1
|
Chen H, Sheng J, Ye Q, Li J, Yu X, Wu H, Zhang R, Zhao S, Zou X, Li X, Xue G, Yuan B. Efficient resource recovery from food waste digestate via hydrothermal treatment and its application as organic fertilizer. BIORESOURCE TECHNOLOGY 2025; 416:131742. [PMID: 39542059 DOI: 10.1016/j.biortech.2024.131742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
With the continuous recognition of green, organic and non-polluting products, organic fertilizers play an increasingly vital role in agricultural production. Among them, hydrochar-based organic fertilizer has attracted widespread attention recently. The present study evaluated the potential of digestate from anaerobic digestion of food waste for the preparation of hydrochar-based organic fertilizer by straw-based, FeCl3-catalyzed hydrothermal carbonization (HTC). Under the optimal conditions, a hydrochar-based organic fertilizer with > 25 wt% humus content and limited pollution risk was successfully prepared. The pot experiment demonstrated the feasibility of improving the physicochemical properties of red soil and promoting crop growth after adding hydrochar in place of commercial fertilizer. In addition, the function of zeolite on nutrient recovery in hydrothermal liquid (HTL) was analyzed, and preparing the slow-release organic fertilizer by mixing the nutrient-rich zeolite with hydrochar in a mass ratio of 1:4 was proposed. This work has significant implications for achieving the efficient resource recovery of digestate.
Collapse
Affiliation(s)
- Hong Chen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Jun Sheng
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Qinhui Ye
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jun Li
- Marine Design & Research Institute of China, Zhongshan Nanyi Road, Shanghai 200011, China
| | - Xin Yu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Hanyue Wu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Rui Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Shiyi Zhao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, 28 Xueyuan Road, Ji'an 343009, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Baoling Yuan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
2
|
Liu M, Li H, Fu Q, Li T, Hou R, Xue P, Yang X, Li M, Liu D. Critical role of soil-applied molybdenum dioxide composite biochar material in enhancing Cr(VI) remediation process: The driver of Fe(III)/Fe(II) redox cycle. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123246. [PMID: 39541815 DOI: 10.1016/j.jenvman.2024.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Heavy metal contamination of agricultural land due to sewage irrigation, over-application of fertilizers and pesticides, and industrial activities. Biochar, due to its rich functional groups and excellent electrochemical performance, is used for the remediation of heavy metal-contaminated farmland. However, the remediation mechanism remains uncertain due to the influence of minerals and multi-element composite pollution on soil. Therefore, introducing transition metal oxide MoO2 to prepare biochar composite remediation materials enhances the adsorption and reduction of soil Cr (Ⅵ). This study compared the differences in Cr (Ⅵ) improvement under different pollution systems and pH conditions and explored the potential mechanism of Fe (Ⅲ)/Fe (Ⅱ) redox cycling in Cr (Ⅵ) remediation. The results showed that both biochar MoO2 ball-milling composite (BC + M) and biochar-loaded MoO2 (BC/M) retained the original biochar (BC) remediation method for Cr (Ⅵ). Among them, the remediation of BC/M was the most stable, with the maximum remediation value ranging from approximately 6.52 to 58.58 mg/kg. In different pollution systems, Cd and Pb exhibited competitive adsorption toward Cr (Ⅵ), but they enhanced Cr (Ⅵ) remediation by promoting adsorption and self-complexation. In acidic conditions (pH = 4), BC/M showed the best remediation effect, with a reduction kinetic constant of 34.61 × 10-3 S-1 and a maximum adsorption capacity of 61.64 mg/g. Fe (Ⅲ)/Fe (Ⅱ) redox cycling accelerated the reduction of Cr (Ⅵ) (R2 = 0.81), and MoO2 promoted the Fe (Ⅲ)/Fe (Ⅱ) redox cycle. BC/M enhanced the Fe (Ⅱ) formation efficiency by 66.39% and 71.81% compared to BC + M and BC at pH = 4. The introduction of MoO2 and biochar composite materials enhanced the reduction process of Cr (Ⅵ), with BC/M achieving the optimal remediation level. This study reveals the potential mechanisms of MoO2 and biochar composite materials in soil Cr (Ⅵ) remediation, providing a reference and insight for the preparation of Cr (Ⅵ) remediation materials and the treatment of contaminated farmland.
Collapse
Affiliation(s)
- Mingxuan Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Heng Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ping Xue
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xuechen Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Mo Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Dong Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
3
|
Yao S, Zhou B. Enhancing phytoremediation of cadmium and arsenic in alkaline soil by Miscanthus sinensis: A study on the synergistic effect of endophytic fungi and biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171458. [PMID: 38438035 DOI: 10.1016/j.scitotenv.2024.171458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Endophytic fungi (Trichoderma harzianum (TH) and Paecilomyces lilacinus (PL)) showed potential in phytoremediation for soils contaminated with potentially toxic elements (PTEs (Cd and As)). However, their efficiency is limited, which can be enhanced with the assistance of biochar. This study sought to investigate the effects of TH at two application rates (T1: 4.5 g m-2; T2: 9 g m-2), PL at two application rates (P1: 4.5 g m-2; P2: 9 g m-2), in conjunction with biochar (BC) at 750 g m-2 on the phytoremediation of PTEs by Miscanthus sinensis (M. sinensis). The results showed that the integration of endophytic fungi with biochar notably enhanced the accumulation of Cd and As in M. sinensis by 59.60 %-114.38 % and 49.91 %-134.60 %, respectively. The treatments T2BC and P2BC emerged as the most effective. Specifically, the P2BC treatment significantly enhanced the soil quality index (SQI > 0.55) across all examined soil layers, markedly improving the overall soil condition. It was observed that T2BC treatment could elevate the SQI to 0.56 at the 0-15 cm depth. The combined amendment shifted the primary influences on plant PTEs accumulation from fungal diversity and soil nutrients to bacterial diversity and the availability of soil PTEs. Characteristic microorganisms identified under the combined treatments were RB41 and Pezizaceae, indicating an increase in both bacterial and fungal diversity. This combination altered the soil microbial community, influencing key metabolic pathways. The combined application of PL and biochar was superior to the TH and biochar combination for the phytoremediation of M. sinensis. This approach not only enhanced the phytoremediation potential but also positively impacted soil health and microbial community, suggesting that the synergistic use of endophytic fungi and biochar is an effective strategy for improving the condition of alkaline soils contaminated with PTEs.
Collapse
Affiliation(s)
- Shaoxiong Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| |
Collapse
|
4
|
Wu J, Fu X, Zhao L, Lv J, Lv S, Shang J, Lv J, Du S, Guo H, Ma F. Biochar as a partner of plants and beneficial microorganisms to assist in-situ bioremediation of heavy metal contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171442. [PMID: 38453085 DOI: 10.1016/j.scitotenv.2024.171442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Synergistic remediation of heavy metal (HM) contaminated soil using beneficial microorganisms (BM) and plants is a common and effective in situ bioremediation method. However, the shortcomings of this approach are the low colonisation of BM under high levels of heavy metal stress (HMS) and the poor state of plant growth. Previous studies have overlooked the potential of biochar to mitigate the above problems and aid in-situ remediation. Therefore, this paper describes the characteristics and physicochemical properties of biochar. It is proposed that biochar enhances plant resistance to HMS and aids in situ bioremediation by increasing colonisation of BM and HM stability. On this basis, the paper focuses on the following possible mechanisms: specific biochar-derived organic matter regulates the transport of HMs in plants and promotes mycorrhizal colonisation via the abscisic acid signalling pathway and the karrikin signalling pathway; promotes the growth-promoting pathway of indole-3-acetic acid and increases expression of the nodule-initiating gene NIN; improvement of soil HM stability by ion exchange, electrostatic adsorption, redox and complex precipitation mechanisms. And this paper summarizes guidelines on how to use biochar-assisted remediation based on current research for reference. Finally, the paper identifies research gaps in biochar in the direction of promoting beneficial microbial symbiotic mechanisms, recognition and function of organic molecules, and factors affecting practical applications.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Xiaofan Fu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jing Shang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jiaxuan Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Shuxuan Du
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Haijuan Guo
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Zhu Z, Huang Y, Yu M, Cheng H, Li Z, Xiao Y, Xu W. Effect of NaCl on the migration of heavy metals during the non-isothermal and isothermal combustion of sludge: Static and dynamic analyses. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133699. [PMID: 38368680 DOI: 10.1016/j.jhazmat.2024.133699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Chlorine has been proven to promote the volatilization of heavy metals during sludge combustion. This work compared the migration of heavy metals with NaCl addition under different combustion modes at 900 ℃. The combustion modes have less effect on the mineral phase of residues, but the volatilization and toxicity reduction of heavy metals were more pronounced under isothermal combustion. The mineral evolution, release of Cl, and migration of metals were dynamically tracked by the continuous sampling at different combustion time under isothermal combustion. It was found that the volatile matter and fixed carbon burned almost simultaneously, and the addition of NaCl promoted them. As combustion proceeded, the minerals gradually crystallized and the heavy metals were volatilized due to the direct and indirect chlorination. Meanwhile, the chlorination and volatilization of Zn was less than that of Pb due to its effective solidification by minerals. The combination of the adsorption by exposed char and solidification by sludge minerals influenced the dynamic leaching behavior of metals. These results will help understand the interactions between heavy metals, inorganic Cl, and Fe-Si-Al minerals during combustion, which will further help optimize the combustion strategy for both stabilization or enrichment of heavy metals when inorganic chlorine exists.
Collapse
Affiliation(s)
- Zhicheng Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yaji Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Mengzhu Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Haoqiang Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Zhiyuan Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yixuan Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Wentao Xu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Wang K, Yuan X, Liang W, Yao S, Li J, Wang C, Yue G. Red mud-based perovskite oxygen carrier preparation for chemical looping gasification of municipal sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:169-176. [PMID: 38325017 DOI: 10.1016/j.wasman.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Chemical looping gasification (CLG) is a promising technology that utilizes lattice oxygen for partial oxidation of solid organic waste to produce high-quality syngas. The utilization of low-cost and high-performance oxygen carriers (OCs) is important for the success of this technology. The red mud from aluminum production was mixed with calcium and manganese oxides to prepare CaMn0.5Fe0.5O3-δ perovskite OCs. The comparative redox tests were carried out to analyze the reactivity using a thermogravimetric analyzer (TGA). Multiple cycle CLG experiments were conducted on a wet municipal sludge in a lab-scale fluidized bed to produce the hydrogen-rich gas. The results showed that the CaMn0.5Fe0.5O3-δ-washed demonstrated higher oxygen transfer capacity and better cycling stability with a maximum weight loss of 7.3096 %. After the 5th cycle in CLG, the syngas obtained using CaMn0.5Fe0.5O3-δ-washed maintained a H2 volume fraction exceeding 40%. However, an increase in CO2 production was also observed, which could be due to the catalytic effect of MnO in the OC on the steam-reforming reaction. The XRD curves showed that fresh CaMn0.5Fe0.5O3-δ-washed exhibited prominent diffraction peaks characteristic of perovskite. It was observed that after undergoing 5 cycles, the presence of iron calcium silicate structures containing Mn became evident due to the attachment of sludge ash, leading to the increased impurities on the surface of OCs with a decrease in the specific surface area. Additionally, some of the reacted OC particles exhibited a hollow structure, facilitating the fluidization. This preliminary study provides the basis for the improvement of the OC performance in sludge gasification.
Collapse
Affiliation(s)
- Kun Wang
- Clean Energy Lab, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoying Yuan
- Clean Energy Lab, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wenzheng Liang
- Clean Energy Lab, Shandong University of Science and Technology, Qingdao 266590, China
| | - Sheng Yao
- Clean Energy Lab, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jialu Li
- Clean Energy Lab, Shandong University of Science and Technology, Qingdao 266590, China
| | - Cuiping Wang
- Clean Energy Lab, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Guangxi Yue
- Department of Energy and Power Engineering, Tsinghua University, Beijing,100084
| |
Collapse
|
7
|
Zhou W, Li M, Liu Y. Revealing the generation of reactive oxygen species in hydrochar and pyrochar: Insight into rational regulation of free radicals and catalytic mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119876. [PMID: 38157577 DOI: 10.1016/j.jenvman.2023.119876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The removal of organic pollutants by biochar has been extensively studied. However, the differences in the removal mechanisms of contaminants by biochar obtained from different preparation techniques have not been thoroughly elucidated. In this study, the catalytic performances of hydrochar (HC) and pyrochar (PC) were compared in the dark and light. Owing to more persistent free radicals (PFRs), greater defects and stronger charge transfer ability on the surface, PC could produce a certain concentration of superoxide radicals (•O2-) even in the dark, making its degradation efficiency for benzoic acid (BA) 11% higher than that of HC. On the contrary, when the light was turned on, HC rather than PC can generate a higher amount of hydroxyl radical (•OH), resulting in an 11% higher degradation efficiency of BA compared to PC. The improvement of catalytic performance in HC originated from its oxygen-containing functional groups (OFGs), which was beneficial for its effective production of singlet oxygen (1O2) and ·OH under light exposure. For PC, its photocatalytic activity depended mainly on the formation of 1O2 induced by the triplet of DOM (dissolved organic matter), but the lack of oxidative ·OH in its system leads to a lower degradation efficiency than that of HC. To prove the universal applicability of this rule for biochar materials, HC and PC materials obtained from soybean residue were also prepared for degrading BA. This work is devoted to an in-depth exploration of the catalytic activation mechanism of biochar obtained by different technological methods, and can create conditions for the generation of more dominant reactive oxygen species (ROS) on biochar, thus providing the guidance for environmental remediation.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Mengke Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
8
|
Liu C, Li H, Ni JQ, Zhuo G, Chen W, Zheng Y, Zhen G. Effect of municipal sludge-based biochar produced at different pyrolysis temperatures on humification and oxytetracycline degradation of pig manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167816. [PMID: 37838041 DOI: 10.1016/j.scitotenv.2023.167816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
This study explored the influence of pyrolysis temperatures on the properties of municipal sludge-based biochar (MSB) and evaluated the impact of MSB on humification and oxytetracycline (OTC, a broad-spectrum antibiotic) degradation in pig manure composting. Three types of MSB were produced from sewage sludge pyrolyzed at 300 °C, 500 °C, and 700 °C, respectively. Results indicated that pyrolysis temperature adjusted the formation sequence of the functional groups in MSB, and higher pyrolysis temperatures enriched the aromaticity of the biochar and augmented the concentrations of humic precursor compounds. The MSB addition to pig manure composting enhanced the peak temperature and prolonged the thermophilic phase. Moreover, the MSB addition significantly increased the HI (humic acid/fulvic acid) values (1.6-2.57) compared with the control (1.28), with a more pronounced effect observed at higher biochar pyrolysis temperatures. Furthermore, the MSB reduced the half-life of OTC degradation (1.47-2.44 d) during composting, accelerating its degradation compared with the control (2.66 d). The study demonstrated that the MSB provided a substantial amount of humic precursor materials into the composting process while also expediting the degradation of organic matter, thereby enhancing the humification process. Moreover, the extended duration of the thermophilic phase accelerated the degradation of OTC and shortened its half-life. Notably, the MSB at 700 °C had the best performance compared with other MSBs.
Collapse
Affiliation(s)
- Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China
| | - Haimin Li
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China
| | - Ji-Qin Ni
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guihua Zhuo
- Fujian Provincial Academy of Environmental Science, Fuzhou 350013, China
| | - Wan Chen
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China
| | - Yuyi Zheng
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China.
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Yang L, Zhao J, Huang Q, Wang J, Xu C, Xu Y, Liu L. Release behavior of fertilizers and heavy metals from iron-loaded sludge biochar in the aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122163. [PMID: 37429492 DOI: 10.1016/j.envpol.2023.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
In this study, the release behavior of fertilizers (NH4+-N, PO43- and K) and heavy metals (Mn, Zn, Ni, Cu, Pb and Cr) from iron-loaded sludge biochar (ISBC) was investigated to evaluated the feasibility and risks of ISBC as a slow release fertilizer. Their release capacity was significantly enhanced with decreasing initial pH, increasing solid-liquid ratio (RS-L) and rising temperature (p < 0.05). When the initial pH, RS-L and temperature were separately 5 (fertilizers)/1 (heavy metals), 1:5 and 298 K, the final concentrations of NH4+-N, PO43-, K, Mn, Zn and Ni were 6.60, 14.13, 149.4, 53.69, 72.56, and 1.01 mg L-1, while the maximum concentrations of Cu, Pb and Cr were 0.94, 0.77, and 0.22 mg L-1, respectively. Due to the tiny difference between the R2 values, revised pseudo-first-order and pseudo-second-order kinetics models described their release behavior well, suggesting that physical and chemical interactions played an important role. Activation energies greater than 40 kJ mol-1 indicated that the rate-controlling steps of the release of NH4+-N, PO43- and Ni were chemical reactions, while chemical reactions and diffusion together determined the release rates of K, Mn, Zn, Cu, Pb and Cr because their activation energies were in the range of 20-40 kJ mol-1. The increasingly negative ΔG and positive ΔH and ΔS suggested that their release was a spontaneous (except Cr) and endothermic process with an increase of randomness between the solid-liquid interface. The release efficiency of NH4+-N, PO43- and K were in the ranges of 28.21%-53.97%, 2.09%-18.06% and 39.46%-66.14%, respectively. Meanwhile, the pollution index and evaluation index of heavy metals were in the ranges of 33.31-227.4 and 4.64-29.24, respectively. In summary, ISBC could be used as a slow-release fertilizer with low risk when the RS-L was less than 1:40.
Collapse
Affiliation(s)
- Lijiao Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jirong Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; School of Civil and Hydraulic Engineering, Xichang University, Xichang, 615000, China.
| | - Qingxia Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jinchao Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Chengtao Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
10
|
Li K, Chen J, Sun W, Zhou H, Zhang Y, Yuan H, Hu A, Wang D, Zhang W. Coupling effect of DOM and microbe on arsenic speciation and bioavailability in tailings soil after the addition of different biologically stabilized sludges. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132048. [PMID: 37453348 DOI: 10.1016/j.jhazmat.2023.132048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Dissolved organic matter (DOM) and microbes co-mediate the transformation of heavy metals in soil. However, few previous studies have investigated the effects of interaction between DOM and microbes on the transformation and bioavailability of heavy metals in tailings soil at the molecular level after the addition of organic wastes. This study used co-occurrence network analysis based on Fourier-transform ion cyclone resonance mass spectrometry and high-throughput sequencing to investigate the molecular mechanisms of different bio-stabilized sludge addition on arsenic fraction transformation and bioavailability in tailings soil. It was found that sludge amendments decreased the arsenic bioavailable fraction from 3.62% to 1.74% and 1.68% and promoted humification of DOM in soil. The extra inorganic salt ions introduced with sludge desorb the adsorbed As(V) into soil solution. Specifically, bio-stabilized sludge increased the contents of labile compounds that provided nutrients for microbial metabolism and shaped the microbial community composition into a more copiotrophic state, which increased the abundance of As(V)-reducing bacteria and then converted the As(V) into As(III) and precipitated as As2S3. This work innovatively explores the transformation mechanisms of As fractions through the perspectives of microbial community and DOM molecular characterization, providing an important basis for the remediation of As-contaminated soil using biosolids.
Collapse
Affiliation(s)
- Kewei Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Jun Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Wenjin Sun
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Hao Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Hao Yuan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Aibin Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
11
|
Li S, Li M, Zheng H, Xiong X, Deng H, Shi Y, Xia D. Enhancement of peroxymonosulfate activation by humic acid-modified sludge biochar: Role of singlet oxygen and electron transfer pathway. CHEMOSPHERE 2023; 329:138690. [PMID: 37059194 DOI: 10.1016/j.chemosphere.2023.138690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Sludge biochar (SBC) modified by humic acid (HA) was used to activate peroxymonosulfate (PMS) for degrading naproxen (NPX). HA-modified biochar (SBC-50HA) boosted the catalytic performance of SBC for PMS activation. The SBC-50HA/PMS system had good reusability and structural stability, and was unaffected by complex water bodies. The results of Fourier transform infrared (FTIR) and X-ray diffraction spectroscopy (XPS) indicated that graphitic carbon (CC), graphitic N, and C-O on SBC-50HA played a vital part on the removal of NPX. The key role of non-radical pathways such as singlet oxygen (1O2) and electron transfer in the SBC-50HA/PMS/NPX system was verified by inhibition experiments, electron paramagnetic resonance (EPR), electrochemistry, and PMS consumption. The possible degradation pathway of NPX was proposed by density functional theory (DFT) calculations, and the toxicity of NPX and its degradation intermediates were evaluated.
Collapse
Affiliation(s)
- Shasha Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Meng Li
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China; Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Haozhan Zheng
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Xiaorong Xiong
- School of Computing, Huanggang Normal University, Huanggang, 438000, PR China
| | - Huiyuan Deng
- Hubei Provincial Spatial Planning Research Institute, Wuhan, 430064, PR China
| | - Yintao Shi
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| |
Collapse
|
12
|
Wu J, Hua Y, Feng Y, Xie W. Nitrated hydrochar reduce the Cd accumulation in rice and shift the microbial community in Cd contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118135. [PMID: 37216875 DOI: 10.1016/j.jenvman.2023.118135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Rice grown on Cd-contaminated soil may accumulate Cd in grain, which is extremely harmful to human health. Several managements are developed to reduce the Cd load in rice, while in-situ immobilization by soil amendments has been attractive for its feasibility. Waste-derived hydrochar (HC) has been shown effective at immobilizing Cd in soil. However, potential plant negative effects and huge application amount are crucial to resolving in extensive application of HC. Nitric acid ageing may be an effective method to deal with these problems. In this paper, HC and nitrated hydrochar (NHC) were added to the Cd-contaminated soil at rates of 1% and 2% in a rice-soil column experiment. Results showed that NHC markedly promoted root biomass of rice by 58.70-72.78%, whereas HC had effects of 35.86-47.57%. Notably, NHC at 1% reduced the accumulation of Cd in rice grain, root and straw by 28.04%, 15.08% and 11.07%, respectively. A consistent decrease of 36.30% in soil EXC-Cd concentration was caused by NHC-1%. Following soil microbial community was shifted greatly under HC and NHC applications. The relative abundance of Acidobacteria was decreased by 62.57% in NHC-2% and by 56.89% in HC-1%. Nevertheless, Proteobacteria and Firmicutes were promoted by NHC addition. In contrast to HC, co-occurrence network of dominated bacteria was more complex and centralized generated by NHC. Key bacteria in that metabolic network of NHC such as Anaerolineae and Archangiaceae played key roles in Cd immobilization. These observations verified that NHC was more efficient to decrease Cd accumulation in rice and could alleviate the negative roles to plant by microbial changings in community composition and network. It could provide an enrichment of paddy soil microbial responds to the interaction of NHC with Cd and lay a foundation for the remediation of Cd-contaminated soil by NHC.
Collapse
Affiliation(s)
- Jing Wu
- Department of Environmental Science & Engineering, School of Energy & Environment, Anhui University of Technology, Maanshan, 243002, China
| | - Yun Hua
- Key Laboratory for Crop & Animal Integrated Farming of Ministry of Agriculture & Rural Affairs, Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - YanFang Feng
- Key Laboratory for Crop & Animal Integrated Farming of Ministry of Agriculture & Rural Affairs, Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - WenPing Xie
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|