1
|
Ovis-Sánchez JO, Vital-Jácome M, Buitrón G, Cervantes-Avilés P, Carrillo-Reyes J. Antibiotic resistance reduction mechanisms during thermophilic anaerobic digestion of microalgae-bacteria aggregates. BIORESOURCE TECHNOLOGY 2025; 419:132037. [PMID: 39756663 DOI: 10.1016/j.biortech.2025.132037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Microalgae-bacteria-based systems are an emerging and promising approach for wastewater treatment plants (WWTP), having nutrient and antibiotic resistance removal comparable to conventional technologies. Still, antibiotic-resistance genes and bacteria (ARG and ARB) can proliferate in microalga-bacteria aggregates (MABA), a concern to control. Different temperature regimes of MABA continuous anaerobic digestion (AD), thermophilic (55 °C), and mesophilic (35 °C) were evaluated in this study as a strategy to eliminate ARB and ARGs. Plate counting techniques and metagenomic-based analysis revealed that thermophilic temperature had a better performance, achieving ARB log reductions of 1.1 to 1.7 for various antibiotics and significantly reduced ARG abundance up to 19.5 ± 0.8 ppm. The microbiome selection, the mobilome restriction, and directed functionality to thermal stress resistance were the main mechanisms responsible for resistome reduction at thermophilic conditions. Thermophilic AD effectively manages antibiotic resistance in microalgae-bacteria aggregates, which has important implications for wastewater treatment and reduces environmental risks.
Collapse
Affiliation(s)
- Julián O Ovis-Sánchez
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Miguel Vital-Jácome
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Germán Buitrón
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453 Puebla, México
| | - Julián Carrillo-Reyes
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México.
| |
Collapse
|
2
|
Wang Y, Zhang Q, Li H, Teng Y, Wang H. Metagenomic analysis reveals the effects of potassium ferrate and steel slag on fate of ARGs in anaerobic sludge digestion system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123981. [PMID: 39754807 DOI: 10.1016/j.jenvman.2024.123981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Waste activated sludge (WAS) pose a potential risk for the spread of antibiotic resistance genes (ARGs). This study estimated the effect of sludge on antibiotic resistance genes (ARGs) in anaerobic sludge digestion process. Metagenomic analysis revealed anaerobic sludge with potassium ferrate (PF) and the modified PF loaded steel slag (MPF-SS) brought an increase of ARGs during digestion process. PF was found to effectively reduce most of the high-risk ARGs (i.e., acrB and mexW). Furthermore, network and correlation analysis among ARGs and genera verified that PF significantly increased the potential ARGs hosts. Mechanistic analysis revealed that PF induced oxidative stress behavior of anaerobic digestion microorganisms, and observably upregulated the relative genes about SOS response-related. These findings provide insights into the mechanism underlining PF for ARGs fate and its risk during anaerobic sludge digestion, which could offer practical guidance on the sustainable management of WAS.
Collapse
Affiliation(s)
- Yali Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Qiushuo Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Hang Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Yajie Teng
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China.
| |
Collapse
|
3
|
Guo N, Zhang H, Wang L, Yang Z, Li Z, Wu D, Chen F, Zhu Z, Song L. Metagenomic insights into the influence of pH on antibiotic removal and antibiotic resistance during nitritation: Regulations on functional genus and genes. ENVIRONMENTAL RESEARCH 2024; 261:119689. [PMID: 39068965 DOI: 10.1016/j.envres.2024.119689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The changes in pH and the resulting presence of free nitrous acid (FNA) or free ammonia (FA) often inhibit antibiotic biodegradation during nitritation. However, the specific mechanisms through which pH, FNA and FA influence antibiotic removal and the fate of antibiotic resistance genes (ARGs) are not yet fully understood. In this study, the effects of pH, FNA, and FA on the removal of cefalexin and amoxicillin during nitritation were investigated. The results revealed that the decreased antibiotic removal under both acidic condition (pH 4.5) and alkaline condition (pH 9.5) was due to the inhibition of the expression of amoA in ammonia-oxidizing bacteria and functional genes (hydrolase-encoding genes, transferase-encoding genes, lyase-encoding genes, and oxidoreductase-encoding genes) in heterotrophs. Furthermore, acidity was the primary inhibitor of antibiotic removal at pH 4.5, followed by FNA. Antibiotic removal was primarily inhibited by alkalinity at pH 9.5, followed by FA. The proliferation of ARGs mediated by mobile genetic element was promoted under both acidic and alkaline conditions, attributed to the promotion of FNA and FA, respectively. Overall, this study highlights the inhibitory effects of acidity and alkalinity on antibiotic removal during nitritation.
Collapse
Affiliation(s)
- Ning Guo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Hengyi Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhuhui Yang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhao Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhaoliang Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Li Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250000, China.
| |
Collapse
|
4
|
Mortezaei Y, Demirer GN, Williams MR. Fate of intracellular and extracellular antibiotic resistance genes in sewage sludge by full-scale anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175760. [PMID: 39182790 DOI: 10.1016/j.scitotenv.2024.175760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Storage tank (ST) is a promising strategy for solid-liquid separation following anaerobic digestion (AD). However, little is known regarding the effects of ST on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and microbial communities. Therefore, this study first investigated eight typical ARGs (sul1, sul2, tetW, tetA, tetO, tetX, ermF, and ermB) and three MGEs (int1, int2, and tnpA) during full-scale AD of sludge and the liquid and biosolids phases of ST. Following that, intracellular ARGs (iARGs), extracellular polymeric substances (EPS)-associated ARGs, and cell-free ARGs removal were quantified in AD process, which is largely unknown for full-scale AD of sludge. The qPCR results showed that both AD and ST significantly removed ARGs, with ST biosolids showing the highest removal efficiency for the total measured relative (82.27 ± 2.09 %) and absolute (92.38 ± 0.89 %) abundance of ARGs compared to the raw sludge. Proteobacteria, Bacteroidota, Firmicutes and Campilobacterota were the main potential ARGs hosts in the sludge. Moreover, the results of different ARGs fractions showed that the total relative and absolute abundance of iARGs decreased by 90.12 ± 0.83 % and 79.89 ± 1.41 %, respectively, following AD. The same trend was observed for the abundance of EPS-associated ARGs, while those of cell-free ARGs increased after AD. These results underscore the risk of extracellular ARGs and provided new insights on extracellular ARGs dissemination evaluation.
Collapse
Affiliation(s)
- Yasna Mortezaei
- Earth and Ecosystem Science, Central Michigan University, Mount Pleasant, MI, USA
| | - Goksel N Demirer
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Maggie R Williams
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
5
|
Haque MA, Nath ND, Johnston TV, Haruna S, Ahn J, Ovissipour R, Ku S. Harnessing biotechnology for penicillin production: Opportunities and environmental considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174236. [PMID: 38942308 DOI: 10.1016/j.scitotenv.2024.174236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the discovery of antibiotics, penicillin has remained the top choice in clinical medicine. With continuous advancements in biotechnology, penicillin production has become cost-effective and efficient. Genetic engineering techniques have been employed to enhance biosynthetic pathways, leading to the production of new penicillin derivatives with improved properties and increased efficacy against antibiotic-resistant pathogens. Advances in bioreactor design, media formulation, and process optimization have contributed to higher yields, reduced production costs, and increased penicillin accessibility. While biotechnological advances have clearly benefited the global production of this life-saving drug, they have also created challenges in terms of waste management. Production fermentation broths from industries contain residual antibiotics, by-products, and other contaminants that pose direct environmental threats, while increased global consumption intensifies the risk of antimicrobial resistance in both the environment and living organisms. The current geographical and spatial distribution of antibiotic and penicillin consumption dramatically reveals a worldwide threat. These challenges are being addressed through the development of novel waste management techniques. Efforts are aimed at both upstream and downstream processing of antibiotic and penicillin production to minimize costs and improve yield efficiency while lowering the overall environmental impact. Yield optimization using artificial intelligence (AI), along with biological and chemical treatment of waste, is also being explored to reduce adverse impacts. The implementation of strict regulatory frameworks and guidelines is also essential to ensure proper management and disposal of penicillin production waste. This review is novel because it explores the key remaining challenges in antibiotic development, the scope of machine learning tools such as Quantitative Structure-Activity Relationship (QSAR) in modern biotechnology-driven production, improved waste management for antibiotics, discovering alternative path to reducing antibiotic use in agriculture through alternative meat production, addressing current practices, and offering effective recommendations.
Collapse
Affiliation(s)
- Md Ariful Haque
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Nirmalendu Deb Nath
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA.
| | - Tony Vaughn Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Samuel Haruna
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Jaehyun Ahn
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| |
Collapse
|
6
|
Li T, Li CY, Wang YF, Zhang JN, Li H, Wu HF, Yang XL, Song HL. Insights to the cooperation of double-working potential electroactive biofilm for performance of sulfamethoxazole removal: ARG fate and microorganism communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135357. [PMID: 39079293 DOI: 10.1016/j.jhazmat.2024.135357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/06/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Bioelectrochemical systems (BESs) have shown great potential in enhancing sulfamethoxazole (SMX) removal. However, electroactive biofilms (EBs) constructed with single potentials struggle due to limited biocatalytic activity, hindering deep SMX degradation. Here, we constructed a double-working potential BES (BES-D) to investigate its ability to eliminate SMX and reduce the levels of corresponding antibiotic resistance genes (ARGs). The preferable electrochemical activity of EB in BES-D was confirmed by electrochemical characterization, EPS analysis, physical structure, viability of the biofilm, and cytochrome content. BES-D exhibited a notably greater SMX removal efficiency (94.2 %) than did the single-working potential BES (BES-S) and the open-circuit group (OC). Degradation pathway analysis revealed that the cooperative EB could accelerate the in-depth removal of SMX. Moreover, EB interaction in BES-D decreased the relative abundance of ARGs in biofilms compared to that in BES-S, although the absolute number of ARG copies increased in BES-D effluents. Compared to those in BES-S and OC, more complex cross-niche microbial associations in the EB of BES-D were observed by network analysis of the bacterial community and ARG hosts, enhancing the degradation efficiency of SMX. In conclusion, BES-D has significant potential for SMX removal and the enhancement of EB activity. Nonetheless, the risk of ARG dissemination in effluent remains a concern.
Collapse
Affiliation(s)
- Tao Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Chen-Ying Li
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China.
| | - Yan-Fei Wang
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Jing-Nan Zhang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Hua Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hui-Fang Wu
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| |
Collapse
|
7
|
Zhang X, Ma L, Zhang XX. Neglected risks of enhanced antimicrobial resistance and pathogenicity in anaerobic digestion during transition from thermophilic to mesophilic. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134886. [PMID: 38878435 DOI: 10.1016/j.jhazmat.2024.134886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Minimization of antibiotic resistance genes (ARGs) and potential pathogenic antibiotic-resistant bacteria (PARB) during anaerobic digestion (AD) is significantly impacted by temperature. However, knowledge on how ARGs and PARB respond to temperature transition from thermophilic to mesophilic is limited. Here, we combined metagenomic-based with culture-based approaches and revealed the risks of antimicrobial resistance and pathogenicity during transition from 55 °C to 35 °C for AD, with strategies of sharp (ST, one-step by 20 °C/d) and mild (MT, step-wise by 1 °C/d). Results indicated a lower decrease in methane production with MT (by 38.9%) than ST (by 88.8%). Phenotypic assays characterized a significant propagation of multi-resistant lactose-fermenting Enterobacteriaceae and indicator pathogens after both transitions, especially via ST. Further genomic evidence indicated a significant increase of ARGs (29.4-fold), virulence factor genes (1.8-fold) and PARB (65.3-fold) after ST, while slight enrichment via MT. Bacterial succession and enhanced horizontal transfer mediated by mobile genetic elements promoted ARG propagation in AD during transition, which was synchronously exacerbated through horizontal transfer mechanisms mediated by cellular physiological responses (oxidative stress, membrane permeability, bacterial conjugation and transformation) and co-selection mechanisms of biomethanation metabolic functions (acidogenesis and acetogenesis). This study reveals temperature-dependent resistome and pathogenicity development in AD, facilitating microbial risk control.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
8
|
Zhou CS, Cao GL, Liu BF, Liu W, Ma WL, Ren NQ. Deciphering the reduction of antibiotic resistance genes (ARGs) during medium-chain fatty acids production from waste activated sludge: Driven by inhibition of ARGs transmission and shift of microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134676. [PMID: 38788579 DOI: 10.1016/j.jhazmat.2024.134676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Medium-chain fatty acids (MCFAs) production from waste activated sludge (WAS) by chain extension (CE) is a promising technology. However, the effects and mechanisms of CE process on the fate of antibiotic resistance genes (ARGs) remain unclear. In this study, the results showed that the removal efficiency of ARGs was 81.15 % in CE process, suggesting its efficacy in reducing environmental risks. Further, the observed decrease in mobile genetic elements (MGEs) indicated that CE process restricted the horizontal gene transfer (HGT). Complementing this, the increase in soluble organic matters and extracellular 16 S rDNA confirmed that MCFAs production caused bacterial damage. Decreased intracellular ARGs and increased extracellular ARGs further revealed that MCFAs production impaired ARGs hosts, thereby limiting the vertical gene transfer (VGT) of ARGs. Shift of microbial community combined with co-occurrence network analysis demonstrated that functional bacteria without host potential for ARGs were enriched, but potential ARGs and MGEs hosts decreased, showing the role of functional bacterial phylogeny and selection pressure of MCFAs in reducing ARGs. Finally, partial least squares path model was used to systematic verify the mechanism of ARGs removal in CE process, which was attributed to the inhibition of ARGs transmission (HGT and VGT) and shift of microbial community.
Collapse
Affiliation(s)
- Chun-Shuang Zhou
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guang-Li Cao
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Bing-Feng Liu
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Liu
- Heilongjiang Institute of Energy and Environment, Harbin 150007, China
| | - Wan-Li Ma
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
Pourrostami Niavol K, Bordoloi A, Suri R. An overview of the occurrence, impact of process parameters, and the fate of antibiotic resistance genes during anaerobic digestion processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41745-41774. [PMID: 38853230 PMCID: PMC11219439 DOI: 10.1007/s11356-024-33844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Antibiotic resistance genes (ARGs) have emerged as a significant global health threat, contributing to fatalities worldwide. Wastewater treatment plants (WWTPs) and livestock farms serve as primary reservoirs for these genes due to the limited efficacy of existing treatment methods and microbial adaptation to environmental stressors. Anaerobic digestion (AD) stands as a prevalent biological treatment for managing sewage sludge and manure in these settings. Given the agricultural utility of AD digestate as biofertilizers, understanding ARGs' fate within AD processes is essential to devise effective mitigation strategies. However, understanding the impact of various factors on ARGs occurrence, dissemination, and fate remains limited. This review article explores various AD treatment parameters and correlates to various resistance mechanisms and hotspots of ARGs in the environment. It further evaluates the dissemination and occurrence of ARGs in AD feedstocks and provides a comprehensive understanding of the fate of ARGs in AD systems. This review explores the influence of key AD parameters such as feedstock properties, pretreatments, additives, and operational strategies on ARGs. Results show that properties such as high solid content and optimum co-digestion ratios can enhance ARG removal, while the presence of heavy metals, microplastics, and antibiotics could elevate ARG abundance. Also, operational enhancements, such as employing two-stage digestion, have shown promise in improving ARG removal. However, certain pretreatment methods, like thermal hydrolysis, may exhibit a rebounding effect on ARG levels. Overall, this review systematically addresses current challenges and offers future perspectives associated with the fate of ARGs in AD systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Achinta Bordoloi
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
10
|
Visca A, Di Gregorio L, Clagnan E, Bevivino A. Sustainable strategies: Nature-based solutions to tackle antibiotic resistance gene proliferation and improve agricultural productivity and soil quality. ENVIRONMENTAL RESEARCH 2024; 248:118395. [PMID: 38307185 DOI: 10.1016/j.envres.2024.118395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The issue of antibiotic resistance is now recognized by the World Health Organisation (WHO) as one of the major problems in human health. Although its effects are evident in the healthcare settings, the root cause should be traced back to the One Health link, extending from animals to the environment. In fact, the use of organic fertilizers in agroecosystems represents one, if not the primary, cause of the introduction of antibiotics and antibiotic-resistant bacteria into the soil. Since the concentrations of antibiotics introduced into the soil are residual, the agroecosystem has become a perfect environment for the selection and proliferation of antibiotic resistance genes (ARGs). The continuous influx of these emerging contaminants (i.e., antibiotics) into the agroecosystem results in the selection and accumulation of ARGs in soil bacteria, occasionally giving rise to multi-resistant bacteria. These bacteria may harbour ARGs related to various antibiotics on their plasmids. In this context, these bacteria can potentially enter the human sphere when individuals consume food from contaminated agroecosystems, leading to the acquisition of multi-resistant bacteria. Once introduced into the nosocomial environment, these bacteria pose a significant threat to human health. In this review, we analyse how the use of digestate as an organic fertilizer can mitigate the spread of ARGs in agroecosystems. Furthermore, we highlight how, according to European guidelines, digestate can be considered a Nature-Based Solution (NBS). This NBS not only has the ability to mitigate the spread of ARGs in agroecosystems but also offers the opportunity to further improve Microbial-Based Solutions (MBS), with the aim of enhancing soil quality and productivity.
Collapse
Affiliation(s)
- Andrea Visca
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy.
| | - Luciana Di Gregorio
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Elisa Clagnan
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| |
Collapse
|
11
|
He K, Liu Y, Tian L, He W, Cheng Q. Review in anaerobic digestion of food waste. Heliyon 2024; 10:e28200. [PMID: 38560199 PMCID: PMC10979283 DOI: 10.1016/j.heliyon.2024.e28200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the special property of food waste (FW), anaerobic digestion of food waste is facing many challenges like foaming, acidification, ammonia nitrogen and (NH4+-N) inhibition which resulted in a low biogas yield. A better understanding on the problems exiting in the FW anaerobic digestion would enhance the bio-energy recovery and increase the stable operation. Meanwhile, to overcome the bottle necks, pretreatment, co-digestion and additives is proposed as well as the solutions to improve biogas yield in FW digestion system. At last, future research directions regarding FW anaerobic digestion were proposed.
Collapse
Affiliation(s)
- Kefang He
- School of Management, Wuhan Polytechnic University, China
| | - Ying Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Longjin Tian
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Wanyou He
- School of Management, Wuhan Polytechnic University, China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| |
Collapse
|
12
|
Aka RJN, Hossain MM, Nasir A, Zhan Y, Zhang X, Zhu J, Wang ZW, Wu S. Enhanced nutrient recovery from anaerobically digested poultry wastewater through struvite precipitation by organic acid pre-treatment and seeding in a bubble column electrolytic reactor. WATER RESEARCH 2024; 252:121239. [PMID: 38335753 DOI: 10.1016/j.watres.2024.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Limited mineralization of organic phosphorus to phosphate during the anaerobic digestion process poses a significant challenge in the development of cost-effective nutrient recovery strategies from anaerobically digested poultry wastewater (ADPW). This study investigated the influence of organic acids on phosphorus solubilization from ADPW, followed by its recycling in the form of struvite using a bubble column electrolytic reactor (BCER) without adding chemicals. The impact of seeding on the efficiency of PO43- and NH3-N recovery as well as the size distribution of recovered precipitates from the acid pre-treated ADPW was also evaluated. Pre-treatment of the ADPW with oxalic acid achieved complete solubilization of phosphorus, reaching ∼100% extraction efficiency at pH 2.5. The maximum removal efficiency of phosphate and ammonia-nitrogen from the ADPW were 88.9% and 90.1%, respectively, while the addition of 5 and 10 g/L struvite seed to the BCER increased PO43- removal efficiency by 9.6% and 11.5%, respectively. The value of the kinetic rate constant, k, increased from 0.0176 min-1 (unseeded) to 0.0198 min-1, 0.0307 min-1, and 0.0375 min-1 with the seed loading rate of 2, 5, and 10 g/L, respectively. Concurrently, the average particle size rose from 75.3 μm (unseeded) to 82.1 μm, 125.7 μm, and 148.9 μm, respectively. Results from XRD, FTIR, EDS, and dissolved chemical analysis revealed that the solid product obtained from the recovery process was a multi-nutrient fertilizer consisting of 94.7% struvite with negligible levels of heavy metals.
Collapse
Affiliation(s)
| | - Md Mokter Hossain
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844
| | - Alia Nasir
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844
| | - Yuanhang Zhan
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Xueyao Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061
| | - Jun Zhu
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Zhi-Wu Wang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061
| | - Sarah Wu
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844.
| |
Collapse
|
13
|
Chen Y, Yan Z, Zhang Y, Zhu P, Jiang R, Wang M, Wang Y, Lu G. Co-exposure of microplastics and sulfamethoxazole propagated antibiotic resistance genes in sediments by regulating the microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132951. [PMID: 37951174 DOI: 10.1016/j.jhazmat.2023.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The concerns on the carriers of microplastics (MPs) on co-existing pollutants in aquatic environments are sharply rising in recent years. However, little is known about their interactions on the colonization of microbiota, especially for the spread of pathogens and antibiotic resistance genes (ARGs). Therefore, this study aimed to investigate the influences on the propagation of ARGs in sediments by the co-exposure of different MPs and sulfamethoxazole (SMX). The results showed that the presence of MPs significantly enhanced the contents of total organic carbon, while having no effects on the removal of SMX in sediments. Exposure to SMX and MPs obviously activated the microbial carbon utilization capacities based on the BIOLOG method. The propagation of ARGs in sediments was activated by SMX, which was further promoted by the presence of polylactic acid (PLA) MPs, but significantly lowered by the co-exposed polyethylene (PE) MPs. This apparent difference may be attributed to the distinct influence on the antibiotic efflux pumps of two MPs. Moreover, the propagation of ARGs may be also dominated by microbial carbon metabolism in sediments, especially through regulating the carbon sources of carboxylic acids, carbohydrates, and amino acids. This study provides new insights into the carrier effects of MPs in sediments.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peiyuan Zhu
- College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
14
|
Tang L, Pan Z, Li X, Li J, Meng J. Antibiotics resistance removal from piggery wastewater by an integrated anaerobic-aerobic biofilm reactor: Efficiency and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167031. [PMID: 37714352 DOI: 10.1016/j.scitotenv.2023.167031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Antibiotic resistance residual in piggery wastewater poses serious threat to environment and human health. Biological treatment process is commonly installed to remove nutrient from piggery wastewater and also effective in removing antibiotics to varying degrees. But the specific pathways and mechanisms involved in the removal of antibiotic resistance are not yet well-understood. An integrated anaerobic-aerobic biofilm reactor (IAOBR) has been demonstrated efficient in removing conventional nutrients. It is here shown that the IAOBR effectively removed 79.0% of Sulfonamides, 55.7% of Tetracyclines and 53.6% of Quinones. Antibiotic resistance bacteria (ARB) were simultaneously inactivated by ~0.5 logs. Antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were decreased by 0.51 logs and 0.42 logs, respectively. The antibiotics were mainly removed through aerobic compartments of the IAOBR. The mass loss of antibiotics in the reactor was achieved by biodegradation and adsorption, accounting for 52.1% and 47.9%, respectively. An obvious accumulation of ARGs was observed in the activated sludge. The potential host of ARGs was analyzed via microbial community and network. Partial least squares-structural equation model and correlation analysis revealed that the enrichment of ARGs was positively affected by MGEs, followed by bacterial community and ARBs, but the effect of antibiotics on ARGs was negative. Outcomes of this study provide valuable insights into the mechanisms of antibiotic resistance removal in biological treatment processes.
Collapse
Affiliation(s)
- Lianggang Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhen Pan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
15
|
Kenneth MJ, Koner S, Hsu GJ, Chen JS, Hsu BM. A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122643. [PMID: 37775024 DOI: 10.1016/j.envpol.2023.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Globally, animal production has developed rapidly as a consequence of the ongoing population growth, to support food security. This has consequently led to an extensive use of antibiotics to promote growth and prevent diseases in animals. However, most antibiotics are not fully metabolized by these animals, leading to their excretion within urine and faeces, thus making these wastes a major reservoir of antibiotics residues, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment. Farmers normally depend on conventional treatment methods to mitigate the environmental impact of animal waste; however, these methods are not fully efficient to remove the environmental resistome. The present study reviewed the variability of residual antibiotics, ARB, as well as ARGs in the conventionally treated waste and assessed how discharging it could increase resistome in the receiving environments. Wherein, considering the efficiency and environmental safety, an addition of pre-treatments steps with these conventional treatment methods could enhance the removal of antibiotic resistance agents from livestock waste.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
16
|
Yang G, Cao JM, Cui HL, Zhan XM, Duan G, Zhu YG. Artificial Sweetener Enhances the Spread of Antibiotic Resistance Genes During Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10919-10928. [PMID: 37475130 DOI: 10.1021/acs.est.2c08673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Artificial sweeteners have been frequently detected in the feedstocks of anaerobic digestion. As these sweeteners can lead to the shift of anaerobic microbiota in the gut similar to that caused by antibiotics, we hypothesize that they may have an antibiotic-like impact on antibiotic resistance genes (ARGs) in anaerobic digestion. However, current understanding on this topic is scarce. This investigation aimed to examine the potential impact of acesulfame, a typical artificial sweetener, on ARGs in anaerobic digestion by using metagenomics sequencing and qPCR. It was found that acesulfame increased the number of detected ARG classes and the abundance of ARGs during anaerobic digestion. The abundance of typical mobile genetic elements (MGEs) and the number of potential hosts of ARGs also increased under acesulfame exposure, suggesting the enhanced potential of horizontal gene transfer of ARGs, which was further confirmed by the correlation analysis between absolute abundances of the targeted ARGs and MGEs. The increased horizontal dissemination of ARGs may be associated with the SOS response induced by the increased ROS production, and the increased cellular membrane permeability. These findings indicate that artificial sweeteners may accelerate ARG spread through digestate disposal, thus corresponding strategies should be considered to prevent potential risks in practice.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jin-Man Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xin-Min Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway H91 TK33, Ireland
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
17
|
Jia W, Song J, Wang J, Li J, Li X, Wang Q, Chen X, Liu G, Yan Q, Zhou C, Xin S, Xin Y. Fenton oxidation treatment of oxytetracycline fermentation residues: Harmless performance and bioresource properties. CHEMOSPHERE 2023:139201. [PMID: 37348618 DOI: 10.1016/j.chemosphere.2023.139201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
The pharmaceutical factories of oxytetracycline (OTC) massively produce OTC fermentation residues (OFRs). The high content of residual OTC and antibiotic resistance genes in OFRs must to be considered and controlled at an acceptable level. This study therefore investigated the applicability of Fenton oxidation in OTC degradation and resistant gene inactivation of OFRs. The results revealed that Fe2+ as catalyzer could very rapidly activate H2O2 to produce HO•, leading to instantaneous degradation of OTC. The optimum conditions for OTC removal were 60 mM H2O2 and 140 mg/L Fe2+ under pH 7. After Fenton oxidation treatment, the release of water-soluble polysaccharides, NO3-N, and PO4-P was enhanced, whereas for proteins and NH3-N were reduced. Three soluble fluorescence components (humic, tryptophan-like, and humic acid-like substances) were identified through fluorescence spectra with parallel factor analysis, and their reduction exceeded 50% after Fenton oxidation. There were twelve intermediates and three degradation pathways of OTC in OFRs during Fenton process. According to toxicity prediction, the comprehensive toxicity of OTC in OFRs was alleviated via Fenton oxidation treatment. In addition, Fenton oxidation showed the ability to reduce antibiotic resistance genes and mobile genetic elements, and even tetO, tetG, intI1, and intI2 were eliminated completely. These results suggested that Fenton oxidation treatment could be an efficient strategy for removing OTC and resistance genes in OFRs.
Collapse
Affiliation(s)
- Wenqiang Jia
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiaying Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jian Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinying Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianwen Wang
- Instrumental Analysis Center of Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiang Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
18
|
Zuo Z, Chen Y, Xing Y, Li S, Yang S, Jiang G, Liu T, Zheng M, Huang X, Liu Y. The advantage of a two-stage nitrification method for fertilizer recovery from human urine. WATER RESEARCH 2023; 235:119932. [PMID: 37011577 DOI: 10.1016/j.watres.2023.119932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Recycling nutrients (nitrogen, phosphorus, and potassium) from human urine can potentially offset more than 13% of global agricultural fertilizer demand. Biological nitrification is a promising method for converting volatile ammonia in high-strength human urine into stable ammonium nitrate (a typical fertilizer), but it is usually terminated in the intermediate production of nitrite due to the inhibition of nitrite-oxidizing bacteria by free nitrous acid (FNA). This study aimed to develop a stable nitrification process in a unique two-stage bioreactor by removing critical barriers associated with FNA inhibition. Experimental results show that half of the ammonium in high-strength urine was successfully converted into nitrate, forming valuable ammonium nitrate (with a nitrogen concentration greater than 1500 mg N/L). The ammonium nitrate solution could retain most phosphorus (75% ± 3%) and potassium (96% ± 1%) in human urine, resulting in nearly full nutrient recovery. Once concentrated, the liquid compound fertilizer of ammonium nitrate was generated. Based on an assessment of economic and environmental impacts at the urban scale, urine diversion for nutrient recovery using a technical combination of nitrification and reverse osmosis could reduce total energy input by 43%, greenhouse gas emission by 40%, and cost by 33% compared to conventional wastewater management. Further research is needed to optimize the two-stage nitrification method on a larger scale.
Collapse
Affiliation(s)
- Zhiqiang Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, China
| | - Yan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yaxin Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Wang P, Xu C, Zhang X, Yuan Q, Shan S. Effect of photocatalysis on the physicochemical properties of liquid digestate. ENVIRONMENTAL RESEARCH 2023; 223:115467. [PMID: 36775086 DOI: 10.1016/j.envres.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic residues pose a risk to the agricultural application of liquid digestate. In our previous study, photocatalysis was employed to degrade the antibiotics in liquid digestate and observed that the removal efficiency of TC, OTC, and CTC was up to 94.99%, 88.92%, and 95.52%, respectively, at the optimal experimental level, demonstrating the feasibility of this technology. In this study, the liquid digestate after photocatalysis was analyzed to evaluate the effect of photocatalysis on the nutrients, phytotoxicity, and bacterial community of liquid digestate. The results showed that photocatalysis had little effect on the major nutrients TN, TP, and TK in liquid digestate. However, photocatalysis could cause an increase in tryptophan substances as well as soluble microbial by-products and a decrease in humic acid substances in the liquid digestate. The toxicity of liquid digestate after photocatalysis exhibited an increasing trend followed by a decreasing trend, and the liquid digestate after photocatalysis for 2 h had a promoting effect on seed germination and root growth. The richness, diversity, and evenness of bacterial communities in liquid digestate were decreased as a result of photocatalysis. The dominant species in the liquid digestate was dramatically changed by photocatalysis, and the antibiotic concentration also had a major effect on the dominant species in the liquid digestate after photocatalysis. After photocatalysis for 2 h, the dominant species in the liquid digestate changed from Firmicutes to Proteobacteria.
Collapse
Affiliation(s)
- Panpan Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| |
Collapse
|
20
|
Han Z, Shao B, Lei L, Pang R, Wu D, Tai J, Xie B, Su Y. The role of pretreatments in handling antibiotic resistance genes in anaerobic sludge digestion - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161799. [PMID: 36709893 DOI: 10.1016/j.scitotenv.2023.161799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Sludge is among the most important reservoirs of antibiotic resistance genes (ARGs), which would cause potential environmental risks with the sludge utilization. Currently, anaerobic digestion (AD) is effective to simultaneously realize the resource recovery and pollutants removal, including antibiotic resistance genes (ARGs), and various pretreatments are used to enhance the performance. Recently, plentiful publications have focused on the effects of pretreatment on ARGs removal, but the contradictory results are often obtained, and a comprehensive understanding of the research progress and mechanisms is essential. This study summarizes various pretreatment techniques for improving AD efficiency and ARGs reduction, investigates promising performance in ARGs removal when pretreatments combined with AD, and analyzes the potential mechanisms accounting for ARGs fates. The results showed that although thermal hydrolysis pretreatment showed the best performance in ARGs reduction during the pretreatment process, the significant rebound of ARGs would occur in the subsequent AD process. Conversely, ozone pretreatment and alkali pretreatment had no significant effect on ARGs abundance in the pretreatment stage, but could enhance ARGs removal by 15.6-24.3 % in the subsequent AD. Considering the efficiency and economic effectiveness, free nitrous acid pretreatment would be a promising and feasible option, which could enhance methane yield and ARGs removal by up to 27 % and 74.5 %, respectively. Currently, the factors determining ARGs fates during pretreatment and AD processes included the shift of microbial community, mobile genetic elements (MGEs), and environmental factors. A comprehensive understanding of the relationship between the fate of ARGs and pretreatment technologies could be helpful for systematically evaluating various pretreatments and facilitating the development of emerging and effective pretreatment techniques. Moreover, given the effectiveness, economic efficiency and environmental safety, we called for the applications of modern analysis approaches such as metagenomic and machine learning on the optimization of pretreatment conditions and revealing underlying mechanisms.
Collapse
Affiliation(s)
- Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Boqun Shao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lang Lei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China.
| |
Collapse
|
21
|
Tian Y, Li J, Meng J, Li J. High-yield production of single-cell protein from starch processing wastewater using co-cultivation of yeasts. BIORESOURCE TECHNOLOGY 2023; 370:128527. [PMID: 36572157 DOI: 10.1016/j.biortech.2022.128527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Single-cell protein (SCP) from potato starch processing wastewater (PSPW) shows great potential against protein scarcity and unsustainable production of plant and animal proteins. In this study, five yeasts were selected to conduct a series of PSPW fermentation for obtaining high-value SCP by optimizing fermentation conditions. The yeast combination was optimized as Candida utilis, Geotrichum candidum and Candida tropicalis with the volume proportion of 9:5:1. The inoculum size, temperature, rotation speed and initial pH were optimized at 12 %, 24℃, 200 r·min-1 and ∼ 4.13 (natural pH), respectively. At the optimal conditions, SCP yield of 3.06 g·L-1 and water-soluble protein of 17.32 % were obtained with the chemical oxygen demand removal of 56.9 %. A resource-recycling process of PSPW was proposed by coupling yeast fermentation and up-flow anaerobic sludge blanket (UASB) treatment to achieve simultaneous high-level organic removal and SCP production, which could be a promising alternative technology for PSPW treatment.
Collapse
Affiliation(s)
- Yajie Tian
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jia Meng
- National-Local Joint Engineering Research Center for Biomass Energy Development and Utilization, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|