Fe(II)/Fe(III) cycling, resulting in the continuous production of ·OH. The degradation pathways showed differences under aerobic and anaerobic conditions, with intermediates exhibiting higher toxicity and greater cellular damage under aerobic conditions. However, in anaerobic conditions, bio-FeS nanoparticles enabled the successful integration of intracellular and extracellular degradation of tetracycline. This research proposed a new avenue for biocatalysis and environmental remediation.
Collapse
Affiliation(s)
- Huixia Lan
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Ke Li
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Qiliang Cao
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Qiaochu Liang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | | | - Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC 3000, Australia
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410028, China
| | - Heng Zhang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yang Zhang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
3
|
Liu M, Wang C, Qi XE, Du S, Ni H. Reducing residual chlortetracycline in wastewater using a whole-cell biocatalyst. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116717. [PMID: 39002381 DOI: 10.1016/j.ecoenv.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Antibiotic contamination has become an increasingly important environmental problem as a potentially hazardous emergent and recalcitrant pollutant that poses threats to human health. In this study, manganese peroxidase displayed on the outer membrane of Escherichia coli as a whole-cell biocatalyst (E. coli MnP) was expected to degrade antibiotics. The manganese peroxidase activity of the whole-cell biocatalyst was 13.88 ± 0.25 U/L. The typical tetracycline antibiotic chlortetracycline was used to analyze the degradation process. Chlortetracycline at 50 mg/L was effectively transformed via the whole-cell biocatalyst within 18 h. After six repeated batch reactions, the whole-cell biocatalyst retained 87.2 % of the initial activity and retained over 87.46 % of the initial enzyme activity after storage at 25°C for 40 days. Chlortetracycline could be effectively removed from pharmaceutical and livestock wastewater by the whole-cell biocatalyst. Thus, efficient whole-cell biocatalysts are effective alternatives for degrading recalcitrant antibiotics and have potential applications in treating environmental antibiotic contamination.
Collapse
Affiliation(s)
- Minrui Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou Gansu730070, China.
| | - Chuangxin Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xing-E Qi
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou Gansu730070, China
| | - Shaobo Du
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou Gansu730070, China
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
4
|
Niu S, Li C, Gao S, Tian J, Zhang C, Li L, Huang Y, Lyu H. Biochar, microbes, and biochar-microbe synergistic treatment of chlorinated hydrocarbons in groundwater: a review. Front Microbiol 2024; 15:1443682. [PMID: 39091302 PMCID: PMC11291464 DOI: 10.3389/fmicb.2024.1443682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Dehalogenating bacteria are still deficient when targeted to deal with chlorinated hydrocarbons (CHCs) contamination: e.g., slow metabolic rates, limited substrate range, formation of toxic intermediates. To enhance its dechlorination capacity, biochar and its composites with appropriate surface activity and biocompatibility are selected for coupled dechlorination. Because of its special surface physical and chemical properties, it promotes biofilm formation by dehalogenating bacteria on its surface and improves the living environment for dehalogenating bacteria. Next, biochar and its composites provide active sites for the removal of CHCs through adsorption, activation and catalysis. These sites can be specific metal centers, functional groups or structural defects. Under microbial mediation, these sites can undergo activation and catalytic cycles, thereby increasing dechlorination efficiency. However, there is a lack of systematic understanding of the mechanisms of dechlorination in biogenic and abiogenic systems based on biochar. Therefore, this article comprehensively summarizes the recent research progress of biochar and its composites as a "Taiwan balm" for the degradation of CHCs in terms of adsorption, catalysis, improvement of microbial community structure and promotion of degradation and metabolism of CHCs. The removal efficiency, influencing factors and reaction mechanism of the degraded CHCs were also discussed. The following conclusions were drawn, in the pure biochar system, the CHCs are fixed to its surface by adsorption through chemical bonds on its surface; the biochar composite material relies on persistent free radicals and electron shuttle mechanisms to react with CHCs, disrupting their molecular structure and reducing them; biochar-coupled microorganisms reduce CHCs primarily by forming an "electron shuttle bridge" between biological and non-biological organisms. Finally, the experimental directions to be carried out in the future are suggested to explore the optimal solution to improve the treatment efficiency of CHCs in water.
Collapse
Affiliation(s)
- Shixin Niu
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Changsuo Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chao Zhang
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Lixia Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
5
|
Li Q, Zheng Y, Guo L, Xiao Y, Li H, Yang P, Xia L, Liu X, Chen Z, Li L, Zhang H. Microbial Degradation of Tetracycline Antibiotics: Mechanisms and Environmental Implications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38835142 DOI: 10.1021/acs.jafc.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The escalating global consumption of tetracyclines (TCs) as broad-spectrum antibiotics necessitates innovative approaches to mitigate their pervasive environmental persistence and associated risks. While initiatives such as China's antimicrobial reduction efforts highlight the urgency of responsible TC usage, the need for efficient degradation methods remains paramount. Microbial degradation emerges as a promising solution, offering novel insights into degradation pathways and mechanisms. Despite challenges, including the optimization of microbial activity conditions and the risk of antibiotic resistance development, microbial degradation showcases significant innovation in its cost-effectiveness, environmental friendliness, and simplicity of implementation compared to traditional degradation methods. While the published reviews have summarized some aspects of biodegradation of TCs, a systematic and comprehensive summary of all the TC biodegradation pathways, reactions, intermediates, and final products including ring-opening products involved with enzymes and mechanisms of each bacterium and fungus reported is necessary. This review aims to fill the current gap in the literature by offering a thorough and systematic overview of the structure, bioactivity mechanism, detection methods, microbial degradation pathways, and molecular mechanisms of all tetracycline antibiotics in various microorganisms. It comprehensively collects and analyzes data on the microbial degradation pathways, including bacteria and fungi, intermediate and final products, ring-opening products, product toxicity, and the degradation mechanisms for all tetracyclines. Additionally, it points out future directions for the discovery of degradation-related genes/enzymes and microbial resources that can effectively degrade tetracyclines. This review is expected to contribute to advancing knowledge in this field and promoting the development of sustainable remediation strategies for contaminated environments.
Collapse
Affiliation(s)
- Qin Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Yanhong Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Lijun Guo
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Ying Xiao
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Haiyue Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Pingping Yang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Li Xia
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Xiangqing Liu
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Zhangyan Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Li Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Huaidong Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| |
Collapse
|
6
|
Zhao B, Wang Y, Zhang J, Wang L, Basang W, Zhu Y, Gao Y. Development and assessment of an immobilized bacterial alliance that efficiently degrades tylosin in wastewater. PLoS One 2024; 19:e0304113. [PMID: 38820335 PMCID: PMC11142594 DOI: 10.1371/journal.pone.0304113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/06/2024] [Indexed: 06/02/2024] Open
Abstract
Microbial degradation of tylosin (TYL) is a safe and environmentally friendly technology for remediating environmental pollution. Kurthia gibsonii (TYL-A1) and Klebsiella pneumonia (TYL-B2) were isolated from wastewater; degradation efficiency of the two strains combined was significantly greater than either alone and resulted in degradation products that were less toxic than TYL. With Polyvinyl alcohol (PVA)-sodium alginate (SA)-activated carbon (AC) used to form a bacterial immobilization carrier, the immobilized bacterial alliance reached 95.9% degradation efficiency in 1 d and could be reused for four cycles, with > 93% degradation efficiency per cycle. In a wastewater application, the immobilized bacterial alliance degraded 67.0% TYL in 9 d. There were significant advantages for the immobilized bacterial alliance at pH 5 or 9, with 20 or 40 g/L NaCl, or with 10 or 50 mg/L doxycycline. In summary, in this study, a bacterial consortium with TYL degradation ability was constructed using PVA-SA-AC as an immobilized carrier, and the application effect was evaluated on farm wastewater with a view to providing application guidance in environmental remediation.
Collapse
Affiliation(s)
- Boyu Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Ye Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jingyi Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
7
|
Yang W, Li J, Yao Z, Li M. A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171757. [PMID: 38513856 DOI: 10.1016/j.scitotenv.2024.171757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Antibiotics, widely used in the fields of medicine, animal husbandry, aquaculture, and agriculture, pose a serious threat to the ecological environment and human health. To prevent antibiotic pollution, efforts have been made in recent years to explore alternative options for antibiotics in animal feed, but the effectiveness of these alternatives in replacing antibiotics is not thoroughly understood due to the variation from case to case. Furthermore, a systematic summary of the specific applications and limitations of antibiotic removal techniques in the environment is crucial for developing effective strategies to address antibiotic contamination. This comprehensive review summarized the current development and potential issues on different types of antibiotic substitutes, such as enzyme preparations, probiotics, and plant extracts. Meanwhile, the existing technologies for antibiotic residue removal were discussed under the scope of application and limitation. The present work aims to highlight the strategy of controlling antibiotics from the source and provide valuable insights for green and efficient antibiotic treatment.
Collapse
Affiliation(s)
- Weiqing Yang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Mi Li
- Center for Renewable Carbon, School of Natural Resources, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
8
|
Gao Y, Chen Y, Zhu F, Pan D, Huang J, Wu X. Revealing the biological significance of multiple metabolic pathways of chloramphenicol by Sphingobium sp. WTD-1. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134069. [PMID: 38518693 DOI: 10.1016/j.jhazmat.2024.134069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
Chloramphenicol (CAP) is an antibiotic that commonly pollutes the environment, and microorganisms primarily drive its degradation and transformation. Although several pathways for CAP degradation have been documented in different bacteria, multiple metabolic pathways in the same strain and their potential biological significance have not been revealed. In this study, Sphingobium WTD-1, which was isolated from activated sludge, can completely degrade 100 mg/L CAP within 60 h as the sole energy source. UPLC-HRMS and HPLC analyses showed that three different pathways, including acetylation, hydroxyl oxidation, and oxidation (C1-C2 bond cleavage), are responsible for the metabolism of CAP. Importantly, acetylation and C3 hydroxyl oxidation reduced the cytotoxicity of the substrate to strain WTD-1, and the C1-C2 bond fracture of CAP generated the metabolite p-nitrobenzoic acid (PNBA) to provide energy for its growth. This indicated that the synergistic action of three metabolic pathways caused WTD-1 to be adaptable and able to degrade high concentrations of CAP in the environment. This study deepens our understanding of the microbial degradation pathway of CAP and highlights the biological significance of the synergistic metabolism of antibiotic pollutants by multiple pathways in the same strain.
Collapse
Affiliation(s)
- Yongsheng Gao
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yao Chen
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Fang Zhu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Pan
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Junwei Huang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Li X, Hu X, Zhao X, Wang F, Zhao Y. Modeling and optimization of triclosan biodegradation by the newly isolated Bacillus sp. DL4: kinetics and pathway speculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35567-35580. [PMID: 38730220 DOI: 10.1007/s11356-024-33096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/22/2024] [Indexed: 05/12/2024]
Abstract
Triclosan is a widely used antibacterial agent and disinfectant, and its overuse endangered ecological safety and human health. Therefore, reducing residual TCS concentrations in the environment is an urgent issue. Bacillus sp. DL4, an aerobic bacterium with TCS biodegradability, was isolated from pharmaceutical wastewater samples. Response surface methodology (RSM) and artificial neural network (ANN) were carried out to optimize and verify the different condition variables, and the optimal growth conditions of strain DL4 were obtained (35 °C, initial pH 7.31, and 5% v/v). After 48 h of cultivation under the optimal conditions, the removal efficiency of strain DL4 on TCS was 95.89 ± 0.68%, which was consistent with the predicted values from RSM and ANN models. In addition, higher R2 value and lower MSE and ADD values indicated that the ANN model had a stronger predictive capability than the RSM model. Whole genome sequencing results showed that many functional genes were annotated in metabolic pathways related to TCS degradation (e.g., amino acid metabolism, xenobiotics biodegradation and metabolism, carbohydrate metabolism). Main intermediate metabolites were identified during the biodegradation process by liquid chromatography-mass spectrometry (LC-MS), and a possible pathway was hypothesized based on the metabolites. Overall, this study provides a theoretical foundation for the characterization and mechanism of TCS biodegradation in the environment by Bacillus sp. DL4.
Collapse
Affiliation(s)
- Xuejie Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, People's Republic of China
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| | - Xiaomin Hu
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China.
| | - Xin Zhao
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| | - Fan Wang
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| | - Yan Zhao
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| |
Collapse
|
10
|
Zhang S, Liu Y, Mohisn A, Zhang G, Wang Z, Wu S. Biodegradation of penicillin G sodium by Sphingobacterium sp. SQW1: Performance, degradation mechanism, and key enzymes. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133485. [PMID: 38377898 DOI: 10.1016/j.jhazmat.2024.133485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Biodegradation is an efficient and cost-effective approach to remove residual penicillin G sodium (PGNa) from the environment. In this study, the effective PGNa-degrading strain SQW1 (Sphingobacterium sp.) was screened from contaminated soil using enrichment technique. The effects of critical operational parameters on PGNa degradation by strain SQW1 were systematically investigated, and these parameters were optimized by response surface methodology to maximize PGNa degradation. Comparative experiments found the extracellular enzyme to completely degrade PGNa within 60 min. Combined with whole genome sequencing of strain SQW1 and LC-MS analysis of degradation products, penicillin acylase and β-lactamase were identified as critical enzymes for PGNa biodegradation. Moreover, three degradation pathways were postulated, including β-lactam hydrolysis, penicillin acylase hydrolysis, decarboxylation, desulfurization, demethylation, oxidative dehydrogenation, hydroxyl reduction, and demethylation reactions. The toxicity of PGNa biodegradation intermediates was assessed using paper diffusion method, ECOSAR, and TEST software, which showed that the biodegradation products had low toxicity. This study is the first to describe PGNa-degrading bacteria and detailed degradation mechanisms, which will provide new insights into the PGNa biodegradation.
Collapse
Affiliation(s)
- Sinan Zhang
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - YuXuan Liu
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ali Mohisn
- Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guohui Zhang
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Zejian Wang
- Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Wang S, Han J, Ge Z, Su X, Chen Y, Meng J. Biotransformation characteristics of tetracycline by strain Serratia marcescens MSM2304 and its mechanism evaluation based on products analysis and genomics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120684. [PMID: 38531133 DOI: 10.1016/j.jenvman.2024.120684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Microbial biotransformation is a recommended and reliable method in face of formidable tetracycline (TC) with broad-spectrum antibacterial activity. Herein, comprehensive characteristics of a newfound strain and its molecular mechanism in process of TC bioremediation were involved in this study. Specifically, Serratia marcescens MSM2304 isolated from pig manure sludge grew well in presence of TC and achieved optimal removal efficiency of 61% under conditions of initial TC concentration of 10 mg/L, pH of 7.0, cell inoculation amount of 5%, and tryptone of 10 g/L as additional carbon. The pathways of biotransformation include EPS biosorption, cell surface biosorption and biodegradation, which enzymatic processes of biodegradation were occurred through TC adsorbed by biofilms was firstly broken down by extracellular enzymes and part of TC migrated towards biofilm interior and degraded by intracellular enzymes. Wherein extracellular polysaccharides in extracellular polymeric substances (EPS) from biofilm of strain MSM2304 mainly performed extracellular adsorption, and changes in position and intensity of CO, =CH and C-O-C/C-O of EPS possible further implied TC adsorption by it. Biodegradation accounting for 79.07% played a key role in TC biotransformation and could be fitted well by first-order model that manifesting rapid and thorough removal. Potential biodegradation pathway including demethylation, dihydroxylation, oxygenation, and ring opening possibly involved in TC disposal process of MSM2304, TC-degrading metabolites exhibited lower toxicity to indicator bacteria relative to parent TC. Whole genome sequencing as underlying molecular evidence revealed that TC resistance genes, dehydrogenases-encoding genes, monooxygenase-encoding genes, and methyltransferase-encoding genes of strain MSM2304 were positively related to TC biodegradation. Collectively, these results favored a theoretical evaluation for Serratia marcescens MSM2304 as a promising TC-control agent in environmental bioremediation processes.
Collapse
Affiliation(s)
- Siyu Wang
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Jie Han
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang,110866, China.
| | - Ziyi Ge
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Xu Su
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Yixuan Chen
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Jun Meng
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China.
| |
Collapse
|
12
|
Liu C, Shi B, Guo Y, Wang L, Li S, Zhao C, Zhu L, Wang J, Kim YM, Wang J. Characteristics of biological manganese oxides produced by manganese-oxidizing bacteria H38 and its removal mechanism of oxytetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123432. [PMID: 38272171 DOI: 10.1016/j.envpol.2024.123432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Oxytetracycline (OTC) is widely used in clinical medicine and animal husbandry. Residual OTC can affect the normal life activities of microorganisms, animals, and plants and affect human health. Microbial remediation has become a research hotspot in the environmental field. Manganese oxidizing bacteria (MnOB) exist in nature, and the biological manganese oxides (BMO) produced by them have the characteristics of high efficiency, low cost, and environmental friendliness. However, the effect and mechanism of BMO in removing OTC are still unclear. In this study, Bacillus thuringiensis strain H38 of MnOB was obtained, and the conditions for its BMO production were optimized. The optimal conditions were determined as follows: optimal temperature = 35 °C, optimal pH = 7.5, optimal Mn(Ⅱ) initial concentration = 10 mmol/L. The results show that BMO are irregular or massive, mainly containing MnCO3, Mn2O3, and MnO2, with rich functional groups and chemical bonds. They have the characteristics of small particle size and large specific surface area. OTC (2.5 mg/L) was removed when the BMO dosage was 75 μmol/L and the solution pH was 5.0. The removal ratio was close to 100 % after 12 h of culture at 35 °C and 150 r/min. BMO can adsorb and catalyze the oxidation of OTC and can produce ·O2-, ·OH, 1O2, and Mn(Ⅲ) intermediate. Fifteen products and degradation pathways were identified, and the toxicity of most intermediates is reduced compared to OTC. The removal mechanism was preliminarily clarified. The results of this study are convenient for the practical application of BMO in OTC pollution in water and for solving the harm caused by antibiotic pollution.
Collapse
Affiliation(s)
- Changrui Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Baihui Shi
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Yuchen Guo
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lanjun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Shuhan Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Changyu Zhao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lusheng Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Jinhua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
13
|
Zhang S, Hou J, Zhang X, Cai T, Chen W, Zhang Q. Potential mechanism of biochar enhanced degradation of oxytetracycline by Pseudomonas aeruginosa OTC-T. CHEMOSPHERE 2024; 351:141288. [PMID: 38272135 DOI: 10.1016/j.chemosphere.2024.141288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Extensive use of oxytetracycline (OTC) and the generation of its corresponding resistance genes have resulted in serious environmental problems. Physical-biological combined remediation is an attractive method for OTC degradation because of its high remediation efficiency, stability, and environmental friendliness. In this study, an effective OTC-degrading strain identified as Pseudomonas aeruginosa OTC-T, was isolated from chicken manure. In the degradation experiment, the degradation rates of OTC in the degradation systems with and without the biochar addition were 92.71-100 % and 69.11-99.59 %, respectively. Biochar improved the tolerance of the strain to extreme environments, and the OTC degradation rate increased by 20.25 %, 18.61 %, and 13.13 % under extreme pH, temperature, and substrate concentration conditions, respectively. Additionally, the degradation kinetics showed that biochar increased the reaction rate constant in the degradation system and shortened the degradation period. In the biological toxicity assessment, biochar increased the proportion of live cells by 17.63 % and decreased the proportion of apoptotic cells by 58.87 %. Metabolomics revealed that biochar had a significant effect on the metabolism of the strains and promoted cell growth and reproduction, effectively reducing oxidative stress induced by OTC. This study elucidates how biochar affects OTC biodegradation and provides insights into the future application of biochar-assisted microbial technology in environmental remediation.
Collapse
Affiliation(s)
- Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenjie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
14
|
Hao P, Lv Z, Pan H, Zhang J, Wang L, Zhu Y, Basang W, Gao Y. Characterization and low-temperature biodegradation mechanism of 17β-estradiol-degrading bacterial strain Rhodococcus sp. RCBS9. ENVIRONMENTAL RESEARCH 2024; 240:117513. [PMID: 37890824 DOI: 10.1016/j.envres.2023.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Steroidal estrogens residues in the environment can be a serious hazard to humans and animals and has been listed as group 1 carcinogens by World Health Organization (WHO). Microbial degradation is one of the effective strategies for the removal of such contaminants. In this study, a low-temperature degrading bacterial strain (Rhodococcus sp. RCBS9) was isolated from the soil of a dairy farm for 17β-estradiol (E2) degradation. The strain RCBS9 exhibited an efficient degradation potential at low temperatures. To lean how different factors influence E2 degradation, we have found a major role of intracellular enzymes in E2 degradation. Genomic and metabolomic analyses have suggested potential degradation genes and four metabolic pathways. These findings provide valuable strain resources for the low temperature bioremediation of E2 contamination and insights into E2 biodegradation mechanism.
Collapse
Affiliation(s)
- Peng Hao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Zongshuo Lv
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Hanyu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Jingyi Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Yunhang Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
15
|
He W, Jiang R, Li S, Zhang M, Zhang T, Zhu X, Wang X. Biodegradation mechanism of chlortetracycline by a novel fungal Aspergillus sp. LS-1. CHEMOSPHERE 2023; 340:139792. [PMID: 37579822 DOI: 10.1016/j.chemosphere.2023.139792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/04/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Chlortetracycline (CTC), a widely used typical tetracycline antibiotic, has raised increasing concerns due to its potential health and environmental risks. Biodegradation is considered an effective method to reduce CTC in environment. In this study, a strain Aspergillus sp. LS-1, which can efficiently degrade CTC, was isolated from CTC-rich activated sludge. Under optimal conditions, the maximum removal efficiency of CTC could reach 95.41%. Temperature was the most significant factor affecting the degradation efficiency of LS-1. The 19 products were identified in the CTC degradation by strain LS-1, and three degradation pathways were proposed. All the degradation pathways for CTC exhibited ring-cleaving, which may accelerate the mineralization of CTC. To gain more comprehensive insights into this strain, we obtained the genome of LS-1, which had high GC content (50.1%) and completeness (99.3%). The gene annotation revealed that LS-1 contains some vital enzymes and resistance genes that may carry functional genes involved in the CTC degradation. In addition, other antibiotic resistance genes were found in the genome of LS-1, indicating that LS-1 has the potential to degrade other antibiotics. This study provides a more theoretical basis for the investigation of CTC degradation by fungi and new insights into the biodegradation of CTC.
Collapse
Affiliation(s)
- Wenshan He
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Run Jiang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Siqi Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry,Beijing Technology and Business University,Beijing 100048,China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaobiao Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
16
|
Du Y, Cheng Q, Qian M, Liu Y, Wang F, Ma J, Zhang X, Lin H. Biodegradation of sulfametoxydiazine by Alcaligenes aquatillis FA: Performance, degradation pathways, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131186. [PMID: 36948117 DOI: 10.1016/j.jhazmat.2023.131186] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
This study reports the isolation and characterization of a novel bacterial strain Alcaligenes aquatillis FA with the ability to degrade sulfametoxydiazine (SMD), a commonly used sulfonamide antibiotic (SA) in livestock and poultry production. The biodegradation kinetics, pathways, and genomic background of SMD by FA were investigated. The results showed that strain FA had high specificity to degrade SMD, and was unable to effectively degrade its isomer, sulfamonomethoxine. The SMD biodegradation followed a first-order kinetic model with a rate constant of 27.39 mg·L-1·day-1 and a half-life of 5.98 days. The biodegradation pathways and detoxification processes of SMD were proposed based on the identification of its biodegradation byproducts and the biotoxicity assessment using both the ecological structure-activity relationship (ECOSAR) model and biological indicator. The involvement of novel degrading enzymes, such as dimethyllsulfone monooxygenase, 4-carboxymuconolactone decarboxylase, and 1,4-benzoquinone reductase, was inferred in the SMD biodegradation process. The presence of sul2 and dfrA genes in strain FA, which were constitutively expressed in its cells, suggests that multiple mechanisms were employed by the strain to resist SMD. This study provides new insights into the biodegradation of sulfonamide antibiotics (SAs) as it is the first to describe an SMD-degrading bacterium and its genetic information.
Collapse
Affiliation(s)
- Yuqian Du
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qilu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yangzhi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Zhang
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
17
|
Photosynthetic and transcriptomic responses of Chlorella sp. to tigecycline. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
18
|
Yu Y, Huang J, Jin L, Yu M, Yu X, Zhu X, Sun J, Zhu L. Translocation and metabolism of tricresyl phosphate in rice and microbiome system: Isomer-specific processes and overlooked metabolites. ENVIRONMENT INTERNATIONAL 2023; 172:107793. [PMID: 36739853 DOI: 10.1016/j.envint.2023.107793] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Tricresyl phosphate (TCP) is extensively used organophosphorus flame retardants and plasticizers that posed risks to organisms and human beings. In this study, the translocation and biotransformation behavior of isomers tri-p-cresyl phosphate (TpCP), tri-m-cresyl phosphate (TmCP), and tri-o-cresyl phosphate (ToCP) in rice and rhizosphere microbiome was explored by hydroponic exposure. TpCP and TmCP were found more liable to be translocated acropetally, compared with ToCP, although they have same molecular weight and similar Kow. Rhizosphere microbiome named microbial consortium GY could reduce the uptake of TpCP, TmCP, and ToCP in rice tissues, and promote rice growth. New metabolites were successfully identified in rice and microbiome, including hydrolysis, hydroxylated, methylated, demethylated, methoxylated, and glucuronide- products. The methylation, demethylation, methoxylation, and glycosylation pathways of TCP isomers were observed for the first time in organisms. What is more important is that the demethylation of TCPs could be an important and overlooked source of triphenyl phosphate (TPHP), which broke the traditional understanding of the only manmade source of toxic TPHP in the environment. Active members of the microbial consortium GY during degradation were revealed and metagenomic analysis indicated that most of active populations contained TCP-degrading genes. It is noteworthy that the strains and function genes in microbial consortium GY that responsible for TCP isomers' transformation were different. These results can improve our understanding of the translocation and transformation of organic pollutant isomers in plants and rhizosphere microbiome.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Miao Yu
- The Jackson Laboratory For Genomic Medicine 10 Discovery Dr, Farmington, CT 06032, USA
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
19
|
Yao Y, Li QX. Efficient, fast and robust degradation of chlortetracycline in wastewater catalyzed by recombinant Arthromyces ramosus peroxidase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159872. [PMID: 36461571 DOI: 10.1016/j.scitotenv.2022.159872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Chlortetracycline (CTC), a widely used antibiotic, is recalcitrant and ubiquitous in the environment. Enzymatic degradation of CTC is an economical and efficient bioremediation method. In this work, recombinant Arthromyces ramosus peroxidase (rARP) at a concentration of 3.13 × 10-9 M was used to catalyze rapid degradation of CTC in water. The second-order rate constants of rARP showed up to 62-fold catalytic efficiency of horseradish peroxidase (HRP) toward CTC. The degradation half-life of CTC at the concentrations of 2 and 40 mg L-1 in wastewater under the rARP catalysis was, respectively, 5.3 and 5.7 min at 25 °C, and 2.7 and 3.1 min at 40 °C, which were up to 15-fold and 111-fold faster than HRP and laccase, respectively, but use of 3 % the amount of rARP as HRP. rARP catalyzed degradation of CTC at 2-40 mg L-1 in wastewater completed in 20-24 min, and its catalytic efficiency varied within only 2-fold at 25-40 °C. rARP showed only 2-3-fold discrepancy of catalytic efficiency among pH 5.0, 7.5 and 9.0. CTC under rARP catalysis underwent demethylation and oxidation to form nontoxic N-dedimethyl-9-hydroxy-CTC. The high catalytic efficiency of rARP agreed with a short distance between rARP's δN-His56 and CTC's dimethylamine N as indicated by docking simulation. rARP is a useful enzyme for CTC bioremediation.
Collapse
Affiliation(s)
- Yuqun Yao
- School of Medicine, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou 545025, China; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
20
|
Hao P, Lv Z, Wu S, Zhang X, Gou C, Wang L, Zhu Y, Basang W, Gao Y. Transcriptome profiling of Microbacterium resistens MZT7 reveals mechanisms of 17β-estradiol response and biotransformation. ENVIRONMENTAL RESEARCH 2023; 217:114963. [PMID: 36471558 DOI: 10.1016/j.envres.2022.114963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
17β-estradiol (E2) pollution has attracted much attention, and the existence of E2 poses certain risks to the environment and human health. However, the mechanism of microbial degradation of E2 remains unclear. In this study, the location of E2-degrading enzymes was investigated, and transcriptome analysis of Microbacterium resistens MZT7 (M. resistens MZT7) exposed to E2. The degradation of E2 by M. resistens MZT7 was via the biological action of E2-induced intracellular enzymes. With the RNA sequencing, we found 1109 differentially expressed genes (DEGs). Among them, 773 genes were up-regulated and 336 genes were down-regulated. The results of the RNA sequencing indicated the DEGs were related to transport, metabolism, and stress response. Genes for transport, transmembrane transport, oxidoreductase activity, ATPase activity, transporter activity and quorum sensing were up-regulated. Genes for the tricarboxylic acid cycle, ribosome, oxidative phosphorylation and carbon metabolism were down-regulated. In addition, heterologous expression of one enzymes efficiently degraded E2. These findings provide some new insights into the molecular mechanism of biotransformation of E2 by M. resistens MZT7.
Collapse
Affiliation(s)
- Peng Hao
- College of of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Zongshuo Lv
- College of of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Sicheng Wu
- College of of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Xiqing Zhang
- College of of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Changlong Gou
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, China.
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China.
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Yunhang Gao
- College of of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
21
|
Zhang M, Fan D, Su C, Pan L, He Q, Li Z, Liu C. Biotransformation of sulfamethoxazole by a novel strain, Nitratireductor sp. GZWM139: Characterized performance, metabolic mechanism and application potential. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129861. [PMID: 36063713 DOI: 10.1016/j.jhazmat.2022.129861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A novel strain, Nitratireductor sp. GZWM139 capable of efficient removal of SMX was isolated from mariculture sewage, and Nitratireductor was reported to conduct the removal of antibiotics for the first time. Strain GZWM139 exhibited desirable adaptations to environmental factors with SMX removal efficiencies more than 90 % at temperatures of 28-38 °C, pH values of 4.5-8.5, salinities of 20-30 ‰, SMX levels of 1-5 mg/L and shaking speeds of 20-260 rpm. SMX removal was a cooperated process implemented by intracellular enzymes and extracellular enzymes, and was achieved through four proposed biotransformation pathways with the occurrences of demethylation, hydroxylation, nitration, formylation, oxidation, bond cleavage and ring opening. Strain GZWM139 responded to the SMX removal process by altering properties of cell membrane and motivating activities of xenobiotic-metabolizing enzymes and antioxidant system. Genomic analysis proved the existence of functional genes relevant to the SMX removal in strain GZWM139 and provided echoing genetic insights for revealing the SMX removal mechanism. Strain GZWM139 performed efficient detoxification of SMX and accomplished simultaneous removal of SMX and nitrogen in both mariculture sewage and domestic sewage. The findings are significant to the effective elimination of SMX pollution and comprehensive cognitions on metabolic mechanisms of SMX removal.
Collapse
Affiliation(s)
- Mengyu Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., LTD, Foshan, Guangdong 528200, China
| | - Chen Su
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China.
| | - Qili He
- Bio-Form Biotechnology (Guangdong) Co., LTD, Foshan, Guangdong 528200, China
| | - Zilu Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Chang Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| |
Collapse
|
22
|
Wu S, Hao P, Gou C, Zhang X, Wang L, Basang W, Zhu Y, Gao Y. Lysinibacillus sp. GG242 from Cattle Slurries Degrades 17β-Estradiol and Possible 2 Transformation Routes. Microorganisms 2022; 10:microorganisms10091745. [PMID: 36144347 PMCID: PMC9504447 DOI: 10.3390/microorganisms10091745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Environmental estrogen pollution has long been a concern due to adverse effects on organisms and ecosystems. Biodegradation is a vital way to remove estrogen, a strain of Lysinibacillus sp. was isolated, numbered strain GG242. The degradation rate of 100 mg·L−1 17β-estradiol (E2)) > 95% in one week, and compared with extracellular enzymes, intracellular enzymes have stronger degradation ability. Strain GG242 can maintain a stable E2 degradation ability under different conditions (20−35 °C, pH 5−11, salinity 0−40 g·L−1). Under appropriate conditions (30 °C, pH 8, 1 g·L−1 NaCl), the degradation rate increased by 32.32% in one week. Based on the analysis of transformation products, inferred E2 was converted via two distinct routes. Together, this research indicates the degradation potential of strain GG242 and provides new insights into the biotransformation of E2.
Collapse
Affiliation(s)
- Sicheng Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Peng Hao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Changlong Gou
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: ; Tel.: +86-131-5975-2912
| |
Collapse
|