1
|
Queirós V, Leite C, Azeiteiro UM, Belloso MC, Soares AMVM, Santos JL, Alonso E, Barata C, Freitas R. Salinity influence on Mytilus galloprovincialis exposed to antineoplastic agents: a transcriptomic, biochemical, and histopathological approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125135. [PMID: 39426480 DOI: 10.1016/j.envpol.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Nowadays, aquatic species face a variety of environmental risks associated with pharmaceutical consumption. More specifically, the increased number of cancer patients has been accompanied by an increased consumption of antineoplastic drugs, such as ifosfamide (IF) and cyclophosphamide (CP). These drugs have been found in aquatic ecosystems, raising concerns about their impact, especially on estuarine species, as marine waters are the final recipients of continental effluents. Simultaneously, predicted climatic changes, such as salinity shifts, may threaten organisms. Considering this, the present research aims to investigate the combined effects of IF and CP, and salinity shifts. For this, a transcriptomic, biochemical, and histopathological assessment was made using the bivalve species Mytilus galloprovincialis exposed for 28 days to IF and CP (500 ng/L), individually, at different salinity levels (20, 30, and 40). IF and CP up-regulated metabolism-related gene cyp3a1, with CP also affecting abcc gene, showing minimal salinity impact and highlighting the importance of these metabolic routes in mussels. Salinity shifts affected the transcription of genes related to apoptosis and cell cycle growth, such as p53, as well as the aerobic metabolism, the antioxidant and biotransformation mechanisms. These findings indicate mussels' high metabolic adaptability to osmotic stress. Under CP exposure and low salinity, mussels exhibited increased cellular damage and histopathological effects in digestive gland tubules, revealing detrimental effects towards M. galloprovincialis, and suggesting that a metabolic slowdown and activation of antioxidant mechanisms helped prevent oxidative damage at the control and high salinities. Overall, results reinforce the need for antineoplastics ecotoxicological risk assessment, especially under foreseen climate change scenarios.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carla Leite
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Casado Belloso
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Horng JL, Hu YH, Chen H, Chou MY. Impacts of an environmental ototoxic pollutant on fish fighting behaviors. Comp Biochem Physiol C Toxicol Pharmacol 2024; 289:110103. [PMID: 39653098 DOI: 10.1016/j.cbpc.2024.110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Numerous environmental pollutants exhibit ototoxicity and cause damage to the lateral line structures in fish, including the neuromast and its hair cells. The lateral line is used to detect hydrodynamic changes and is thought to play a significant role in aggressive interactions. Fighting behaviors in fish are crucial for establishing social hierarchy and obtaining limited resources. In this study, we ablated the function of hair cells using a commonly used ototoxin, neomycin, to evaluate the impact of this ototoxic pollutant on fighting behavior through damaging the lateral line. Our results showed that the number of wins and the duration of dyadic fight behavior decreased in zebrafish with lateral line ablation. These zebrafish also exhibited increased anxiety and biting frequencies. On the other hand, social preferences and fitness were not affected in lateral line-ablated zebrafish. In conclusion, the lateral line mechanosensory system is crucial for fish to gather sufficient information and make correct decisions during conflicts and fighting behaviors. Impairment of hair cell function can affect aggressive behaviors and decision-making in fish, subtly altering their behavioral patterns and leading to significant impacts on the aquatic ecosystem.
Collapse
Affiliation(s)
- Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Yu-Huan Hu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hsi Chen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
3
|
Perkola N, Äystö L, Hagström M, Kauppi S, Fjäder P. Pharmaceutical residues in plastic tablet containers: Impacts on recycling and the environment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:159-165. [PMID: 39197184 DOI: 10.1016/j.wasman.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
High-density polyethylene tablet containers are potentially very suitable for recycling, but no data are publicly available on active pharmaceutical ingredients' (API) residues in empty containers and if they affect the recyclability of pharmaceutical packaging. Plastic tablet containers represented 15 % of pharmaceutical primary packages sold in Finland in 2020 and 2021, equalling 350 tons of plastic per year. We studied the residues of six APIs remaining or adsorbed inside plastic tablet containers. The effects of tablet coating and usage in dose-dispensing services versus households on the API residues, and rinsing water's ability to remove the residues were evaluated. Up to 940,000 µg/kg of carbamazepine was detected in a container of uncoated carbamazepine tablets. The residues from coated tablets containing the other five APIs were 2.4-6,100 µg/kg. Ten times higher paracetamol residues were obtained in containers from household use than from a dose-dispensing unit. Rinsing can remove most API residues, but it leads to environmental emissions. For example, rinsing water can double carbamazepine emissions from a Finnish wastewater treatment plant where plastic packaging waste effluents are processed. Considering the API concentrations, decreasing residues by rinsing and dilution with other plastic packaging waste, the residues of the studied APIs are not considered an obstacle to the recycling of plastic tablet containers. However, further research is needed on more toxic APIs and the fate of APIs in the plastics recycling process.
Collapse
Affiliation(s)
- Noora Perkola
- Finnish Environment Institute, Circular Economy Solutions Unit, Latokartanonkaari 11 00790, Helsinki, Finland.
| | - Lauri Äystö
- Finnish Environment Institute, Circular Economy Solutions Unit, Latokartanonkaari 11 00790, Helsinki, Finland.
| | - Marja Hagström
- Finnish Environment Institute, Research Infrastructure Unit, Mustialankatu 3 00790, Helsinki, Finland.
| | - Sari Kauppi
- Finnish Environment Institute, Circular Economy Solutions Unit, Latokartanonkaari 11 00790, Helsinki, Finland.
| | - Päivi Fjäder
- Finnish Environment Institute, Circular Economy Solutions Unit, Latokartanonkaari 11 00790, Helsinki, Finland.
| |
Collapse
|
4
|
Liu CH, Ho YC, Lee WC, Huang CY, Lee YK, Hsieh CB, Huang NC, Wu CC, Nguyen NUN, Hsu CC, Chen CH, Chen YC, Huang WC, Lu YY, Fang CC, Chang YC, Chang CL, Tsai MK, Wen ZH, Li CZ, Li CC, Chuang PK, Yang SM, Chu TH, Huang SC. Sodium-Glucose Co-Transporter-2 Inhibitor Empagliflozin Attenuates Sorafenib-Induced Myocardial Inflammation and Toxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:4844-4858. [PMID: 38884142 DOI: 10.1002/tox.24362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Environmental antineoplastics such as sorafenib may pose a risk to humans through water recycling, and the increased risk of cardiotoxicity is a clinical issue in sorafenib users. Thus, developing strategies to prevent sorafenib cardiotoxicity is an urgent work. Empagliflozin, as a sodium-glucose co-transporter-2 (SGLT2) inhibitor for type 2 diabetes control, has been approved for heart failure therapy. Still, its cardioprotective effect in the experimental model of sorafenib cardiotoxicity has not yet been reported. Real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to study the effect of sorafenib exposure on cardiac SGLT2 expression. The impact of empagliflozin on cell viability was investigated in the sorafenib-treated cardiomyocytes using Alamar blue assay. Immunoblot analysis was employed to delineate the effect of sorafenib and empagliflozin on ferroptosis/proinflammatory signaling in cardiomyocytes. Ferroptosis/DNA damage/fibrosis/inflammation of myocardial tissues was studied in mice with a 28-day sorafenib ± empagliflozin treatment using histological analyses. Sorafenib exposure significantly promoted SGLT2 upregulation in cardiomyocytes and mouse hearts. Empagliflozin treatment significantly attenuated the sorafenib-induced cytotoxicity/DNA damage/fibrosis in cardiomyocytes and mouse hearts. Moreover, GPX4/xCT-dependent ferroptosis as an inducer for releasing high mobility group box 1 (HMGB1) was also blocked by empagliflozin administration in the sorafenib-treated cardiomyocytes and myocardial tissues. Furthermore, empagliflozin treatment significantly inhibited the sorafenib-promoted NFκB/HMGB1 axis in cardiomyocytes and myocardial tissues, and sorafenib-stimulated proinflammatory signaling (TNF-α/IL-1β/IL-6) was repressed by empagliflozin administration. Finally, empagliflozin treatment significantly attenuated the sorafenib-promoted macrophage recruitments in mouse hearts. In conclusion, empagliflozin may act as a cardioprotective agent for humans under sorafenib exposure by modulating ferroptosis/DNA damage/fibrosis/inflammation. However, further clinical evidence is required to support this preclinical finding.
Collapse
Affiliation(s)
- Ching-Han Liu
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Department of Internal Medicine, Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Yi Huang
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Nan-Chieh Huang
- Division of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chiu-Hua Chen
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chieh Fang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chen-Lin Chang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Kai Tsai
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiao-Zhu Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chiao-Ching Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Surgery, Division of Urology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Po-Kai Chuang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Chung Huang
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Pingtung Branch of Kaohsiung Armed Forces General Hospital, Pingtung, Taiwan
| |
Collapse
|
5
|
Paiva R, Ferreira CP, Lima D, Mattos JJ, Pessatti TB, Tisca JF, Saldaña-Serrano M, Nogueira DJ, Bebianno MJ, Bainy ACD. Tamoxifen induces biochemical responses in Pacific oysters Magallana gigas (Thunberg, 1793) at environmentally relevant concentrations. MARINE POLLUTION BULLETIN 2024; 206:116696. [PMID: 39042981 DOI: 10.1016/j.marpolbul.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The activities of catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), and glutathione-S-transferase (GST) were evaluated in the gills (GI) and digestive gland (DG) of Magallana gigas oysters exposed to tamoxifen (TAM) at environmental concentrations of 10 and 100 ng L-1 for 1 and 4 days. A higher CAT activity in the GI and DG and higher GPx activity only in the DG was observed of oysters exposed to both concentrations after 1 day. Furthermore, a significant increase in GR and G6PDH, was detected in the DG after 1 day of exposure to 10 ng L-1 and only G6PDH activity increase after 1 day of exposure to 10 ng L-1 in the GI. This suggests that the DG is a tissue more sensitive to TAM exposure and was confirmed with the individual Integrated Biomarker Response version 2 index (IBRv2i), highlighting the acute stress caused by TAM and a cellular adaptation.
Collapse
Affiliation(s)
- Raphaella Paiva
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | | | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center-NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Tomás Bohn Pessatti
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, SLU, Uppsala, 750 07, Sweden
| | - Juliana Fabrício Tisca
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Diego José Nogueira
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Maria João Bebianno
- Centre for Marine and Environmental Research of the University of Algarve- CIMA/ARNET - Infrastructure Network in Aquatic Research, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil.
| |
Collapse
|
6
|
Hadkar VM, Mohanty C, Selvaraj CI. Biopolymeric nanocarriers in cancer therapy: unleashing the potency of bioactive anticancer compounds for enhancing drug delivery. RSC Adv 2024; 14:25149-25173. [PMID: 39139249 PMCID: PMC11317881 DOI: 10.1039/d4ra03911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Effective cancer treatment is becoming a global concern, and recent developments in nanomedicine are essential for its treatment. Cancer is a severe metabolic syndrome that affects the human population and is a significant contributing factor to deaths globally. In science, nanotechnology offers rapidly developing delivery methods for natural bioactive compounds that are becoming increasingly prominent and can be used to treat diseases in a site-specific way. Chemotherapy and radiotherapy are conventional approaches for preventing cancer progression and have adverse effects on the human body. Many chemically synthesized drugs are used as anticancer agents, but they have several side effects; hence, they are less preferred. Medicinal plants and marine microorganisms represent a vast, mostly untapped reservoir of bioactive compounds for cancer treatment. However, they have several limitations, including nonspecific targeting, weak water solubility and limited therapeutic potential. An alternative option is the use of biopolymeric nanocarriers, which can generate effective targeted treatment therapies when conjugated with natural anticancer compounds. The present review focuses on biopolymeric nanocarriers utilizing natural sources as anticancer drugs with improved tumor-targeting efficiency. This review also covers various natural anticancer compounds, the advantages and disadvantages of natural and synthetic anticancer compounds, the problems associated with natural anticancer drugs and the advantages of biopolymeric nanocarriers over synthetic nanocarriers as drug delivery agents. This review also discusses various biopolymeric nanocarriers for enhancing the controlled delivery of anticancer compounds and the future development of nanomedicines for treating cancer.
Collapse
Affiliation(s)
- Vrushali Manoj Hadkar
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chirasmita Mohanty
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Sciences and Advanced Learning (VAIAL), VIT Vellore 632014 Tamil Nadu India
| |
Collapse
|
7
|
Murugan C, Yang S, Park S. Modulating nanostructures with polyvinylpyrrolidone: Design and development of a porous, biocompatible, and pH-Stable core-shell magnetic microrobot for demonstrating drug absorption from wastewater. CHEMOSPHERE 2024; 362:142590. [PMID: 38871195 DOI: 10.1016/j.chemosphere.2024.142590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Increased antineoplastic drug concentrations in wastewater stem from ineffective treatment plants and increased usage. Although microrobots are promising for pollutant removal, they face hurdles in developing a superstructure with superior adsorption capabilities, biocompatibility, porosity, and pH stability. This study focused on adjusting the PVP concentration from 0.05 to 0.375 mM during synthesis to create a favorable CMOC structure for drug absorption. Lower PVP concentrations (0.05 mM) yielded a three-dimensional nanoflower structure of CaMoO4 and CuS nanostructures, whereas five-fold concentrations (0.25 mM) produced a porous structure with a dense CuS core encased in a transparent CaMoO4 shell. The magnetically movable and pH-stable COF@CMOC microrobot, achieved by attaching CMOC to cobalt ferrite (CoF) NPs, captured doxorubicin efficiently, with up to 57 % efficiency at 200 ng/mL concentration for 30 min, facilitated by electrostatic interaction, hydrogen bonding, and pore filling of DOX. The results demonstrated that DOX removal through magnetic motion showed superior performance, with an estimated improvement of 57% compared to stirring conditions (17 %). A prototype PDMS microchannel system was developed to study drug absorption and microrobot recovery. The CaMoO4 shell of the microrobots exhibited remarkable robustness, ensuring long-lasting functionality in harsh wastewater environments and improving biocompatibility while safeguarding the CuS core from degradation. Therefore, microrobots are a promising eco-friendly solution for drug extraction. These microrobots show promise for the selective removal of doxorubicin from contaminated wastewater.
Collapse
Affiliation(s)
- Chandran Murugan
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Seungun Yang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sukho Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
8
|
Han D, Villanueva-Tagle ME, Peña-Icart M, López-Mesas M, Valiente M. Trace cisplatin adsorption by thiol-functionalized sponge (TFS) and Sn/SnO 2-coated TFS: Adsorption study and mechanism investigation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134442. [PMID: 38688222 DOI: 10.1016/j.jhazmat.2024.134442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
To remove trace cisplatin from aqueous solution, commercial sponges were functionalized by esterification with 3-mercaptopropionic acid, followed by reduction with Na2S·9H2O or SnCl2·2H2O. The resulting thiol-functionalized sponges (TFSs), TFS_1 and TFS_2, were tested for the removal of cisplatin (235 μg L-1) achieving maximum removal of 95.5 ± 0.8% and 99.5 ± 0.1% respectively, which were significantly higher than the non-functionalized counterpart. The successful grafting of thiol groups, verified through FTIR, elemental analysis, SEM-EDS, and XPS characterization, facilitated Pt-S complexation during adsorption. The aqua-derivatives of cisplatin, formed through hydration, complexed with thiol sites through ligand displacement. Additionally, the presence of Sn/SnO2 coating on TFS_2 further enhanced the adsorption process. The rapid adsorption process conformed to pseudo-second-order kinetic model, involving both diffusion and chemisorption. While the Langmuir isotherm model generally described the monolayer adsorption behavior of cisplatin, the aggregation of Sn/SnO2 onto TFS_2 at 343 K introduced surface heterogeneity, rendering the Freundlich model a better fit for the adsorption isotherm. Differential pH dependence and the evaluation of mean free energy, derived from the Dubinin-Radushkevich isotherm model, indicated that cisplatin adsorption onto TFS_1 involved physisorption, including electrostatic attraction, while chemisorption predominated for TFS_2. Increasing the temperature notably promoted adsorption by facilitating the thermal-favored formation of Pt-S bonds.
Collapse
Affiliation(s)
- Dong Han
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | | | - Mirella Peña-Icart
- Institute of Materials Science and Technology, University of Havana, Havana 10400, Cuba
| | - Montserrat López-Mesas
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain.
| | - Manuel Valiente
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain
| |
Collapse
|
9
|
Nunes JPL. Medical therapeutics with an ecological concern. Porto Biomed J 2024; 9:255. [PMID: 38911267 PMCID: PMC11191036 DOI: 10.1097/j.pbj.0000000000000255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 06/25/2024] Open
Affiliation(s)
- José Pedro L. Nunes
- Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernani Monteiro, Porto, Portugal
| |
Collapse
|
10
|
Olusegun SJ, Rodrigues GLS, Tiwari S, Krajewski M, Mohallem NDS, Sobczak K, Donten M, Krysinski P. Removal of doxorubicin hydrochloride and crystal violet from aqueous solutions using spray-dried niobium oxide coated with chitosan-activated carbon: Experimental and DFT calculations. Int J Biol Macromol 2024; 266:131158. [PMID: 38552682 DOI: 10.1016/j.ijbiomac.2024.131158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Spray-dried niobium oxide coated with chitosan-activated carbon (NIC) was synthesized and used to remove doxorubicin hydrochloride and crystal violet from aqueous solutions under different parameters such as solution pH (2, 4, 6, and 8), contact time (1 to 9 h), initial concentration (20 to 200 mg L-1), and competing ions (0.1 M of CaCl2 and NaCl). The addition of 5 % chitosan-activated carbon to the matrix of niobium oxide slightly increased the specific surface area from 26 to 30 m2 g-1, with the introduction of a carboxylic functional group. This led to an increase in the amount of adsorbed doxorubicin hydrochloride (DOH) from 30 to 44 mg g-1 and that of crystal violet (CV) from 15 to 32 mg g-1 from the initial respective 100 mg L-1 at pH 8. The data from the concentration study fitted into Liu isotherm having adsorption capacity of 128 and 57 mg g-1 for DOH and CV respectively, while pseudo first and second order are more suitable for adsorption kinetics. The additional functional groups on the IR spectrum of NIC after the adsorption of DOH and CV confirmed the interaction between NIC and the adsorbates' molecules. The mechanism of adsorption was supported by DFT calculations.
Collapse
Affiliation(s)
- Sunday J Olusegun
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland..
| | - Gabriel L S Rodrigues
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Santosh Tiwari
- Department of Chemistry, Nitte Mahalinga Adyanthaya Memorial Institute of Technology, Mangaluru, Karnataka 547110, India
| | | | - Nelcy D S Mohallem
- Universidade Federal de Minas Gerais, Departamento de Química, Laboratório de Materiais Nanoestruturados, Belo Horizonte, MG, Brazil
| | - Kamil Sobczak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Mikołaj Donten
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Pawel Krysinski
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland..
| |
Collapse
|
11
|
Andrade HND, Oliveira JFD, Siniscalchi LAB, Costa JDD, Fia R. Global insight into the occurrence, treatment technologies and ecological risk of emerging contaminants in sanitary sewers: Effects of the SARS-CoV-2 coronavirus pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171075. [PMID: 38402973 DOI: 10.1016/j.scitotenv.2024.171075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The SARS-CoV-2 pandemic caused changes in the consumption of prescribed/non-prescribed drugs and the population's habits, influencing the detection and concentration of emerging contaminants (ECs) in sanitary sewage and harming environmental and health risks. Therefore, the present work sought to discuss current literature data on the effects of the "COVID-19 pandemic factor" on the quality of raw sewage produced over a five-year period (2018-2019: pre-pandemic; 2020-2022: during the pandemic) and biological, physical, chemical and hybrid treatment technologies, influencing factors in the removal of ECs and potential ecological risks (RQs). Seven hundred thirty-one publications correlating sewage and COVID-19 were identified: 184 pre-pandemic and 547 during the pandemic. Eight classes and 37 ECs were detected in sewage between 2018 and 2022, with the "COVID-19 pandemic factor" promoting an increase in estrogens (+31,775 %), antibiotics (+19,544 %), antiepileptics and antipsychotics (+722 %), pesticides (+200 %), analgesics, anti-inflammatories and anticoagulants (+173 %), and stimulant medications (+157 %) in sanitary sewage. Among the treatment systems, aerated reactors integrated into biomembranes removed >90 % of cephalexin, clarithromycin, ibuprofen, estrone, and 17β-estradiol. The absorption, adsorption, and biodegradation mechanisms of planted wetland systems contributed to better cost-benefit in reducing the polluting load of sewage ECs in the COVID-19 pandemic, individually or integrated into the WWTP. The COVID-19 pandemic factor increased the potential ecological risks (RQs) for aquatic organisms by 40 %, with emphasis on clarithromycin and sulfamethoxazole, which changed from negligible risk and low risk to (very) high risk and caffeine with RQ > 2500. Therefore, it is possible to suggest that the COVID-19 pandemic intensified physiological, metabolic, and physical changes to different organisms in aquatic biota by ECs during 2020 and 2022.
Collapse
Affiliation(s)
- Heloisa Nascimento de Andrade
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Jacineumo Falcão de Oliveira
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil.
| | | | - Joseane Dunga da Costa
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Ronaldo Fia
- Department of Environmental Engineering, Federal University of Lavras, UFLA, Minas Gerais 37200-000, Brazil
| |
Collapse
|
12
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, González-Martínez A, González-López J. Anticancer drugs impact the performance and prokaryotic microbiome of an aerobic granular sludge system operated in a sequential batch reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133674. [PMID: 38335605 DOI: 10.1016/j.jhazmat.2024.133674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Increased concerns exist about the presence of anticancer drugs in wastewater. However, knowledge of the impacts of anticancer drugs on the performance of the system and microbial communities during wastewater treatment processes is limited. We examined the effect of three anticancer drugs commonly detected in influents of wastewater treatment plants applied at three different concentration levels on the performance, efficiency of anticancer drug removal, and prokaryotic microbiome in an aerobic granular sludge system (AGS) operated in a sequential batch reactor (SBR). We showed that an AGS can efficiently remove anticancer drugs, with removal rates in the range of 53-100% depending on the type of drug and concentration level. Anticancer drugs significantly decreased the abundance of total bacterial and archaeal communities, an effect that was linked to reduced nitrogen removal efficiency. Anticancer drugs also reduced the diversity, altered the prokaryotic community composition, reduced network complexity, and induced a decrease of a wide range of predicted bacterial functions. Specific bacterial taxa responsive to the addition of anticancer drugs with known roles in nitrification and denitrification were identified. This study shows anticancer drugs should be monitored in the future as they can induce changes in the performance and microbiome of wastewater treatment technologies.
Collapse
Affiliation(s)
| | | | | | - Jesús González-López
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| |
Collapse
|
13
|
Abdulla SF, Shams R, Dash KK. Edible packaging as sustainable alternative to synthetic plastic: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32806-z. [PMID: 38462564 DOI: 10.1007/s11356-024-32806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
The choice of an appropriate packaging materials enhances the shelf life and improves quality of food during transportation, storage, and distribution. Development and innovations in food packaging systems have become essential in the food industry. Most widely used packaging materials are non-biodegradable plastics and are harmful to environment and human health. Thus, food industry is replacing non-biodegradable plastics with biodegradable plastics to reduce environmental pollution, health hazards, and food waste. Edible packaging may reduce food waste and keep perishables fresh. This review article compares edible packaging materials to synthetic ones and discusses their pollution-reducing effects. The several types of food packaging discussed in the review include those produced from polysaccharides, proteins, lipids, and composite films. The various characteristics of edible packaging are reviewed, including its barrier qualities, carrier properties, mechanical capabilities, and edibility. The carrier properties describe the capacity to transport and manage the release of active substances, and the edibility indicates acceptance of these items by the customers. Plasticizers, antimicrobials, antioxidants, and emulsifiers were included in the edible packaging to enhance the characteristics of the film. The development and implementation of edible packaging on food products from the laboratory to large-scale industrial levels, as well as their potential industrial applications in the dairy, meat, confectionary, poultry, fish, fruit, and vegetable processing sectors are addressed.
Collapse
Affiliation(s)
- Subhan Farook Abdulla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| |
Collapse
|
14
|
M A E, K K, N F, E D, M R, A F, S R, A L, K, H B, A J, E J. An assessment and characterization of pharmaceuticals and personal care products (PPCPs) within the Great Lakes Basin: Mussel Watch Program (2013-2018). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:345. [PMID: 38438687 PMCID: PMC10912168 DOI: 10.1007/s10661-023-12119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/08/2023] [Indexed: 03/06/2024]
Abstract
Defining the environmental occurrence and distribution of chemicals of emerging concern (CECs), including pharmaceuticals and personal care products (PPCPs) in coastal aquatic systems, is often difficult and complex. In this study, 70 compounds representing several classes of pharmaceuticals, including antibiotics, anti-inflammatories, insect repellant, antibacterial, antidepressants, chemotherapy drugs, and X-ray contrast media compounds, were found in dreissenid mussel (zebra/quagga; Dreissena spp.) tissue samples. Overall concentration and detection frequencies varied significantly among sampling locations, site land-use categories, and sites sampled proximate and downstream of point source discharge. Verapamil, triclocarban, etoposide, citalopram, diphenhydramine, sertraline, amitriptyline, and DEET (N,N-diethyl-meta-toluamide) comprised the most ubiquitous PPCPs (> 50%) detected in dreissenid mussels. Among those compounds quantified in mussel tissue, sertraline, metformin, methylprednisolone, hydrocortisone, 1,7-dimethylxanthine, theophylline, zidovudine, prednisone, clonidine, 2-hydroxy-ibuprofen, iopamidol, and melphalan were detected at concentrations up to 475 ng/g (wet weight). Antihypertensives, antibiotics, and antidepressants accounted for the majority of the compounds quantified in mussel tissue. The results showed that PPCPs quantified in dreissenid mussels are occurring as complex mixtures, with 4 to 28 compounds detected at one or more sampling locations. The magnitude and composition of PPCPs detected were highest for sites not influenced by either WWTP or CSO discharge (i.e., non-WWTPs), strongly supporting non-point sources as important drivers and pathways for PPCPs detected in this study. As these compounds are detected at inshore and offshore locations, the findings of this study indicate that their persistence and potential risks are largely unknown, thus warranting further assessment and prioritization of these emerging contaminants in the Great Lakes Basin.
Collapse
Affiliation(s)
- Edwards M A
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA.
| | - Kimbrough K
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Fuller N
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Davenport E
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Rider M
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Freitag A
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Regan S
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | | | - K
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Burkart H
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Jacob A
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Johnson E
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| |
Collapse
|
15
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, González-Martínez A, González-López J. Novel insights into the impact of anticancer drugs on the performance and microbial communities of a continuous-flow aerobic granular sludge system. BIORESOURCE TECHNOLOGY 2024; 394:130195. [PMID: 38081471 DOI: 10.1016/j.biortech.2023.130195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 02/04/2024]
Abstract
Anticancer drugs are frequently found in domestic wastewater, but knowledge of their impacts on wastewater treatment processes is limited. The effects of three levels of concentrations (low, medium, and high) of three anticancer drugs on physicochemical parameters and prokaryotic communities of a continuous-flow aerobic granular sludge (AGS) system were examined. Drugs at medium and high concentrations reduced the removal of total nitrogen and organic matter during the first 15 days of operation by approximately 15-20 % compared to a control, but these effects disappeared afterward. Removal efficiencies of drugs were in the range of 51.2-100 % depending on the concentration level. Drugs at medium and high concentrations reduced the abundance and diversity and altered the composition of prokaryotic communities. Specific taxa were linked to variations in performance parameters after the addition of the drugs. This study provides improved knowledge of the impacts of anticancer drugs in AGS systems operated in continuous-flow reactor.
Collapse
Affiliation(s)
- Antonio Castellano-Hinojosa
- Department of Microbiology, Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, Granada 18071, Spain.
| | - Manuel J Gallardo-Altamirano
- Department of Microbiology, Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, Granada 18071, Spain
| | - Alejandro González-Martínez
- Department of Microbiology, Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, Granada 18071, Spain
| | - Jesús González-López
- Department of Microbiology, Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, Granada 18071, Spain
| |
Collapse
|
16
|
Azuma T, Usui M, Hayashi T. Inactivation of antibiotic-resistant bacteria in hospital wastewater by ozone-based advanced water treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167432. [PMID: 37777130 DOI: 10.1016/j.scitotenv.2023.167432] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The emergence and spread of antimicrobial resistance (AMR) continue on a global scale. The impacts of wastewater on the environment and human health have been identified, and understanding the environmental impacts of hospital wastewater and exploring appropriate forms of treatment are major societal challenges. In the present research, we evaluated the efficacy of ozone (O3)-based advanced wastewater treatment systems (O3, O3/H2O2, O3/UV, and O3/UV/H2O2) for the treatment of antimicrobials, antimicrobial-resistant bacteria (AMRB), and antimicrobial resistance genes (AMRGs) in wastewater from medical facilities. Our results indicated that the O3-based advanced wastewater treatment inactivated multiple antimicrobials (>99.9%) and AMRB after 10-30 min of treatment. Additionally, AMRGs were effectively removed (1.4-6.6 log10) during hospital wastewater treatment. The inactivation and/or removal performances of these pollutants through the O3/UV and O3/UV/H2O2 treatments were significantly (P < 0.05) better than those in the O3 and O3/H2O2 treatments. Altered taxonomic diversity of microorganisms based on 16S rRNA gene sequencing following the O3-based treatment showed that advanced wastewater treatments not only removed viable bacteria but also removed genes constituting microorganisms in the wastewater. Consequently, the objective of this study was to apply advanced wastewater treatments to treat wastewater, mitigate environmental pollution, and alleviate potential threats to environmental and human health associated with AMR. Our findings will contribute to enhancing the effectiveness of advanced wastewater treatment systems through on-site application, not only in wastewater treatment plants (WWTPs) but also in medical facilities. Moreover, our results will help reduce the discharge of AMRB and AMRGs into rivers and maintain the safety of aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
17
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, González-López J, González-Martínez A. Anticancer drugs drive changes in the performance, abundance, diversity, and composition of eukaryotic communities of an aerobic granular sludge system. CHEMOSPHERE 2023; 345:140374. [PMID: 37844701 DOI: 10.1016/j.chemosphere.2023.140374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/30/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Anticancer drugs are emerging contaminants that are being increasingly detected in urban wastewater. However, there is limited knowledge on the use of biological wastewater treatments, such as granular sludge systems (AGSs), to remove these substances and on their impacts on the general performance of the system and the eukaryotic communities in the granules. We investigated the impacts of three anticancer drugs commonly found in wastewater treatment plants and applied at three different concentrations on the removal efficiency of anticancer drugs, physicochemical parameters, and the eukaryotic microbiome of an AGS operated in a sequential batch reactor (SBR). Anticancer drugs applied at medium and high concentrations significantly decreased the removal efficiency of total nitrogen, the granular biomass concentration, and the size and setting velocity of granules. However, these effects disappeared after not adding the drugs for about a month thus showing the plasticity of the system to return to original levels. Regardless of the concentration of anticancer drugs tested, the AGS technology was effective in removing these substances, with removal rates in the range of 68.5%-100%. The presence of anticancer drugs at medium and high concentrations significantly decreased the abundance of total fungi, an effect that was linked to changes in the physicochemical parameters. Anticancer drugs also induced decreases in the diversity of the eukaryotic community, altered the community composition, and reduced the network complexity when applied at medium and high concentrations. Taxa responsive to the presence of anticancer drugs were identified. The diversity and composition of the eukaryotic microbiome returned to original diversity levels after not adding the drugs for about a month. Overall, this study increases our understanding of the impacts of anticancer drugs on the performance and eukaryotic microbiome of an AGS and highlights the need for monitoring these substances.
Collapse
Affiliation(s)
| | | | - Jesús González-López
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | | |
Collapse
|
18
|
Guan Z, Liang Y, Zhu Z, Yang A, Li S, Guo J, Wang F, Yang H, Zhang N, Wang X, Wang J. Cytosine arabinoside exposure induced cytotoxic effects and neural tube defects in mice and embryo stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115141. [PMID: 37320917 DOI: 10.1016/j.ecoenv.2023.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/16/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Cytosine arabinoside (Ara-C) is one of the most widely used chemotherapeutic agents for hematological malignancies. The residues of Ara-C have been detected in wastewater and river water with increased usage and discharge. As the ability to cross the placenta and the teratogenicity at low ng/L levels, the toxic effects on pregnant women and infants have been concerned. The toxicity of Ara-C exposure on early embryonic neurodevelopment has not been fully elucidated. In this study, pregnant C57BL/6 mice were injected with different doses of Ara-C on Gestation day (GD) 7.5 and assessed on GD11.5 and GD13.5 to explore the neural developmental effects of Ara-C. HE staining, immunofluorescence, western blot, EdU assay, and flow cytometry were utilized to determine the toxic effects of Ara-C in vivo and in vitro. Our results showed that Ara-C (15-22.5 mg/kg body weight) induced the occurrence of neural tube defects (NTDs). The expression of PH3 was markedly reduced in embryos with Ara-C-induced NTDs, compared to the control group (P < 0.05). In contrast, cell apoptosis was markedly increased. Increased expression levels of GFAP and decreased Nestin were observed in the embryonic brain tissues in Ara-C induced NTDs. The level of β-catenin was also decreased on both GD11.5 and GD13.5. These results were confirmed in vitro using mouse Sv129 embryonic stem cells (mESC). Ara-C at a dose comparable to the environment level (0.05 nM) had cytotoxicity. Impaired Wnt/β-catenin signaling pathway is involved in Ara-C exposure induced imbalance between cell proliferation, apoptosis, and differentiation, which might contribute to Ara-C-induced occurrence of NTDs. Our data indicated the environmental concentration of Ara-C had cytotoxicity and that maternal exposure to Ara-C induced NTDs. These results might provide more information to understand the environmental toxic impact of Ara-C on neurodevelopment.
Collapse
Affiliation(s)
- Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yingchao Liang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Aiyun Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Huimin Yang
- Growth and Development Department, Capital Institute of Pediatrics, Beijing 100020, China
| | - Na Zhang
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
19
|
Azuma T, Katagiri M, Sasaki N, Kuroda M, Watanabe M. Performance of a Pilot-Scale Continuous Flow Ozone-Based Hospital Wastewater Treatment System. Antibiotics (Basel) 2023; 12:antibiotics12050932. [PMID: 37237835 DOI: 10.3390/antibiotics12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance (AMR) is becoming a global concern. Recently, research has emerged to evaluate the human and environmental health implications of wastewater from medical facilities and to identify acceptable wastewater treatment methods. In this study, a disinfection wastewater treatment system using an ozone-based continuous flow system was installed in a general hospital located in Japan. The effectiveness of antimicrobial-resistant bacteria (ARB) and antimicrobials in mitigating the environmental impact of hospital wastewater was evaluated. Metagenomic analysis was conducted to characterize the microorganisms in the wastewater before and after treatment. The results demonstrated that ozone treatment enables effective inactivation of general gut bacteria, including Bacteroides, Prevotella, Escherichia coli, Klebsiella, DNA molecules, and ARGs, as well as antimicrobials. Azithromycin and doxycycline removal rates were >99% immediately after treatment, and levofloxacin and vancomycin removal rates remained between 90% and 97% for approximately one month. Clarithromycin was more readily removed than the other antimicrobials (81-91%), and no clear removal trend was observed for ampicillin. Our findings provide a better understanding of the environmental management of hospital wastewater and enhance the effectiveness of disinfection wastewater treatment systems at medical facilities for mitigating the discharge of pollutants into aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan
| | - Miwa Katagiri
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| | - Naobumi Sasaki
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Manabu Watanabe
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| |
Collapse
|
20
|
Hema T, Mohanthi S, Umamaheswari S, Ramesh M, Ren Z, Poopal RK. A study to assess the health effects of an anticancer drug (cyclophosphamide) in zebrafish ( Danio rerio): eco-toxicity of emerging contaminants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:870-884. [PMID: 37010127 DOI: 10.1039/d2em00527a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cyclophosphamide (CP) is widely used for treating various kinds of cancer. Because of its high intake, metabolism and excretion, these anticancer medications have been detected in the aquatic environment. There is very limited data on the toxicity and effects of CP on aquatic organisms. The present study aims to assess the toxic effect of CP on certain oxidative stress biomarkers (superoxide dismutase-SOD, catalase-CAT, glutathione peroxidase-GPx, glutathione-GSH, glutathione S-transferases-GST and lipid peroxidation-LPO), protein, glucose, metabolising enzymes (aspartate aminotransferase-AST, alanine aminotransferase-ALT), and ion-regulatory markers (sodium ions-Na+, potassium ions-K+, and chloride ions-Cl-), and histology in the gills and liver of Danio rerio at environmentally relevant concentrations (10, 100 and 1000 ng L-1). Exposure to CP for 42 days led to a significant decrease in SOD, CAT, GST, GPx and GSH levels in the gills and liver tissues of zebrafish. The level of lipid peroxidation in the gills and liver tissues of zebrafish was significantly increased compared to the control group. Chronic exposure significantly changes protein, glucose, AST, ALT, Na+, K+ and Cl- biomarkers. Fish exposed to different levels of CP showed necrosis, inflammation, degeneration and hemorrhage in the gills and hepatic tissues. The observed changes in the studied tissue biomarkers were proportional to both dose and time. In conclusion, CP at environmentally relevant concentrations causes oxidative stress, energy demand, homeostasis disturbances, and enzyme and histological alterations in the vital tissues of zebrafish. These alterations were similar to the toxic effects reported in mammalian models.
Collapse
Affiliation(s)
- Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, TamilNadu, India.
| | - Sundaram Mohanthi
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, TamilNadu, India.
| | - Sathisaran Umamaheswari
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, TamilNadu, India.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, TamilNadu, India.
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
| |
Collapse
|