1
|
Hao Y, Zheng T, Liu L, Li P, Ma H, Zheng Z, Zheng X, Luo J. Occurrence of dissimilatory nitrate reduction to ammonium (DNRA) in groundwater table fluctuation zones during dissolved organic nitrogen leaching through unsaturated zone. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137501. [PMID: 39952133 DOI: 10.1016/j.jhazmat.2025.137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Nitrate reduction in unsaturated zone is critical for preventing groundwater contamination from anthropogenic nitrogen fertilization. Dissimilatory nitrate reduction to ammonium (DNRA), found in anoxic environments, offers an alternative pathway to denitrification by reducing nitrate while conserving nitrogen. However, the occurrence of DNRA in unsaturated zone remains poorly understood. To address this gap, we conducted numerical simulations to investigate the reactive transport of dissolved organic nitrogen (DON) through unsaturated zone under fluctuating groundwater table conditions, with the focus on the competition between denitrification and DNRA. Our results indicate that DNRA typically gets stronger within capillary fringe, with its intensity varying with groundwater table fluctuations. DNRA competes with denitrification, contributing up to 46.33 % of nitrate reduction, especially when groundwater table drops. The strength of DNRA requires comprehensive consideration of the adsorption characteristics, permeability and porosity of vadose zone, and in our study, silty clay loam-with the relatively weaker adsorptive capacity/lower permeability-exhibits the highest DNRA reaction rates and the largest reaction areas, while DNRA in sandy loam may occur during periods when both DON and NO3--N reserves are relatively low. This study firstly revealed the distribution of DNRA in groundwater table fluctuation zone, exploring its kinetics, controlling factors, and contributions, providing a scientific foundation for assessing the self-purification processes in groundwater contamination.
Collapse
Affiliation(s)
- Yujie Hao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Peihua Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Haoran Ma
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhihong Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Liu Y, Chen Y, Penttinen P, Chen X, Duan P, Fan F, Xiong W, Liu M, Tang X, Peng D, Xu K. Both AOA and AOB contribute to nitrification and show linear correlation with nitrate leaching in purple soils with a wide nitrogen gradient. ENVIRONMENTAL RESEARCH 2025; 264:120403. [PMID: 39577732 DOI: 10.1016/j.envres.2024.120403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Ammonia oxidizers play an important role in nitrification that forms nitrate, the main form of leaching nitrogen (N). However, little is known about how ammonia oxidizers bridge long-term N fertilization levels and soil nitrate leaching. We conducted a field experiment in purple soil, investigating the interactions among soil physico-chemical parameters, ammonia-oxidizing microbial communities, and N leaching under 0, 90, 180, 270, and 360 kg N ha-1 yr-1 fertilization levels. We found that soil inorganic N leaching increased exponentially with increasing N application rate. N fertilization enhanced the abundances of the amoA gene in ammonia-oxidizing archaea (AOA) and bacteria (AOB), while partial least squares regression analysis revealed that AOA and AOB abundances were correlated with pH and soil organic carbon (SOC). Compared with no N fertilization, N application reduced AOA alpha diversity and increased AOB alpha diversity. AOA alpha diversity was associated with pH and bulk density, whereas soil SOC and inorganic N content were more important in predicting changes in AOB alpha diversity. A linear relationship was established between soil NO3--N leaching, the potential nitrification rate (PNR), and the abundances of AOA and AOB. The association of soil NO3--N leaching and PNR with both AOA and AOB abundances were further corroborated by Mantel test, random forest regression, and partial least squares path modelling. Furthermore, alterations in the AOB alpha diversity, soil pH and NH4+-N content also contribute to the increasing soil NO3--N leaching along the N application rate. Our results suggest that AOA, which previous studies have found to be active only under low N conditions, can also contribute to nitrification and support soil NO3--N leaching at a wide range of N gradients. Overall, this finding advances the current understanding of the relationship between soil N leaching and microbial functional properties to some extent.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxue Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaohui Chen
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Pengpeng Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Fenliang Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiyi Xiong
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Mingpeng Liu
- Pingshan County Agriculture and Rural Bureau, Yibin, 644000, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dandan Peng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaiwei Xu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Han LL, Ge L, Tan E, Zou W, Tian L, Li P, Xu MN, Kao SJ. Model the evolutionary pattern of N species and pool size in groundwater continuum by utilizing measured source and sink rates of nitrate and ammonium. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136046. [PMID: 39393322 DOI: 10.1016/j.jhazmat.2024.136046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Nitrate and ammonium are primary nitrogen (N) contaminants in groundwater and effective restoration strategies depend on understanding the interactions of N transformation processes along redox gradients. Utilizing the 15N tracing technique, we assess nitrate removal rates, focusing on denitrification and anammox in a N-rich groundwater of the Hetao Basin, a typical semiarid region in western China. Results showed that N removal rate (0.36-22.01 µM N d-1) was composed mainly of denitrification (73 ± 18 %), with rates increasing from upstream oxidizing environment to downstream reducing areas. In reducing downstream, both denitrification and anammox adhered to substrate-driven Michaelis-Menten kinetics. Integrating data on all source and sink rates of nitrate and ammonium pools (denitrification, anammox, dissimilatory nitrate reduction ammonia, nitrification, mineralization), we constructed a N-transfer-dynamics model based on chemical stoichiometry. This model effectively captured the observed spatial N transfer patterns and highlighted that the balance of oxidants and biodegradable organic N inputs influences N species retention and removal in groundwater. Our combined experimental and modeling approach underscores the importance of reducing organic N and/or adding oxidants to mitigate groundwater N pollution. These findings provide crucial insights for optimizing high N groundwater remediation strategies and potentially inform for wastewater management practices.
Collapse
Affiliation(s)
- Li-Li Han
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lianghao Ge
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ehui Tan
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China
| | - Wenbin Zou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Li Tian
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Min Nina Xu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China.
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Hu X, Cao S, Wen M, Zhang Y, Zhao Y, Liu Y, Kong X, Li Y. Exploration of nitrogen sources and transformation processes in eutrophic estuarine zones based on DOM and stable isotope compositions. MARINE POLLUTION BULLETIN 2024; 209:117256. [PMID: 39547070 DOI: 10.1016/j.marpolbul.2024.117256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/05/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Our study examines nitrogen sources and transformations in Xiamen Bay, where eutrophication has increased due to higher nitrogen levels. By analyzing dissolved organic matter (DOM) and nitrate stable isotopes (δ15N-NO3-and δ18O-NO3-), the study finds that nitrate in low salinity areas is influenced by freshwater-seawater mixing and biogeochemical processes, while in high salinity areas, it is mainly affected by physical mixing. Bayesian mixing model (MixSIAR) results show that the primary nitrate sources are fecal matter and sewage, followed by atmospheric deposition. During the high flow period, DOM may facilitate nitrogen transformation and release through processes such as degradation or mineralization. In contrast, during the low flow period, the system is mainly influenced by the physical mixing of saline and freshwater. Studies have shown that DOM can indicate the biogeochemical intensity in water bodies, further identifying the main factors influencing the distribution and transformation processes of nitrate content, providing a basis for mitigating eutrophication in estuarine areas.
Collapse
Affiliation(s)
- Xiujian Hu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China.
| | - Mengtuo Wen
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuanjing Zhang
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Xiangke Kong
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| |
Collapse
|
5
|
Zhou G, Zhou P, Wang G, Yu X, Fu J, Li S, Zhuo X. New insights into the controlling factors of nitrate spatiotemporal characteristics in groundwater of Dagu aquifer in Qingdao, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124826. [PMID: 39197644 DOI: 10.1016/j.envpol.2024.124826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Identifying spatiotemporal variation of groundwater NO3-N and its primary controlling factors are vital for groundwater protection. This study, under the data scarce conditions and based on time series monitoring data in Dagu aquifer, applied methods including hydrochemical ion ratio, multiple linear regression, support vector regression and grey relational analysis and dedicated to revealing primary controlling factors of temporal variation patterns of groundwater NO3-N. The results showed that agricultural and manure fertilizer are the main sources of NO3-N in north and central area (vegetable farming area), and that domestic sewage discharge and manure fertilizer are the main sources of NO3-N in south area (residential and grain planting area). In addition, results identified the dominant influencing factors of variation of NO3-N in different regions, with human wastewater discharge, nitrogen load amount and water-table depth being the dominant factors of variations of NO3-N in north area, human wastewater discharge being the main factor of variations of NO3-N in central area, and irrigation water and human wastewater being the leading factors of variations of NO3-N in south area. Moreover, types of controlling factors can influence the seasonal variations of NO3-N. NO3-N in vegetable farming area that dominantly affected by fertilization generally shows higher concentration and larger variation range of concentration during summer and autumn than that during spring. NO3-N which mainly affected by human wastewater discharge and manure inputs shows minimal seasonal variation of mean concentration. NO3-N in grain area influenced by irrigation could show more significant variations during spring and autumn than that during summer. The conclusions can enhance understandings of major influencing factors on NO3-N variation in local aquifer. Importantly, the dominant roles of water-table depth and irrigation in NO3-N variation of N2 site (vegetable planting area) and S5 site (grain planting area), respectively, were highlighted.
Collapse
Affiliation(s)
- Guangyang Zhou
- School of Water Resources & Environment, China University of Geosciences (Beijing), 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, 100083, PR China
| | - Pengpeng Zhou
- School of Water Resources & Environment, China University of Geosciences (Beijing), 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, 100083, PR China.
| | - Guangcai Wang
- School of Water Resources & Environment, China University of Geosciences (Beijing), 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, 100083, PR China
| | - Xiaoxi Yu
- Qingdao Geo-Engineering Surveying Institute, 266101, PR China
| | - Jiani Fu
- Qingdao Geo-Engineering Surveying Institute, 266101, PR China
| | - Suna Li
- School of Water Resources & Environment, China University of Geosciences (Beijing), 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, 100083, PR China
| | - Xuyuan Zhuo
- School of Water Resources & Environment, China University of Geosciences (Beijing), 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, 100083, PR China
| |
Collapse
|
6
|
Ding H, Gao H, Zhu M, Yu M, Sun Y, Zheng M, Su J, Xi B. Spectral and molecular insights into the characteristics of dissolved organic matter in nitrate-contaminated groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124202. [PMID: 38788994 DOI: 10.1016/j.envpol.2024.124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/11/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The characteristics of dissolved organic matter (DOM) serve as indicators of nitrate pollution in groundwater. However, the specific DOM components associated with nitrate in groundwater systems remain unclear. In this study, dual isotopes of nitrate, three-dimensional Excitation emission matrices (EEMs) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were utilized to uncover the sources of nitrate and their associations with DOM characteristics. The predominant nitrate in the targeted aquifer was derived from soil organic nitrogen (mean 46.0%) and manure &sewage (mean 34.3%). The DOM in nitrate-contaminated groundwater (nitrate-nitrogen >20 mg/L) exhibited evident exogenous characteristics, with a bioavailable content 2.58 times greater than that of uncontaminated groundwater. Regarding the molecular characteristics, DOM molecules characterized by CHO + 3N, featuring lower molecular weights and H/C ratios, indicated potential for mineralization, while CHONS formulas indicated the exogenous features, providing the potential for accurate traceability. These findings provided insights at the molecular level into the characterization of DOM in nitrate-contaminated groundwater and offer scientific guidance for decision-making regarding the remediation of groundwater nitrate pollution.
Collapse
Affiliation(s)
- Hongyu Ding
- College of Water Science, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huan Gao
- CCCC Water Transportation Consultants Co., Ltd, Beijing, 100010, China
| | - Mingtan Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Minda Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingxia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- College of Water Science, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
7
|
Zhang G, Li W, Li D, Wang S, Lv L. Integration of ammonium assimilation with denitrifying phosphorus removal for efficient nutrient management in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120116. [PMID: 38280251 DOI: 10.1016/j.jenvman.2024.120116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024]
Abstract
Nutrient removal from sewage is transitioning to nutrient recovery. However, biological treatment technologies to remove and recover nutrients from domestic sewage are still under investigation. This study delved into the integration of ammonium assimilation with denitrifying phosphorus removal (DPR) as a method for efficient nutrient management in sewage treatment. Results indicated this approach eliminated over 80 % of the nitrogen in the influent, simultaneously recovering over 60 % of the nitrogen as the activated sludge through ammonia assimilation, and glycerol facilitated this process. The nitrification/denitrifying phosphorus removal ensured the stability of both nitrogen and phosphorus removal. The phosphorus removal rate exceeded 96 %, and the DPR rate reached over 90 %. Network analysis highlighted a stable community structure with Proteobacteria and Bacteroidota driving ammonium assimilation. The synergistic effect of fermentation bacteria, denitrifying glycogen-accumulating organisms, and denitrifying phosphorus-accumulating organisms contributed to the stability of nitrogen and phosphorus removal. This approach offers a promising method for sustainable nutrient management in sewage treatment.
Collapse
Affiliation(s)
- Guanglin Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Donghui Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shuncai Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
8
|
Wang L, Li M. Review of soil dissolved organic nitrogen cycling: Implication for groundwater nitrogen contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132713. [PMID: 37813032 DOI: 10.1016/j.jhazmat.2023.132713] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Dissolved organic nitrogen (DON) in groundwater is derived from soil DON transformation and migration processes, which has been considered an emerging nitrogen (N) pollutant. However, due to the limitations of the analytical methods and the complexity of the involved transformation process, the role of DON in soil N cycling remains unclear. Therefore, this review aims to critically examine previous related studies on DON and highlight the knowledge gaps related to DON transformations and molecular characteristics in soils. In addition, the DON distributions and key transformation processes, as well as their influencing factors, were summarized. About 60% of DON components have not been determined due to the limited analytical techniques and methodologies. The depolymerization process of polymers into DON is the rate-limiting step of N mineralization. Furthermore, DON leaching amounts accounted for 7-1500% of soil nitrate (NO3--N) amounts, becoming the dominate pathway of N loss. Further studies are required to provide accurate information on DON compositions and transformation mechanisms, as well as their influencing factors, in soils. The suggested studies can provide further insights into the role of DON in soil N cycling, thereby controlling effectively groundwater N contamination.
Collapse
Affiliation(s)
- Leyun Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Wang D, Li P, Mu D, Liu W, Chen Y, Fida M. Unveiling the biogeochemical mechanism of nitrate in the vadose zone-groundwater system: Insights from integrated microbiology, isotope techniques, and hydrogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167481. [PMID: 37788773 DOI: 10.1016/j.scitotenv.2023.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Clarifying the biogeochemical mechanism of nitrate (NO3-) in the vadose zone-groundwater system, particularly in agricultural contexts, is crucial for mitigating groundwater NO3- pollution. However, comprehensive studies on the impacts of changes in chemical indicators and microbial communities on NO3- are still lacking. This paper aims to address this gap by employing hydrogeochemistry, stable isotopes, and microbial techniques to assess the NO3- biogeochemical processes in the vadose zone-groundwater system. The findings suggested that NO3- in upper soil layers was primarily influenced by plant root absorption, assimilation, and nitrification processes. The oxygen contents gradually decreased with the nitrification process, resulting in the occurrence of the denitrification. However, denitrification predominantly occurred in the 60-80 cm soil layer in the study area. The limited thickness of the denitrification layer results in less NO3- consumption, leading to increased NO3- leaching into groundwater. Hydrochemical and isotopic characteristics further indicated that groundwater NO3- concentrations were mainly controlled by nitrification, followed by denitrification and mixing processes. The 16S rRNA sequencing analysis revealed great influences of soil sampling depths and groundwater NO3- concentrations on the microbial community structure. Additionally, the PICRUSt2-based prediction results demonstrated a stronger potential for dissimilatory reduction of NO3- to ammonium (DNRA) in both soil and groundwater compared to the other processes, potentially due to the widespread presence of the nrfH functional genes. However, the chemical indicators and isotopes used in this study did not support the occurrence of DNRA process in the vadose zone-groundwater system. This finding highlights the importance of an integrated approach combining microbiological, isotopic, and hydrogeochemical data to comprehensive understanding biogeochemical processes. The study developed a conceptual model elucidating the NO3- biogeochemical processes in the vadose zone-groundwater system within an agricultural area, contributing to enhanced comprehension and advancement of sustainable management practices for groundwater nitrogen.
Collapse
Affiliation(s)
- Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Dawei Mu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Weichao Liu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Yinfu Chen
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Misbah Fida
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| |
Collapse
|