1
|
Zhu S, Zhao W, Sun S, Yang X, Mao H, Sheng L, Chen Z. Community metagenomics reveals the processes of cadmium resistance regulated by microbial functions in soils with Oryza sativa root exudate input. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175015. [PMID: 39069186 DOI: 10.1016/j.scitotenv.2024.175015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Plants exert a profound influence on their rhizosphere microbiome through the secretion of root exudates, thereby imparting critical effects on their growth and overall health. The results unveil that japonica rice showcases a remarkable augmentation in its antioxidative stress mechanisms under Cd stress. This augmentation is characterized by the sequestration of heavy metal ions within the root system and the prodigious secretion of a spectrum of flavonoids, including Quercetin, Luteolin, Apigenin, Kaempferide, and Sakuranetin. These flavonoids operate as formidable guardians, shielding the plant from oxidative damage instigated by Cd-induced stress. Furthermore, the metagenomic analyses divulge the transformative potential of flavonoids, as they induce profound alterations in the composition and structural dynamics of plant rhizosphere microbial communities. These alterations manifest through the recruitment of plant growth-promoting bacteria, effectively engineering a conducive milieu for japonica rice. In addition, our symbiotic network analysis discerns that flavonoid compounds significantly improved the positive correlations among dominant species within the rhizosphere of japonica rice. This, in turn, bolsters the stability and intricacy of the microenvironmental ecological network. KEGG functional analyses reveal a notable upregulation in the expression of flavonoid functional genes, specifically cadA, cznA, nccC, and czrB, alongside an array of transporters, encompassing RND, ABC, MIT, and P-ATPase. These molecular orchestrations distinctly demarcated the rhizosphere microbiome of japonica rice, markedly enhancing its tolerance to Cd-induced stress. These findings not only shed light on the establishment of Cd-resistant bacterial consortia in rice but also herald a promising avenue for the precise modulation of plant rhizosphere microbiomes, thereby fortifying the safety and efficiency of crop production.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic
| |
Collapse
|
2
|
Chedadi M, Moussaoui AE, Bassouya M, Jawhari FZ, Zoufri I, Barnossi AE, Asmi HE, Ammari M, Merzouki M, Bari A. Capacity of an aquatic macrophyte, Pistia stratiotes L., for removing heavy metals from water in the Oued Fez River and their accumulation in its tissues. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1114. [PMID: 39467898 DOI: 10.1007/s10661-024-13305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Water resources, particularly rivers, are increasingly exposed to pollutants, especially heavy metals of chemical origin, which are difficult to monitor and can pose risks to both ecosystems and human health. This study assesses heavy metal contamination in the Oued Fez River, focusing on the bioaccumulation by the invasive plant Pistia stratiotes. The methodology involves measuring and comparing metal concentrations in water and plant tissues. Results revealed that while aluminium (Al) slightly exceeded recommended levels at 0.2978 mg L-1, other metals like zinc (Zn), iron (Fe), copper (Cu), lead (Pb) and cadmium (Cd) remained within acceptable limits. The study demonstrates P. stratiotes' effectiveness in heavy metal phytoremediation, with its roots showing high bioaccumulation up to 19,726 mg kg-1 for Fe and 15,128 mg kg-1 for Al, indicating its potential for water decontamination. Eco-toxicological assessments, including bioconcentration and translocation factors, confirm the plant's capacity to mobilize toxic metals. Statistical analysis also points to possible industrial, urban, or agricultural contamination sources based on correlations between Al, Fe and Zn. The study underscores P. stratiotes' role in phytoremediation while emphasizing the need for monitoring and controlling contamination sources and managing the spread of this invasive species to ensure sustainable water resources.
Collapse
Affiliation(s)
- Mohamed Chedadi
- Laboratory of Biotechnology, Environment, Agri-food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Plant Biotechnology Team, Faculty of Science, Abdelmalek Essaadi University, 93002, Tetouan, Morocco
| | - Mohammed Bassouya
- Laboratory of Biotechnology, Environment, Agri-food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Fatima Zahra Jawhari
- Laboratory of Biotechnology, Environment, Agri-food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Higher Institute of Nursing and Health Technical, Fez Branch Meknes, Morocco
| | - Imane Zoufri
- Laboratory of Biotechnology, Environment, Agri-food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agri-food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hicham El Asmi
- Laboratory Geosciences, Environment and Associated Ressources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Malika Ammari
- Laboratory of Biotechnology, Environment, Agri-food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Merzouki
- Laboratory of Biotechnology, Environment, Agri-food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Amina Bari
- Laboratory of Biotechnology, Environment, Agri-food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
3
|
Yang M, Yang S, Wang W, Wei X, Lou F, He G, He T. Multiomics Combined with Expression Pattern Analysis Reveals the Regulatory Response of Key Genes in Potato Jasmonic Acid Signaling Pathways to Cadmium Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22369-22384. [PMID: 39329331 DOI: 10.1021/acs.jafc.4c04883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Jasmonic acid (JA) is an endogenous phytohormone that regulates plant physiological metabolism and stress response processes, either independently or through hormone crosstalk. Our phytohormone assay and transcriptome-metabolome analysis revealed the key genes and metabolites involved in the JA pathway in response to 0-250 μM cadmium (Cd) in potato seedlings. Transcriptome gene set enrichment and gene ontology analysis indicated that JA-related genes were significantly enriched. Specifically, members from the StOPR and StJAZ gene families showed pronounced responses to Cd stress and methyl jasmonate treatment. As a negative regulatory transcription factor of the JA signaling pathway, StJAZ14 exhibited a decreasing trend under Cd stress. Yeast two-hybrid assay identified an interaction between StJAZ14 and StBZR1, which is located on the brassinolide pathway. In addition to unveiling the critical role of the JA pathway in regulating potato response to Cd stress, the functional mechanism was preliminarily explored.
Collapse
Affiliation(s)
- Mingfang Yang
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Big Data Application and Economics College, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P.R. China
| | - Sanwei Yang
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Weidong Wang
- Guizhou Mountain Livestock and Poultry Breeding Pollution Control and Resource Utilization Technology Engineering Laboratory, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Xiaoliao Wei
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Fei Lou
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - GuanDi He
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Tengbing He
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Guizhou Mountain Livestock and Poultry Breeding Pollution Control and Resource Utilization Technology Engineering Laboratory, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
4
|
Nawaz M, Sun J, Shabbir S, Bo Y, He F, Nazir MM, Azeem F, Rizwan M, Pan L, Ren G, Du D. Exposure to toxic cadmium concentration induce physiological and molecular mechanisms alleviating herbivory infestation in Wedelia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109072. [PMID: 39186851 DOI: 10.1016/j.plaphy.2024.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Cadmium (Cd) toxicity induces significant disruptions in growth and development, plants have developed strategies to alleviate metal toxicity promoting establishment even during herbivores infestation. The study demonstrates that W. trilobata maintains growth and development under the combined stress of Cd exposure and herbivore invasion by Spodoptera litura, in contrast to W. chinensis. Cd toxicity markedly reduce shoot elongation and total fresh biomass, and a significant decrease in the dry weight of the shoot biomass and leaf count by 19%, 18%, 16%, and 19% in W. trilobata compared to controls. An even more pronounced decrease of 35%, 43%, 45% and 43% was found in W. chinensis. Compared to W. chinensis, W. trilobata showed a higher increase in phytohormone production including abscisic acid (ABA), gibberellic acid (GA3), indole-3-acetic acid (IAA) and methyl jasmonic acid (JA-me) under both Cd and herbivory stress as compared with respective controls. In addition, leaf ultra-structure also showed the highest damage to cell membranous structures by Cd-toxicity in W. chinensis. Furthermore, RNA-seq analysis revealed numerous genes viz., EMSY, MCCA, TIRI, BED-type, ABA, JAZ, CAB-6, CPSI, LHCII, CAX, HNM, ABC-Cd-trans and GBLP being differentially expressed between Cd-stress and herbivory groups in both W. trilobata and W. chinensis, with a particular emphasis on genes associated with metal transport and carbohydrate metabolism. Analyses employing the Gene Ontology (GO) system, the Clusters of Orthologous Groups (COG) categorization, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, highlight the functional and evolutionary relationships among the genes of the Phenylpropanoid and Flavonoid biosynthesis pathways and brassinosterod metabolism, associated with plant growth and development under Cd-toxicity and herbivory. W. trilobata opposite of W. chinensis, significantly improve plant growth and mitigates Cd toxicity through modulation of metabolic processes, and regulation of responsible genes, to sustain its growth under Cd and herbivory stress, which can be used in stress improvement in plants for sustainable ecosystem biodiversity and food security.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Samina Shabbir
- Department of Chemistry, The Women University, Multan, Pakistan
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Feng He
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Mudassir Nazir
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Linxuan Pan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guangqian Ren
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
5
|
Zhang X, Li M, Ma X, Jin X, Wu X, Zhang H, Guan Z, Fu Z, Chen S, Wang P. Transcriptomics Combined with Physiology and Metabolomics Reveals the Mechanism of Tolerance to Lead Toxicity in Maize Seedling. PHYSIOLOGIA PLANTARUM 2024; 176:e14547. [PMID: 39327540 DOI: 10.1111/ppl.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
Lead (Pb) exposure can induce molecular changes in plants, disrupt metabolites, and impact plant growth. Therefore, it is essential to comprehend the molecular mechanisms involved in Pb tolerance in plants to evaluate the long-term environmental consequences of Pb exposure. This research focused on maize as the test subject to study variations in biomass, root traits, genes, and metabolites under hydroponic conditions under Pb conditions. The findings indicate that high Pb stress significantly disrupts plant growth and development, leading to a reduction in catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) activities by 17.12, 5.78, and 19.38%, respectively. Conversely, Pb stress led to increase malondialdehyde (MDA) contents, ultimately impacting the growth of maize. The non-targeted metabolomics analysis identified 393 metabolites categorized into 12 groups, primarily consisting of organic acids and derivatives, organ heterocyclic compounds, lipids and lipid-like molecules and benzenoids. Further analysis indicated that Pb stress induced an accumulation of 174 metabolites mainly enriched in seven metabolic pathways, for example phenylpropanoid biosynthesis and flavonoid biosynthesis. Transcriptome analysis revealed 1933 shared differentially expressed genes (DEGs), with 1356 upregulated and 577 downregulated genes across all Pb treatments. Additionally, an integrated analysis identified several DEGs and differentially accumulated metabolites (DAMs), including peroxidase, alpha-trehalose, and D-glucose 6-phosphate, which were linked to cell wall biosynthesis. These findings imply the significance of this pathway in Pb detoxification. This comprehensive investigation, employing multiple methodologies, provides a detailed molecular-level insight into maize's response to Pb stress.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Min Li
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Xingye Ma
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Xining Jin
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Xiangyuan Wu
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Huaisheng Zhang
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Zhongrong Guan
- Chongqing Yudongnan Academy of Agricultural Sciences, Chongqing, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, China
| | - Shilin Chen
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Pingxi Wang
- School of Agriculture, Henan Institute of Science and Technology, China
| |
Collapse
|
6
|
Ahsan M, Radicetti E, Jamal A, Ali HM, Sajid M, Manan A, Bakhsh A, Naeem M, Khan JA, Valipour M. Silicon nanoparticles and indole butyric acid positively regulate the growth performance of Freesia refracta by ameliorating oxidative stress under chromium toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1437276. [PMID: 39157509 PMCID: PMC11327035 DOI: 10.3389/fpls.2024.1437276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024]
Abstract
Chromium (Cr) toxicity hampers ornamental crops' growth and post-harvest quality, especially in cut flower plants. Nano-enabled approaches have been developing with phenomenal potential towards improving floricultural crop production under heavy metal-stressed conditions. The current pot experiment aims to explore the ameliorative impact of silicon nanoparticles (Si-NPs; 10 mM) and indole butyric acid (IBA; 20 mM) against Cr stress (0.8 mM) in Freesia refracta. The results showed that Cr stress significantly reduced morphological traits, decreased roots-stems biomass, abridged chlorophyll (14.7%) and carotenoid contents (27.2%), limited gas exchange attributes (intercellular CO2 concentration (Ci) 24.8%, stomatal conductance (gs) 19.3% and photosynthetic rate (A) 28.8%), condensed proline (39.2%) and total protein (40%) contents and reduced vase life (15.3%) of freesia plants by increasing oxidative stress. Contrarily, antioxidant enzyme activities, MDA and H2O2 levels, and Cr concentrations in plant parts were remarkably enhanced in Cr-stressed plants than in the control. However, foliar supplementation of Si-NPs + IBA (combined form) to Cr-stressed plants increased defense mechanism and tolerance as revealed by improved vegetative and reproductive traits, increased biomass, photosynthetic pigments (chlorophyll 30.3%, carotenoid 57.2%) and gaseous exchange attributes (Ci 33.3%, gs 25.6%, A 31.1%), proline (54.5%), total protein (55.1%), and vase life (34.9%) of metal contaminated plants. Similarly, the improvement in the activities of peroxidase, catalase, and superoxide dismutase was recorded by 30.8%, 52.4%, and 60.8%, respectively, compared with Cr-stressed plants. Meanwhile, MDA (54.3%), H2O2 (32.7%) contents, and Cr levels in roots (43.3), in stems (44%), in leaves (52.8%), and in flowers (78.5%), were remarkably reduced due to combine application of Si-NPs + IBA as compared with Cr-stressed nontreated freesia plants. Thus, the hypothesis that the synergistic application of Si-NPs + IBA will be an effective approach in ameliorating Cr stress is authenticated from the results of this experiment. Furthermore, the study will be significant since it will demonstrate how Si-NPs and IBA can work synergistically to combat Cr toxicity, and even when added separately, they can improve growth characteristics both under stressed and un-stressed conditions.
Collapse
Affiliation(s)
- Muhammad Ahsan
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferara, Ferrara, Italy
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mateen Sajid
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Abdul Manan
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ali Bakhsh
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Naeem
- Department of Pharmacy, Shah Abdul Latif University Khairpur, Khairpur, Pakistan
| | - Jawad Ahmad Khan
- Department of Pharmacy, Shah Abdul Latif University Khairpur, Khairpur, Pakistan
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, United States
| |
Collapse
|
7
|
Song Q, Zhao Y, Wu F, Guo X, Yu H, Li J, Li W, Wang Y, Li M, Xu J. Physiological and molecular responses of strawberry plants to Cd stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108800. [PMID: 38905729 DOI: 10.1016/j.plaphy.2024.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Cadmium (Cd), a toxic metal element, can be absorbed by plants via divalent metal ion transporters, thereby retarding plant growth and posing a threat to human health. Strawberries are popular and economically valuable berry species that are sensitive to soil pollutants, especially Cd. However, the mechanisms underlying Cd stress responses in strawberry plants remain largely unclear. Here, we investigated the physiological and molecular basis of Cd stress responses in strawberry plants using the diploid strawberry 'Yellow Wonder' as a material. The results indicated that Cd stress induced oxidative damage, repressed photosynthetic efficiency, and interfered with the accumulation and redistribution of trace elements. Furthermore, Cd stress reduced the concentrations of indoleacetic acid, trans-zeatin riboside and gibberellic acid while increasing the concentration of abscisic acid, thus altering the phytohormone signaling pathway in strawberry plants. Cd stress also inhibited the expression of genes involved in nitrogen uptake and assimilation while promoting the energy supply for plant survival under Cd toxicity. Moreover, the flavonoid biosynthesis pathway was induced, and the anthocyanin concentration increased, thereby improving the free radical scavenging capacity of strawberry plants under Cd toxicity. Additionally, we identified several transcription factors and functional genes as hub genes based on a weighted gene coexpression network analysis. These results collectively provide a theoretical foundation for strawberry breeding and ensuring agriculture and food safety.
Collapse
Affiliation(s)
- Qianqian Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Yuan Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Fei Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Xiaoyu Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Hao Yu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Junjun Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Weimin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Yanfang Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Meng Li
- Department of Pharmacy and Biotechnology, Zibo Vocational Institute, Zibo, 255300, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China.
| |
Collapse
|
8
|
Kong D, Ma H, Zhu C, Hao Y, Li C. Unraveling the toxicity response and metabolic compensation mechanism of tannic acid-Cr(III) complex on alga Raphidocelis subcapitata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172034. [PMID: 38657806 DOI: 10.1016/j.scitotenv.2024.172034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Due to their assembly properties and variable molecular weights, the potential biological toxicity effects of macromolecular organic ligand heavy metal complexes are more difficult to predict and their mechanisms are more complex. This study unraveled the toxicity response and metabolic compensation mechanism of tannic acid-Cr(III) (TA-Cr(III)) complex on alga Raphidocelis subcapitata using multi-omics approaches. Results showed TA-Cr(III) complex caused oxidative damage and photosystem disruption, destroying the cell morphology and inhibiting algal growth by >80 % at high exposure levels. TA-Cr(III) complex stress down-regulated proteins linked to proliferation, photosynthesis and antioxidation while upregulating carbon fixation, TCA cycle and amino acid metabolism. The increase of fumarate, citrate, isocitrate and semialdehyde succinate was validated by metabolomics analysis, which improved the TCA cycle, amino acid metabolism and carbon fixation. Activation of the above cellular processes somewhat compensated for the inhibition of algal photosynthesis by TA-Cr(III) complex exposure. In conclusion, physiological toxicity coupled with downstream metabolic compensation in response to Cr(III) complex of macromolecular was characterized in Raphidocelis subcapitata, unveiling the adaptive mechanism of algae under the stress of heavy metal complexes with macromolecular organic ligands.
Collapse
Affiliation(s)
- Deyi Kong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China.
| | - Chao Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| | - Yongyong Hao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| | - Chengtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| |
Collapse
|
9
|
Zhu S, Zhao W, Sheng L, Yang X, Mao H, Sun S, Chen Z. Integrated transcriptome and metabolomics analyses revealed key functional genes in Canna indica under Cr stress. Sci Rep 2024; 14:14090. [PMID: 38890328 PMCID: PMC11189463 DOI: 10.1038/s41598-024-64877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Chromium (Cr) can interfere with plant gene expression, change the content of metabolites and affect plant growth. However, the molecular response mechanism of wetland plants at different time sequences under Cr stress has yet to be fully understood. In this study, Canna indica was exposed to 100 mg/kg Cr-contaminated soil for 0, 7, 14, and 21 days and analyzed using untargeted metabolomics (LC-MS) and transcriptomics. The results showed that Cr stress increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD), the contents of glutathione (GSH), malondialdehyde (MDA), and oxygen free radical (ROS), and inhibited the biosynthesis of photosynthetic pigments, thus leading to changes in plant growth and biomass. Metabonomics analysis showed that Cr stress mainly affected 12 metabolic pathways, involving 38 differentially expressed metabolites, including amino acids, phenylpropane, and flavonoids. By transcriptome analysis, a total of 16,247 differentially expressed genes (DEGs, 7710 up-regulated genes, and 8537 down-regulated genes) were identified, among which, at the early stage of stress (Cr contaminate seven days), C. indica responds to Cr toxicity mainly through galactose, starch and sucrose metabolism. With the extension of stress time, plant hormone signal transduction and MAPK signaling pathway in C. indica in the Cr14 (Cr contaminate 14 days) treatment group were significantly affected. Finally, in the late stage of stress (Cr21), C. indica co-defuses Cr toxicity by activating its Glutathione metabolism and Phenylpropanoid biosynthesis. In conclusion, this study revealed the molecular response mechanism of C. indica to Cr stress at different times through multi-omics methods.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China.
| | - Wei Zhao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Suxia Sun
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol, 16500, Czech Republic
| |
Collapse
|
10
|
Yang Y, Zhao Y, Pan M, Yu Y, Guo Y, Ge Q, Hao W. Physiology and transcriptome analysis of Artemisia argyi adaptation and accumulation to soil cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116397. [PMID: 38714088 DOI: 10.1016/j.ecoenv.2024.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
The soil pollution caused by cadmium (Cd) poses a significant threat to the environment. Therefore, identifying plants that can effectively remediate Cd-contaminated soils is urgently needed. In this study, physiological, cytological, and transcriptome analyses were performed to comprehensively understand the changes in Artemisia argyi under Cd stress. Physiological and cytological analyses indicated that A. argyi maintained normal growth with intact cell structure under Cd stress levels up to 10 mg/kg. Cytological analysis showed that Cd precipitation in leaf cells occurred in the cytoplasm and intercellular spaces. As the levels of Cd stress increased, proline accumulation in leaves increased, whereas soluble protein and soluble sugar initially increased, followed by a subsequent decline. The translocation factor was above 1 under 0.6 mg/kg Cd stress but decreased when it exceeded this concentration. Transcriptome analyses revealed several crucial Cd-influenced pathways, including amino acid, terpenoid, flavonoid, and sugar metabolisms. This study not only proved that A. argyi could enrich Cd in soil but also revealed the response of A. argyi to Cd and its resistance mechanisms, which provided insight into the cleaner production of A. argyi and the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yingbin Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinghui Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiqi Pan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaxin Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Guo
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Ge
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wenfang Hao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Zhu S, Sun S, Zhao W, Yang X, Chen Z, Mao H, Sheng L. Comprehensive physiology and proteomics analysis revealed the resistance mechanism of rice (Oryza sativa L) to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116413. [PMID: 38728942 DOI: 10.1016/j.ecoenv.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Cadmium contamination can lead to a decrease in crop yield and quality. However, Cd-tolerant rice can improve rice resistance genes, improve crop tolerance to heavy metals, and protect plants from oxidative damage. In this study, Japonica rice: Chunyou 987 and Indica rice: Chuanzhong you 3607 were used to reveal the molecular response mechanism of Cd-tolerant rice under cadmium concentration of 3 mg/kg through comparative experiments combined with physiology and proteomics. The results showed that compared with indica rice, japonica rice showed more robust resistance to Cd stress and effectively retained many Cd ions in roots. Moreover, it enhanced its enzymatic and non-enzymatic anti-oxidative stress mechanism, which increased the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) by 47.37%, 21.75%, and 55.42%, respectively. The contents of non-enzymatic antioxidant substances ascorbic acid (AsA), glutathione (GSH), cysteine (Cys), proline (PRO), anthocyanins (OPC), and flavonoids were increased by 25.32%, 42.67%, 21.43%, 50.81%, 33.23%, and 72.16%, respectively. Through proteomics analysis, it was found that in response to the damage caused by cadmium stress, Japonica rice makes Photosynthesis functional proteins (psbO and PetH), Photosynthesis antenna proteins (LHCA and ASCAB9), Carbon fixation functional proteins (PEPC and OsAld), Porphyrin metabolism functional proteins (OsRCCR1 and SE5), Glyoxylate and dicarboxylate The expression of metabolism functional proteins (CATC and GLO4.) and Glutathione metabolism functional proteins (APX8 and OsGSTU13) were significantly up-regulated, which stimulated the antioxidant stress mechanism and photosynthetic system, and constructed a robust energy supply system to ensure the normal metabolic activities of life. Strengthening the mechanisms of plant homeostasis. In summary, this study revealed the molecular mechanism of tolerance to Cd stress in japonica rice, and the results of this study will provide a possible way to improve Cd-resistant rice seedlings.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| |
Collapse
|
12
|
Wu M, Xu Q, Tang T, Li X, Pan Y. Integrative physiological, transcriptomic, and metabolomic analysis of Abelmoschus manihot in response to Cd toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1389207. [PMID: 38916029 PMCID: PMC11194374 DOI: 10.3389/fpls.2024.1389207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Rapid industrialization and urbanization have caused severe soil contamination with cadmium (Cd) necessitating effective remediation strategies. Phytoremediation is a widely adopted technology for remediating Cd-contaminated soil. Previous studies have shown that Abelmoschus manihot has a high Cd accumulation capacity and tolerance indicating its potential for Cd soil remediation. However, the mechanisms underlying its response to Cd stress remain unclear. In this study, physiological, transcriptomic, and metabolomic analyses were conducted to explore the response of A. manihot roots to Cd stress at different time points. The results revealed that Cd stress significantly increased malondialdehyde (MDA) levels in A. manihot, which simultaneously activated its antioxidant defense system, enhancing the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) by 19.73%-50%, 22.87%-38.89%, and 32.31%-45.40% at 12 h, 36 h, 72 h, and 7 days, respectively, compared with those in the control (CK). Moreover, transcriptomic and metabolomic analyses revealed 245, 5,708, 9,834, and 2,323 differentially expressed genes (DEGs), along with 66, 62, 156, and 90 differentially expressed metabolites (DEMs) at 12 h, 36 h, 72 h, and 7 days, respectively. Through weighted gene coexpression network analysis (WGCNA) of physiological indicators and transcript expression, eight hub genes involved in phenylpropanoid biosynthesis, signal transduction, and metal transport were identified. In addition, integrative analyses of metabolomic and transcriptomic data highlighted the activation of lipid metabolism and phenylpropanoid biosynthesis pathways under Cd stress suggesting that these pathways play crucial roles in the detoxification process and in enhancing Cd tolerance in A. manihot. This comprehensive study provides detailed insights into the response mechanisms of A. manihot to Cd toxicity.
Collapse
Affiliation(s)
- Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qian Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Tingting Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xia Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanzhi Pan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Shi J, Li J, Pan Y, Zhao M, Zhang R, Xue Y, Liu Y. The Physiological Response Mechanism of Peanut Leaves under Al Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1606. [PMID: 38931038 PMCID: PMC11207616 DOI: 10.3390/plants13121606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Aluminum (Al) toxicity in acidic soils can significantly reduce peanut yield. The physiological response of peanut leaves to Al poisoning stress still has not been fully explored. This research examined the influences of Al toxicity on peanut leaves by observing the leaf phenotype, scanning the leaf area and perimeter, and by measuring photosynthetic pigment content, physiological response indices, leaf hormone levels, and mineral element accumulation. Fluorescence quantitative RT-PCR (qPCR) was utilized to determine the relative transcript level of specific genes. The results indicated that Al toxicity hindered peanut leaf development, reducing their biomass, surface area, and perimeter, although the decrease in photosynthetic pigment content was minimal. Al toxicity notably affected the activity of antioxidative enzymes, proline content, and MDA (malondialdehyde) levels in the leaves. Additionally, Al poisoning resulted in the increased accumulation of iron (Fe), potassium (K), and Al in peanut leaves but reduced the levels of calcium (Ca), manganese (Mn), copper (Cu), zinc (Zn), and magnesium (Mg). There were significant changes in the content of hormones and the expression level of genes connected with hormones in peanut leaves. High Al concentrations may activate cellular defense mechanisms, enhancing antioxidative activity to mitigate excess reactive oxygen species (ROS) and affecting hormone-related gene expression, which may impede leaf biomass and development. This research aimed to elucidate the physiological response mechanisms of peanut leaves to Al poisoning stress, providing insights for breeding new varieties resistant to Al poisoning.
Collapse
Affiliation(s)
- Jianning Shi
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianyu Li
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuhu Pan
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Min Zhao
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rui Zhang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
14
|
Mohan I, Joshi B, Pathania D, Dhar S, Bhau BS. Phytobial remediation advances and application of omics and artificial intelligence: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37988-38021. [PMID: 38780844 DOI: 10.1007/s11356-024-33690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Industrialization and urbanization increased the use of chemicals in agriculture, vehicular emissions, etc., and spoiled all environmental sectors. It causes various problems among living beings at multiple levels and concentrations. Phytoremediation and microbial association are emerging as a potential method for removing heavy metals and other contaminants from soil. The treatment uses plant physiology and metabolism to remove or clean up various soil contaminants efficiently. In recent years, omics and artificial intelligence have been seen as powerful techniques for phytobial remediation. Recently, AI and modeling are used to analyze large data generated by omics technologies. Machine learning algorithms can be used to develop predictive models that can help guide the selection of the most appropriate plant and plant growth-promoting rhizobacteria combination that is most effective at remediation. In this review, emphasis is given to the phytoremediation techniques being explored worldwide in soil contamination.
Collapse
Affiliation(s)
- Indica Mohan
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Babita Joshi
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P., 226001, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Sunil Dhar
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India.
| |
Collapse
|
15
|
Jalil S, Zulfiqar F, Moosa A, Chen J, Jabeen R, Ali HM, Alsakkaf WAA, Masood HA, Mirmazloum I, Makhzoum A, Chen J, Abeed AHA, Essawy HS. Amelioration of chromium toxicity in wheat plants through exogenous application of nano silicon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108659. [PMID: 38691875 DOI: 10.1016/j.plaphy.2024.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Chromium (Cr) contamination in agricultural soils poses a risk to crop productivity and quality. Emerging nano-enabled strategies show great promise in remediating soils contaminated with heavy metals and enhancing crop production. The present study was aimed to investigate the efficacy of nano silicon (nSi) in promoting wheat growth and mitigating adverse effects of Cr-induced toxicity. Wheat seedlings exposed to Cr (K2Cr2O7) at a concentration of 100 mg kg-1 showed significant reductions in plant height (29.56%), fresh weight (35.60%), and dry weight (38.92%) along with enhanced Cr accumulation in roots and shoots as compared to the control plants. However, the application of nSi at a concentration of 150 mg kg-1 showcased substantial mitigation of Cr toxicity, leading to a decrease in Cr accumulation by 27.30% in roots and 35.46% in shoots of wheat seedlings. Moreover, nSi exhibited the capability to scavenge oxidative stressors, such as hydrogen peroxide (H2O2), and malondialdehyde (MDA) and electrolyte leakage, while significantly enhancing gas exchange parameters, total chlorophyll content, and antioxidant activities (enzymatic and nonenzymatic) in plants grown in Cr-contaminated soil. This study further found that the reduced Cr uptake by nSi application was due to downregulating the expression of HMs transporter genes (TaHMA2 and TaHMA3), alongwith upregulating the expression of antioxidant-responsive genes (TaSOD and TaSOD). The findings of this investigation highlight the remarkable potential of nSi in ameliorating Cr toxicity. This enhanced efficacy could be ascribed to the distinctive size and structure of nSi, which augment its ability to counteract Cr stress. Thus, the application of nSi could serve as a viable solution for production of crops in metal contaminated soils, offering an effective alternative to time-consuming and costly remediation techniques.
Collapse
Affiliation(s)
- Sanaullah Jalil
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
| | - Raheela Jabeen
- Department of Biochemistry and Biotechnology, The Women University Multan, Pakistan
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Waleed A A Alsakkaf
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Jiansheng Chen
- National Key Laboratory of Wheat Improvement, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Heba S Essawy
- Botany and Microbiology Department, Faculty of Science, Benha University, 13518, Egypt
| |
Collapse
|
16
|
Sixi Z, Sun S, Zhao W, Yang X, Mao H, Sheng L. Comprehensive physiology and proteomics analysis revealed the molecular toxicological mechanism of Se stress on indica and japonica rice. CHEMOSPHERE 2024; 358:142190. [PMID: 38685336 DOI: 10.1016/j.chemosphere.2024.142190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Selenium pollution can lead to a decrease in crop yield and quality. However, the toxicological mechanisms of high Se concentrations on crops remain unclear. This study aimed to elucidate the physiological and proteomic molecular responses to Se stress in Oryza sativa. The results showed that under selenium stress, enzymatic activities of catalase, peroxidase, and superoxide dismutase in indica rice decreased by 61%, 28%, and 68%, respectively. The contents of non-enzymatic antioxidant substances ascorbic acid, glutathione, cysteine, proline, anthocyanidin, and flavonoids were decreased by 13%, 39%, 46%, 32%, 20%, and 5%, respectively, which significantly inhibited the antioxidant stress process of plants. At the same time, the results of proteomics analysis showed that rice seedlings, under Se stress, are involved in photosynthesis, photosynthesis-antenna proteins, carbon fixation, porphyrin metabolism, glyoxylate, and dicarboxylate. The differentially expressed proteins in metabolism and glutathione metabolism pathways showed a downward trend. It significantly inhibited the anti-oxidative stress, photosynthesis, and energy cycling process in plant cells, destroyed the homeostasis balance of rice plants, and inhibited the growth and development of rice. This finding reveals the molecular toxicological mechanism of Se stress on rice seedlings and provides a possible way to improve Se-resistant rice seedlings.
Collapse
Affiliation(s)
- Zhu Sixi
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China.
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| |
Collapse
|
17
|
Zhu S, Sun S, Zhao W, Yang X, Mao H, Sheng L, Chen Z. Utilizing transcriptomics and proteomics to unravel key genes and proteins of Oryza sativa seedlings mediated by selenium in response to cadmium stress. BMC PLANT BIOLOGY 2024; 24:360. [PMID: 38698342 PMCID: PMC11067083 DOI: 10.1186/s12870-024-05076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China.
| | - Suxia Sun
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Wei Zhao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Prague-Suchdol, 16500, Czech Republic
| |
Collapse
|
18
|
Anwar A, Wang Y, Chen M, Zhang S, Wang J, Feng Y, Xue Y, Zhao M, Su W, Chen R, Song S. Zero-valent iron (nZVI) nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133829. [PMID: 38394894 DOI: 10.1016/j.jhazmat.2024.133829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Cadmium (Cd) pollution threatens plant physiological and biochemical activities and crop production. Significant progress has been made in characterizing how nanoparticles affect Cd stress tolerance; however, the molecular mechanism of nZVI nanoparticles in Cd stress remains largely uncharacterized. Plants treated with nZVI and exposed to Cd had increased antioxidant capacity and reduced Cd accumulation in plant tissues. The nZVI treatment differentially affected the expression of genes involved in plant environmental responses, including those associated with the ERF transcription factor. SlEFR1 was upregulated by Cd stress in nZVI-treated plants when compared with the control and the predicted protein-protein interactions suggested SlERF1 interacts with proteins associated with plant hormone signaling pathway and related to stress. Yeast overexpressing SlEFR1 grew faster after Cd exposure and significantly had higher Cd stress tolerance when compared with empty vector controls. These results suggest that nZVI induces Cd stress tolerance by activating SlERF1 expression to improve plant growth and nutrient accumulation. Our study reveals the molecular mechanism of Cd stress tolerance for improved plant growth and will support new research on overcoming Cd stress and improving vegetable crop production.
Collapse
Affiliation(s)
- Ali Anwar
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yudan Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mengqing Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shuaiwei Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jinmiao Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yunqiang Feng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanxu Xue
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mingfeng Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
19
|
Li X, Cheng X, Wu J, Cai Z, Wang Z, Zhou J. Multi-omics reveals different impact patterns of conventional and biodegradable microplastics on the crop rhizosphere in a biofertilizer environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133709. [PMID: 38330650 DOI: 10.1016/j.jhazmat.2024.133709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs) from the incomplete degradation of agricultural mulch can stress the effectiveness of biofertilizers and ultimately affect the rhizosphere environment of crops. Yet, the involved mechanisms are poorly known and robust empirical data is generally lacking. Here, conventional polyethylene (PE) MPs and poly(butylene adipate-co-butylene terephthalate) (PBAT) / poly(lactic acid) (PLA) biodegradable MPs (PBAT-PLA BioMPs) were investigated to assess their potential impact on the rhizosphere environment of Brassica parachinensis in the presence of Bacillus amyloliquefaciens biofertilizer. The results revealed that both MPs caused different levels of inhibited crop both above- and belowground crop biomass (up to 50.11% and 57.09%, respectively), as well as a significant decrease in plant height (up to 48.63% and 25.95%, respectively), along with an imbalance of microbial communities. Transcriptomic analyses showed that PE MPs mainly affected root's vitamin metabolism, whereas PBAT-PLA BioMPs mainly interfered with the lipid's enrichment. Metabolomic analyses further indicated that PE MPs interfered with amino acid synthesis that involved in crops' oxidative stress, and that PBAT-PLA BioMPs mainly affected the pathways associated with root growth. Additionally, PBAT-PLA BioMPs had a bigger ecological negative impact than did PE MPs, as evidenced by more pronounced alterations in root antioxidant abilities, a higher count of identified differential metabolites, more robust interrelationships among rhizosphere parameters, and a more intricate pattern of impacts on rhizosphere metrics. This study highlights the MPs' impact on crop rhizosphere in a biofertilizer environment from a rhizosphere multi-omics perspective, and has theoretical implications for scientific application of biofertilizers.
Collapse
Affiliation(s)
- Xinyang Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xueyu Cheng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jialing Wu
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen, PR China
| | - Zhonghua Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zongkang Wang
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen, PR China
| | - Jin Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
20
|
Dong Q, Wu Y, Wang H, Li B, Huang R, Li H, Tao Q, Li Q, Tang X, Xu Q, Luo Y, Wang C. Integrated morphological, physiological and transcriptomic analyses reveal response mechanisms of rice under different cadmium exposure routes. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133688. [PMID: 38310845 DOI: 10.1016/j.jhazmat.2024.133688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Rice (Oryza sativa) is one of the major cereal crops and takes up cadmium (Cd) more readily than other crops. Understanding the mechanism of Cd uptake and defense in rice can help us avoid Cd in the food chain. However, studies comparing Cd uptake, toxicity, and detoxification mechanisms of leaf and root Cd exposure at the morphological, physiological, and transcriptional levels are still lacking. Therefore, experiments were conducted in this study and found that root Cd exposure resulted in more severe oxidative and photosynthetic damage, lower plant biomass, higher Cd accumulation, and transcriptional changes in rice than leaf Cd exposure. The activation of phenylpropanoids biosynthesis in both root and leaf tissues under different Cd exposure routes suggests that increased lignin is the response mechanism of rice under Cd stress. Moreover, the roots of rice are more sensitive to Cd stress and their adaptation responses are more pronounced than those of leaves. Quantitative PCR revealed that OsPOX, OsCAD, OsPAL and OsCCR play important roles in the response to Cd stress, which further emphasize the importance of lignin. Therefore, this study provides theoretical evidence for future chemical and genetic regulation of lignin biosynthesis in crop plants to reduce Cd accumulation.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haidong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
21
|
Zhu S, Zhao W, Sun S, Yang X, Mao H, Sheng L, Chen Z. Metagenomic analysis revealed N-metabolizing microbial response of Iris tectorum to Cr stress after colonization by arbuscular mycorrhizal fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116157. [PMID: 38430578 DOI: 10.1016/j.ecoenv.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/08/2023] [Accepted: 02/25/2024] [Indexed: 03/04/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria enhance plant tolerance to abiotic stress and promote plant growth in contaminated soil. However, the interaction mechanism between rhizosphere microbial communities under chromium (Cr) stress remains unclear. This study conducted a greenhouse pot experiment and metagenomics analysis to reveal the comprehensive effects of the interaction between AMF (Rhizophagus intraradices) and nitrogen-N metabolizing plant growth promoters on the growth of Iris tectorum. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum in contaminated soil and decreased the content of Cr in the soil. Metagenomics analysis revealed that the structure and composition of the rhizosphere microbial community involved in nitrogen metabolism changed significantly after inoculation with AMF under Cr stress. Functional genes related to soil nitrogen mineralization (gltB, gltD, gdhA, ureC, and glnA), nitrate reduction to ammonium (nirB, nrfA, and nasA), and soil nitrogen assimilation (NRT, nrtA, and nrtC) were up-regulated in the N-metabolizing microbial community. In contrast, the abundance of functional genes involved in denitrification (nirK and narI) was down-regulated. In addition, the inoculation of AMF regulates the synergies between the N-metabolic rhizosphere microbial communities and enhances the complexity and stability of the rhizosphere ecological network. This study provides a basis for improving plant tolerance to heavy metal stress by regulating the functional abundance of N-metabolizing plant growth-promoting bacteria through AMF inoculation. It helps to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Suchdol, Praha 16500, Czech Republic
| |
Collapse
|
22
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
23
|
Sanjana S, Jazeel K, Janeeshma E, Nair SG, Shackira AM. Synergistic interactions of assorted ameliorating agents to enhance the potential of heavy metal phytoremediation. STRESS BIOLOGY 2024; 4:13. [PMID: 38363436 PMCID: PMC10873264 DOI: 10.1007/s44154-024-00153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Pollution by toxic heavy metals creates a significant impact on the biotic community of the ecosystem. Nowadays, a solution to this problem is an eco-friendly approach like phytoremediation, in which plants are used to ameliorate heavy metals. In addition, various amendments are used to enhance the potential of heavy metal phytoremediation. Symbiotic microorganisms such as phosphate-solubilizing bacteria (PSB), endophytes, mycorrhiza and plant growth-promoting rhizobacteria (PGPR) play a significant role in the improvement of heavy metal phytoremediation potential along with promoting the growth of plants that are grown in contaminated environments. Various chemical chelators (Indole 3-acetic acid, ethylene diamine tetra acetic acid, ethylene glycol tetra acetic acid, ethylenediamine-N, N-disuccinic acid and nitrilotri-acetic acid) and their combined action with other agents also contribute to heavy metal phytoremediation enhancement. With modern techniques, transgenic plants and microorganisms are developed to open up an alternative strategy for phytoremediation. Genomics, proteomics, transcriptomics and metabolomics are widely used novel approaches to develop competent phytoremediators. This review accounts for the synergistic interactions of the ameliorating agent's role in enhancing heavy metal phytoremediation, intending to highlight the importance of these various approaches in reducing heavy metal pollution.
Collapse
Affiliation(s)
- S Sanjana
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - K Jazeel
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - E Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala, India
| | - Sarath G Nair
- Department of Botany, Mar Athanasius College, Mahatma Gandhi University, Kottayam, Kerala, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India.
| |
Collapse
|
24
|
Huang Q, Ayyaz A, Farooq MA, Zhang K, Chen W, Hannan F, Sun Y, Shahzad K, Ali B, Zhou W. Silicon dioxide nanoparticles enhance plant growth, photosynthetic performance, and antioxidants defence machinery through suppressing chromium uptake in Brassica napus L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123013. [PMID: 38012966 DOI: 10.1016/j.envpol.2023.123013] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Chromium (Cr) is a highly toxic heavy metal that is extensively released into the soil and drastically reduces plant yield. Silicon nanoparticles (Si NPs) were chosen to mitigate Cr toxicity due to their ability to interact with heavy metals and reduce their uptake. This manuscript explores the mechanisms of Cr-induced toxicity and the potential of Si NPs to mitigate Cr toxicity by regulating photosynthesis, oxidative stress, and antioxidant defence, along with the role of transcription factors and heavy metal transporter genes in rapeseed (Brassica napus L.). Rapeseed plants were grown hydroponically and subjected to hexavalent Cr stress (50 and 100 μM) in the form of K2Cr2O7 solution. Si NPs were foliar sprayed at concentrations of 50, 100 and 150 μM. The findings showed that 100 μM Si NPs under 100 μM Cr stress significantly increased the leaf Si content by 169% while reducing Cr uptake by 92% and 76% in roots and leaves, respectively. The presence of Si NPs inside the plant leaf cells was confirmed by using energy-dispersive spectroscopy, inductively coupled plasma‒mass spectrometry, and confocal laser scanning microscopy. The study's findings showed that Cr had adverse effects on plant growth, photosynthetic gas exchange attributes, leaf mesophyll ultrastructure, PSII performance and the activity of enzymatic and nonenzymatic antioxidants. However, Si NPs minimized Cr-induced toxicity by reducing total Cr accumulation and decreasing oxidative damage, as evidenced by reduced ROS production (such as H2O2 and MDA) and increased enzymatic and nonenzymatic antioxidant activities in plants. Interestingly, Si NPs under Cr stress effectively increased the NPQ, ETR and QY of PSII, indicating a robust protective response of PSII against stress. Furthermore, the enhancement of Cr tolerance facilitated by Si NPs was linked to the upregulation of genes associated with antioxidant enzymes and transcription factors, alongside the concurrent reduction in metal transporter activity.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Kangni Zhang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Weiqi Chen
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Fakhir Hannan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yongqi Sun
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Khuram Shahzad
- Department of Botany, University of Sargodha, Sargodha, 40162, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Weijun Zhou
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Zhang Y, Song M, Zhu Y, Li H, Zhang Y, Wang G, Chen X, Zhang W, Wang H, Wang Y, Shao R, Guo J, Yang Q. Impact of microplastic particle size on physiological and biochemical properties and rhizosphere metabolism of Zea mays L.: Comparison in different soil types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168219. [PMID: 37924875 DOI: 10.1016/j.scitotenv.2023.168219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
The effect of microplastics (MPs) on plant growth has received increasing attention. However, whether soil texture and MPs size influence the toxicological effects of MPs on plants is unknown. To address this knowledge gap, two soils with different physical structures (lime concretion black and silty loam soils) were selected to explore the potential toxicity of MPs of different particle sizes to maize growth. The results showed that, in both soils, the harm caused by small MPs on maize growth was greater than that caused by large MPs. Low MPs concentrations had no significant effect on maize growth between two soil types; however, when exposed to a concentration of 1 % large MPs, the dry biomass of maize was promoted in lime concretion black soil but inhibited in silty loam soil. All MPs-exposed treatments resulted in a high level of superoxide anions in maize roots, resulting in an increase in the root aerenchyma area and reducing the metabolic activity of maize roots. Metabolomics showed that MPs exposure affected multiple amino acid metabolic pathways, including phenylalanine and tyrosine metabolism, and inhibited lignin biosynthesis in roots. This study provides a theoretical basis for a more comprehensive assessment of the effect of MPs pollution on agricultural production.
Collapse
Affiliation(s)
- Yihan Zhang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Miaomiao Song
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Yiming Zhu
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Huan Li
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Yinglei Zhang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaofeng Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinping Chen
- College of Resources and Environment and Academy of Agricultural Science, Southwest University, Chongqing 400700, China
| | - Wushuai Zhang
- College of Resources and Environment and Academy of Agricultural Science, Southwest University, Chongqing 400700, China
| | - Hao Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongchao Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruixin Shao
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiameng Guo
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China..
| | - Qinghua Yang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
26
|
Xia G, Zhu S, Zhao W, Yang X, Sheng L, Mao H. Arbuscular mycorrhizal fungi alter rhizosphere fungal community characteristics of Acorus calamus to improve Cr resistance. PeerJ 2023; 11:e15681. [PMID: 37953782 PMCID: PMC10638908 DOI: 10.7717/peerj.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 11/14/2023] Open
Abstract
To investigate changes in fungal community characteristics under different Cr(VI) concentration stresses and the advantages of adding arbuscular mycorrhizal fungi (AMF), we used high throughput sequencing to characterize the fungal communities. Cr(VI) stress reduced rhizosphere soil SOM (soil organic matter) content and AMF addition improved this stress phenomenon. There were significant differences in fungal community changes under different Cr(VI) concentrations. The fungal community characteristics changed through inhibition of fungal metabolic ability, as fungal abundance increased after AMF addition, and the fungal diversity increased under high Cr(VI) concentration. The dominant phyla were members of the Ascomycota, Basidiomycota, Mortierellomycota, and Rozellomycota. Dominant groups relevant to Cr resistance were Ascomycota and Basidiomycota fungi. Moreover, Fungal community characteristics were analyzed using high-throughput sequencing of the cytochrome c metabolic pathway, NADH dehydrogenase, and NADH: ubiquinone reductase and all these functions were enhanced after AMF addition. Therefore, Cr(VI) stress significantly affects fungal community structure, while AMF addition could increase its SOM content, and metabolic capacity, and improve fungal community tolerance to Cr stress. This study contributed to the understanding response of rhizosphere fungal community in AMF-assisted wetland phytoremediation under Cr stress.
Collapse
Affiliation(s)
- Guodong Xia
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Sixi Zhu
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Wei Zhao
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Xiuqing Yang
- Guizhou Minzu University, Guiyang, Guizhou, China
| | - Luying Sheng
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Huan Mao
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| |
Collapse
|
27
|
Zhou Y, Yao L, Huang X, Li Y, Wang C, Huang Q, Yu L, Pan C. Transcriptomics and metabolomics association analysis revealed the responses of Gynostemma pentaphyllum to cadmium. FRONTIERS IN PLANT SCIENCE 2023; 14:1265971. [PMID: 37877087 PMCID: PMC10591085 DOI: 10.3389/fpls.2023.1265971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Gynostemma pentaphyllum an important medicinal herb, can absorb high amounts of cadmium (Cd) which can lead to excessive Cd contamination during the production of medicines and tea. Hence, it is crucial to investigate the response mechanism of G. pentaphyllum under Cd stress to develop varieties with low Cd accumulation and high tolerance. Physiological response analysis, transcriptomics and metabolomics were performed on G. pentaphyllum seedlings exposed to Cd stress. Herein, G. pentaphyllum seedlings could significantly enhance antioxidant enzyme activities (POD, CAT and APX), proline and polysaccharide content subject to Cd stress. Transcriptomics analysis identified the secondary metabolites, carbohydrate metabolism, amino acid metabolism, lipid metabolism, and signal transduction pathways associated with Cd stress, which mainly involved the XTH, EXP and GST genes. Metabolomics analysis identified 126 differentially expressed metabolites, including citric acid, flavonoid and amino acids metabolites, which were accumulated under Cd stress. Multi-omics integrative analysis unraveled that the phenylpropanoid biosynthesis, starch, and sucrose metabolism, alpha-linolenic acid metabolism, and ABC transporter were significantly enriched at the gene and metabolic levels in response to Cd stress in G. pentaphyllum. In conclusion, the genetic regulatory network sheds light on Cd response mechanisms in G. pentaphyllum.
Collapse
Affiliation(s)
- Yunyi Zhou
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lixiang Yao
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xueyan Huang
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Li
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Chunli Wang
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Qinfen Huang
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Liying Yu
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Chunliu Pan
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
28
|
Sheng L, Zhao W, Yang X, Mao H, Zhu S. Response characteristics of rhizosphere microbial community and metabolites of Iris tectorum to Cr stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115218. [PMID: 37441947 DOI: 10.1016/j.ecoenv.2023.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Chromium (Cr) is a toxic heavy element that interferes with plant metabolite biosynthesis and modifies the plant rhizosphere microenvironment, affecting plant growth. However, the interactions and response mechanisms between plants and rhizosphere bacteria under Cr stress still need to be fully understood. In this study, we used Iris tectorum as a research target and combined physiology, metabolomics, and microbiology to reveal the stress response mechanism of I. tectorum under heavy metal chromium stress. The results showed that Cr stress-induced oxidative stress inhibited plant growth and development and increased malondialdehyde and oxygen free radicals content. Also, it increased ascorbate peroxidase, peroxidase activity, and superoxide dismutase activity, as well as glutathione and soluble sugar content. Microbiome analysis showed that Cr stress changed the rhizosphere bacterial community diversity index by 33.56%. Proteobacteria, Actinobacteriota, and Chloroflexi together accounting for 71.21% of the total sequences. Meanwhile, the abundance of rhizosphere dominant and plant-promoting bacteria increased significantly with increasing time of Cr stress. The improvement of the soil microenvironment and the recruitment of bacteria by I. tectorum root secretions were significantly enhanced. By metabolomic analysis, five vital metabolic pathways were identified, involving 89 differentially expressed metabolites, divided into 15 major categories. In summary, a multi-omics approach was used in this study to reveal the interaction and stress response mechanisms between I. tectorum and rhizosphere bacterial communities under Cr stress, which provided theoretical basis for plant-microbial bioremediation of Cr-contaminated soils in constructed wetlands. This may provide more valuable information for wetland remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| |
Collapse
|
29
|
Mao H, Zhao W, Yang X, Sheng L, Zhu S. Recruitment and metabolomics between Canna indica and rhizosphere bacteria under Cr stress. Front Microbiol 2023; 14:1187982. [PMID: 37655347 PMCID: PMC10465350 DOI: 10.3389/fmicb.2023.1187982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
It is of positive significance to explore the mechanism of antioxidant and metabolic response of Canna indica under Cr stress mediated by rhizosphere niche. However, the mechanisms of recruitment and interaction of rhizosphere microorganisms in plants still need to be fully understood. This study combined physiology, microbiology, and metabolomics, revealing the interaction between C. indica and rhizosphere microorganisms under Cr stress. The results showed that Cr stress increased the content of malondialdehyde (MDA) and oxygen-free radicals (ROS) in plants. At the same time, the activities of antioxidant enzymes (SOD, POD, and APX) and the contents of glutathione (GSH) and soluble sugar were increased. In addition, Cr stress decreased the α diversity index of C. indica rhizosphere bacterial community and changed its community structure. The dominant bacteria, namely, Actinobacteriota, Proteobacteria, and Chloroflexi accounted for 75.16% of the total sequence. At the same time, with the extension of stress time, the colonization amount of rhizosphere-dominant bacteria increased significantly, and the metabolites secreted by roots were associated with the formation characteristics of Proteobacteria, Actinobacteria, Bacteroidetes, and other specific bacteria. Five critical metabolic pathways were identified by metabolome analysis, involving 79 differentially expressed metabolites, which were divided into 15 categories, mainly including lipids, terpenoids, and flavonoids. In conclusion, this study revealed the recruitment and interaction response mechanism between C. indica and rhizosphere bacteria under Cr stress through multi-omics methods, providing the theoretical basis for the remediation of Cr-contaminated soil.
Collapse
Affiliation(s)
| | | | | | | | - Sixi Zhu
- The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, China
| |
Collapse
|
30
|
Wang B, Wang Y, Yuan X, Jiang Y, Zhu Y, Kang X, He J, Xiao Y. Comparative transcriptomic analysis provides key genetic resources in clove basil ( Ocimum gratissimum) under cadmium stress. Front Genet 2023; 14:1224140. [PMID: 37576563 PMCID: PMC10412823 DOI: 10.3389/fgene.2023.1224140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Planting aromatic plant might be a promising strategy for safely utilizing heavy metal (HM)-contaminated soils, as HMs in essential oil could be completely excluded using some special technologies with ease. Clove basil (Ocimum gratissimum L.) is an important aromatic plant used in essential oil production. Improving cadmium (Cd) tolerance in clove basil can increase its production and improve the utilization efficiency of Cd-contaminated soils. However, the lack of genomic information on clove basil greatly restricts molecular studies and applications in phytoremediation. In this study, we demonstrated that high levels of Cd treatments (0.8, 1.6 and 6.5 mg/L) significantly impacted the growth and physiological attributes of clove basil. Cd contents in clove basil tissues increased with treatment concentrations. To identify Cd stress-responsive genes, we conducted a comparative transcriptomic analysis using seedlings cultured in the Hoagland's solution without Cd ion (control) or containing 1.6 mg/L CdCl2 (a moderate concentration of Cd stress for clove basil seedlings). A total of 104.38 Gb clean data with high-quality were generated in clove basil under Cd stress through Illumina sequencing. More than 1,800 differential expressed genes (DEGs) were identified after Cd treatment. The reliability and reproducibility of the transcriptomic data were validated through qRT-PCR analysis and Sanger sequencing. KEGG classification analysis identified the "MAPK signaling pathway," "plant hormone signal transduction" and "plant-pathogen interaction" as the top three pathways. DEGs were divided into five clusters based on their expression patterns during Cd stress. The functional annotation of DEGs indicated that downregulated DEGs were mainly involved in the "photosynthesis system," whereas upregulated DEGs were significantly assigned to the "MAPK signaling pathway" and "plant-pathogen interaction pathway." Furthermore, we identified a total of 78 transcription factors (TFs), including members of bHLH, WRKY, AP2/ERF, and MYB family. The expression of six bHLH genes, one WRKY and one ERF genes were significantly induced by Cd stress, suggesting that these TFs might play essential roles in regulating Cd stress responses. Overall, our study provides key genetic resources and new insights into Cd adaption mechanisms in clove basil.
Collapse
Affiliation(s)
- Bin Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yukun Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xiao Yuan
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yuanyuan Jiang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yunna Zhu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xinmiao Kang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yanhui Xiao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan Aromatic Plant Engineering Research Center, College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
31
|
Lebrun M, Száková J, Drábek O, Tejnecký V, Hough RL, Beesley L, Wang H, Trakal L. ETDA as a legacy soil chelatant: a comparative study to a more environmentally sensitive alternative for metal removal by Pistia stratiotes L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27537-6. [PMID: 37202639 DOI: 10.1007/s11356-023-27537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
The accuracy of environmental risk assessment depends upon selecting appropriate matrices to extract the most risk-relevant portion of contaminant(s) from the soil. Here, we applied the chelatants EDTA and tartaric acid to extract a metal-contaminated soil. Pistia stratiotes was applied as an indicator plant to measure accumulation from the metal-laden bulk solutions generated, in a hydroponic experiment lasting 15 days. Speciation modeling was used to elucidate key geo-chemical mechanisms impacting matrix and metal-specific uptake revealed by experimental work. The highest concentrations of soil-borne metals were extracted from soil by EDTA (7.4% for Cd), but their uptake and translocation to the plant were restricted due to the formation of stable metal complexes predominantly with DOC. Tartaric acid solubilized metals to a lesser extent (4.6% for Cd), but a higher proportion was plant available due to its presence mainly in the form of bivalent metal cations. The water extraction showed the lowest metal extraction (e.g., 3.9% for Cd), but the metal species behaved similarly to those extracted by tartaric acid. This study demonstrates that not all extractions are equal and that metal-specific speciation will impact accurate risk assessment in soil (water)-plant systems. In the case of EDTA, a deleterious impact on DOC leaching is an obvious drawback. As such, further work should now determine soil and not only metal-specific impacts of chelatants on the extraction of environmentally relevant portions of metal(loid)s.
Collapse
Affiliation(s)
- Manhattan Lebrun
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague 6, Czech Republic
| | - Ondřej Drábek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague 6, Czech Republic
| | - Václav Tejnecký
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00, Prague 6, Czech Republic
| | | | - Luke Beesley
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, Guangdong, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic.
| |
Collapse
|