1
|
Guo X, Yu H, Yao H, Lin F, Salama E, Ossman M, Yan B, Chen G. Green transformation of oily sludge through geopolymer: Material properties and hydration mechanisms. CHEMOSPHERE 2024; 364:143132. [PMID: 39168378 DOI: 10.1016/j.chemosphere.2024.143132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Oily sludge (OS) is a kind of hazardous waste generated from the petrochemical industry. Currently, pyrolysis has been widely applied for OS disposal, while low-oil content (<5 wt%) OS still lacks novel technology to achieve efficient resource utilization and harmful substances immobilization. In this study, a kind of OS-based geopolymer was developed by OS and ground granulated blast furnace slag (GGBS). The results showed that in geopolymer with 30 wt% OS, the content of total petroleum hydrocarbons (TPHs) decreased by 82%, Zn achieved 100% stabilization, and the 28 d compressive strength could still reach 32.8 MPa. The appropriate oil content filled the pores and cracks in geopolymer matrix. The constructed model compounds further elucidated the hydration mechanisms of OS-geopolymer. The nucleation effect of crude oil and micro-aggregate effect of minerals jointly improved the polymerization degree of C-(A)-S-H gels. OS promoted the transformation of [SiO4]4- monomers into C-(A)-S-H unbranched middle groups and three-dimensional networks, thereby efficiently stabilizing harmful substances. Sustainability analysis showed that OS-based geopolymer had good environmental and economic benefits. Overall, this work provides theoretical guidance for the green transformation of OS in the construction field.
Collapse
Affiliation(s)
- Xuan Guo
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, PR China.
| | - Hongdi Yu
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, PR China.
| | - Hongyun Yao
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, PR China.
| | - Fawei Lin
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, PR China.
| | - Eslam Salama
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Mona Ossman
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, PR China.
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, PR China.
| |
Collapse
|
2
|
Jiang J, Luo H, Ou X, Wang S, Su J, Chen J. Long-term leaching characteristics of heavy metals from bauxite tailing slurry-based geopolymer backfill: experimental and numerical simulation studies. ENVIRONMENTAL TECHNOLOGY 2024; 45:4951-4963. [PMID: 37957125 DOI: 10.1080/09593330.2023.2283410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
This study aimed to evaluate the potential of replacing fly ash (FA) with bauxite tailing (BT) slurry for geopolymer synthesis and investigate the long-term leaching behaviour of BT slurry/FA geopolymers (BFGs) for heavy metal immobilisation. The mechanical properties and heavy metal immobilisation efficiency of BFGs were tested, and numerical simulations were conducted to assess their environmental impact as a backfill material. The results showed that the incorporation of 5 Wt.% BT increased the early compressive strength of the geopolymer without any additional treatment. A small quantity of Cu2+ improved the mechanical strength, while excess heavy metals harmed the geopolymer. Heavy metal immobilisation efficiency decreased with increased heavy metal addition and exceeded 99.9% for Pb2+ and Cu2+ when simulating acid rain leachate. The modified Elovich equation described the leaching kinetics of Cu2+ well, and the leaching rate decreased with time. Numerical analysis indicated that Cu2+ leaching from landfill leachate occurred in three phases, with an initial increase followed by a gradual decrease, stabilisation, and diffusion into the surrounding soil layer. This study provides insight into the material's long-term stability and environmental performance, offering a scientific basis for relevant engineering applications.HighlightsDirect utilisation of unprocessed tailing slurry to synthesise geopolymer.The leaching pattern of Pb2+ and Cu2+ under acidic conditions was explored.The modified Elovich equation effectively describes the leaching kinetics of Cu2+.The environmental impact of bauxite tailings slurry-based geopolymers was evaluated.
Collapse
Affiliation(s)
- Jie Jiang
- School of Civil Engineering and Architecture, Guangxi University, Nanning, People's Republic of China
| | - Haohao Luo
- School of Civil Engineering and Architecture, Guangxi University, Nanning, People's Republic of China
| | - Xiaoduo Ou
- School of Civil Engineering and Architecture, Guangxi University, Nanning, People's Republic of China
| | - Shufei Wang
- School of Civil Engineering and Architecture, Guangxi University, Nanning, People's Republic of China
| | - Jian Su
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
| | - Junlin Chen
- School of Civil Engineering and Architecture, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
3
|
Jamalimoghadam M, Vakili AH, Keskin I, Totonchi A, Bahmyari H. Solidification and utilization of municipal solid waste incineration ashes: Advancements in alkali-activated materials and stabilization techniques, a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122014. [PMID: 39098066 DOI: 10.1016/j.jenvman.2024.122014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Researchers are actively investigating methodologies for the detoxification and utilization of Municipal Solid Waste Incineration Bottom Ash (MSWIBA) and Fly Ash (MSWIFA), given their potential as alkali-activated materials (AAMs) with low energy consumption. Recent studies highlight that AAMs from MSWIFA and MSWIBA demonstrate significant durability in both acidic and alkaline environments. This article provides a comprehensive overview of the processes for producing MSWIFA and MSWIBA, evaluating innovative engineering stabilization techniques such as graphene nano-platelets and lightweight artificial cold-bonded aggregates, along with their respective advantages and limitations. Additionally, this review meticulously incorporates relevant reactions. Recommendations are also presented to guide future research endeavors aimed at refining these methodologies.
Collapse
Affiliation(s)
- Mohammad Jamalimoghadam
- Department of Civil Engineering, Marvdasht Branch, Azad Islamic University, Marvdasht, Iran.
| | - Amir Hossein Vakili
- Department of Environmental Engineering, Faculty of Engineering, Karabuk University, Karabuk, Turkey; Department of Civil Engineering, Faculty of Engineering, Zand Institute of Higher Education, Shiraz, Iran.
| | - Inan Keskin
- Department of Environmental Engineering, Faculty of Engineering, Karabuk University, Karabuk, Turkey
| | - Arash Totonchi
- Department of Civil Engineering, Marvdasht Branch, Azad Islamic University, Marvdasht, Iran
| | | |
Collapse
|
4
|
Chen Y, Pei Z, Mao X, Fan L, Xu M, Li Y, Wang D, Yi J. Evaluation of electromagnetic scattering characteristics of construction solid waste-A theoretical study of solid waste identification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172312. [PMID: 38599403 DOI: 10.1016/j.scitotenv.2024.172312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
The surge in urban development has resulted in a substantial accumulation of construction solid waste (CSW). However, prevailing identification methods of CSW remain predominantly two-dimensional in scope and need to be more efficient. This study employs an approach, combining simulation and experimental analyses, to delve into the factors influencing the electromagnetic scattering characteristics of CSW, investigating the feasibility of employing Synthetic Aperture Radar (SAR) to recognize CSW. The findings show that the computational time of MLFMM and PO is only 3.28 % and 0.029 % of MM among different simulation methods. The results underscore the collective impact of material types, surface structures, and curvature on the scattering characteristics of CSW. The difference in average intensity between different materials can reach up to 13 dB. Exploiting these distinctions in scattering enables the precise identification of high-value waste components, such as intact bricks and steel bars, within the intricate landscape of CSW.
Collapse
Affiliation(s)
- Yuheng Chen
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhongshi Pei
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaoxuan Mao
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Lulu Fan
- Shenzhen Tagen Grp Co Ltd, Shenzhen 518060, China
| | - Meng Xu
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Li
- School of Future Technology, Harbin Institute of Technology, Harbin 150090, China.
| | - Dongsheng Wang
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Junyan Yi
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Chen XB, Liang JF, Li W. Compression stress-strain curve of lithium slag recycled fine aggregate concrete. PLoS One 2024; 19:e0302176. [PMID: 38635601 PMCID: PMC11025801 DOI: 10.1371/journal.pone.0302176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
As one of the key materials used in the civil engineering industry, concrete has a global annual consumption of approximately 10 billion tons. Cement and fine aggregate are the main raw materials of concrete, and their production causes certain harm to the environment. As one of the countries with the largest production of industrial solid waste, China needs to handle solid waste properly. Researchers have proposed to use them as raw materials for concrete. In this paper, the effects of different lithium slag (LS) contents (0%, 10%, 20%, 40%) and different substitution rates of recycled fine aggregates (RFA) (0%, 10%, 20%, 30%) on the axial compressive strength and stress-strain curve of concrete are discussed. The results show that the axial compressive strength, elastic modulus, and peak strain of concrete can increase first and then decrease when LS is added, and the optimal is reached when the LS content is 20%. With the increase of the substitution rate of RFA, the axial compressive strength and elastic modulus of concrete decrease, but the peak strain increases. The appropriate amount of LS can make up for the mechanical defects caused by the addition of RFA to concrete. Based on the test data, the stress-strain curve relationship of lithium slag recycled fine aggregate concrete is proposed, which has a high degree of agreement compared with the test results, which can provide a reference for practical engineering applications. In this study, LS and RFA are innovatively applied to concrete, which provides a new way for the harmless utilization of solid waste and is of great significance for the control of environmental pollution and resource reuse.
Collapse
Affiliation(s)
- Xue-Bin Chen
- Faculty of Civil & Architecture Engineering, East China University of Technology, Nanchang, P.R. China
| | - Jiong-Feng Liang
- Faculty of Civil & Architecture Engineering, East China University of Technology, Nanchang, P.R. China
| | - Wei Li
- College of Civil Engineering and Architecture, Wenzhou University, Wenzhou, P.R. China
- Key Laboratory of Engineering and Technology for Soft Soil Foundation and Tideland Reclamation of Zhejiang Province, Wenzhou, P.R. China
| |
Collapse
|
6
|
Guo L, Xu X, Wang Q, Park J, Lei H, Zhou L, Wang X. Machine learning-based prediction of heavy metal immobilization rate in the solidification/stabilization of municipal solid waste incineration fly ash (MSWIFA) by geopolymers. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133682. [PMID: 38341892 DOI: 10.1016/j.jhazmat.2024.133682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Geopolymer is an environmentally friendly solidification/stabilization (S/S) binder, exhibiting significant potential for immobilizing heavy metals in municipal solid waste incineration fly ash (MSWIFA). However, due to the diversity in geopolymer raw materials and heavy metal properties, predicting the heavy metal immobilization rate proves to be challenging. In order to enhance the application of geopolymers in immobilizing heavy metals in MSWIFA, a universal method is required to predict the heavy metal immobilization rate. Therefore, this study employs machine learning to predict the heavy metal immobilization rate in S/S of MSWIFA by geopolymers. A gradient boosting regression (GB) model with superior performance (R2 = 0.9214) was obtained, and a graphical user interface (GUI) software was developed to facilitate the convenient accessibility of researchers. The feature categories influencing heavy metal immobilization rate are ranked in order of importance as heavy metal properties > geopolymer raw material properties > curing conditions > alkali activator properties. This study facilitates the rapid prediction, improvement, and optimization of heavy metal immobilization in S/S of MSWIFA by geopolymers, and also provides a theoretical basis for the resource utilization of industrial solid waste, contributing to the environmental protection.
Collapse
Affiliation(s)
- Lisheng Guo
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Xin Xu
- College of Construction Engineering, Jilin University, Changchun 130026, China.
| | - Qing Wang
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Junboum Park
- Department of Civil and Environment Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Haomin Lei
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Lu Zhou
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Xinhai Wang
- College of Construction Engineering, Jilin University, Changchun 130026, China
| |
Collapse
|
7
|
Lan J, Dong Y, Kai MF, Hou H, Dai JG. Investigation of waste alkali-activated cementing material using municipal solid waste incineration fly ash and dravite as precursors: Mechanisms, performance, and on-site application. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133416. [PMID: 38183939 DOI: 10.1016/j.jhazmat.2023.133416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The proper treatment of municipal solid waste incineration fly ash (MSWIFA) is a crucial concern due to its hazardous nature and potential environmental harm. To address this issue, this study innovatively utilized dravite and black liquor to solidify MSWIFA. The semi-dry pressing method was employed, resulting in the production of waste alkali-activated cementing material (WACM). This material demonstrated impressive compressive and flexural strength, reaching 45.89 MPa and 6.55 MPa respectively, and effectively solidified heavy metal ions (Pb, Cr, Cu, Cd, and Zn). The leaching concentrations of these ions decreased from 27.15, 10.36, 8.94, 7.00, and 104.4 mg/L to 0.13, 1.05, 0.29, 0.06, and 12.28 mg/L, respectively. The strength of WACM increased by 3 times compared to conventionally produced materials. Furthermore, WACM exhibited excellent long-term performance, with acceptable heavy metal leaching and minimal mechanical degradation. Experimental and theoretical analyses revealed the heavy metal solidification mechanisms, including chemical binding, ion substitution and physical encapsulation. Finally, the on-site application of WACM confirmed its feasibility in meeting both environmental and strength requirements.
Collapse
Affiliation(s)
- Jirong Lan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yiqie Dong
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| | - Ming-Feng Kai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| | - Jian-Guo Dai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Zhang H, Ji Z, Chen W, Pei Y. Codisposal of landfill leachate concentrate and antimony mine soils using a one-part geopolymer system for cationic and anionic heavy metals immobilization. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132909. [PMID: 37979425 DOI: 10.1016/j.jhazmat.2023.132909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023]
Abstract
Geopolymer solidification/stabilization technology has developed rapidly in the remediation field of heavy metal-contaminated soil. However, geopolymers exhibit low anionic heavy metal immobilization efficiency due to their electronegativity and alkali activation characteristics. This study constructed a one-part blast furnace slag-based geopolymer system using landfill leachate concentrate (LLC) as chlorine and humic acid sources and achieved the solidification/stabilization of cations (Cd, Cu, Hg, and Pb) and anions (Sb and As) in the antimony mine soils (AMS). The LLC addition increased the Sb and As fixation rates from 92%∼94% and 82∼86%, respectively, to over 99%, reducing the leaching concentration of all heavy metal ions to the ppb level. LLC improved the chemical stability and physical encapsulation of Sb/As in three ways: inducing a Friedel's salt (FS) formation, enhancing humic acid complexation/chelation, and promoting geopolymerization. Wet curing was more conducive to FS formation in the geopolymer than dry curing and increased the 28-day compressive strength by 38.5%. Due to the SiO2 skeleton support effect in AMS, a 30 wt% AMS addition was beneficial for geopolymer strength development. Our study provided a harmless method for the codisposal of LLC and AMS and improved the efficiency of geopolymer fixation of complex heavy metal cations and anions.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zehua Ji
- Research Center for Water Quality and Ecology, Tsinghua University, Beijing 100084, PR China
| | - Weitong Chen
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
9
|
Nkwaju RY, Nouping JNF, Bachirou S, Abo TM, Deutou JGN, Djobo JNY. Effective Stabilization of Cadmium and Copper in Iron-Rich Laterite-Based Geopolymers and Influence on Physical Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7605. [PMID: 38138747 PMCID: PMC10744675 DOI: 10.3390/ma16247605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 12/24/2023]
Abstract
This study aimed to investigate the efficiency of a geopolymer binder of the type of Na-poly(ferro-silico-aluminate) as a matrix for the stabilization of heavy metals along with their effect on the development of structural performances. The artificial contamination of soil with ions was carried out and used to prepare an alkali-activated iron-rich lateritic soil binder. Further, various microstructural analyses were carried out to explain the stabilization mechanism. The stabilization efficiency was assessed by leaching tests in de-ionized water and hydrochloric acid (0.1 M, HCl). Then, the physical properties were determined to evaluate the impact of heavy metals on the structural performance of the binder. Results demonstrated that the prepared geopolymer binder has the lowest stabilization capacity in an acidic medium (low pH) than in water with high pH. However, the stabilization of Cu ions was effective at 99%, while the Cd ion is barely retained in the matrix. Firstly, the mechanism consists of chemical bonds through ion exchange with sodium of the Na-poly(ferro-silico-aluminate) network. Secondly, through physical interaction with the pore network of the matrix, the heavy metals induced structural deterioration in the geopolymer matrix with a decrease in the compressive strength and bulk density and an increase of both apparent porosity and water absorption.
Collapse
Affiliation(s)
- Rachel Yanou Nkwaju
- Local Materials Promotion Authority, MINRESI/MIPROMALO, Nkolbikok, Yaoundé P.O. Box 2396, Cameroon; (J.N.F.N.); (S.B.); (T.M.A.)
| | | | | | | | - Juvenal Giogetti Nemaleu Deutou
- Local Materials Promotion Authority, MINRESI/MIPROMALO, Nkolbikok, Yaoundé P.O. Box 2396, Cameroon; (J.N.F.N.); (S.B.); (T.M.A.)
| | - Jean Noël Yankwa Djobo
- Local Materials Promotion Authority, MINRESI/MIPROMALO, Nkolbikok, Yaoundé P.O. Box 2396, Cameroon; (J.N.F.N.); (S.B.); (T.M.A.)
| |
Collapse
|
10
|
Pavlík Z, Záleská M, Pavlíková M, Pivák A, Nábělková J, Jankovský O, Jiříčková A, Chmel O, Průša F. Simultaneous Immobilization of Heavy Metals in MKPC-Based Mortar-Experimental Assessment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7525. [PMID: 38138666 PMCID: PMC10744662 DOI: 10.3390/ma16247525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Heavy metal contamination, associated with the increase in industrial production and the development of the population in general, poses a significant risk in terms of the contamination of soil, water, and, consequently, industrial plants and human health. The presence of ecotoxic heavy metals (HMs) thus significantly limits the sustainable development of society and contributes to the deterioration of the quality of the environment as a whole. For this reason, the stabilization and immobilization of heavy metals is a very topical issue. This paper deals with the possibility of the simultaneous immobilization of heavy metals (Ba2+, Pb2+, and Zn2+) in mortar based on magnesium potassium phosphate cement (MKPC). The structural, mechanical, and hygric parameters of mortars artificially contaminated with heavy metals in the form of salt solutions were investigated together with the formed hydration products. In the leachates of the prepared samples, the content of HMs was measured and the immobilization ratio of each HM was determined. The immobilization rate of all the investigated HMs was >98.7%, which gave information about the effectiveness of the MKPC-based matrix for HM stabilization. Furthermore, the content of HMs in the leachates was below the prescribed limits for non-hazardous waste that can be safely treated without any environmental risks. Although the presence of heavy metals led to a reduction in the strength of the prepared mortar (46.5% and 57.3% in compressive and flexural strength, respectively), its mechanical resistance remained high enough for many construction applications. Moreover, the low values of the parameters characterizing the water transport (water absorption coefficient Aw = 4.26 × 10-3 kg·m-2·s-1/2 and sorptivity S = 4.0 × 10-6 m·s-1/2) clearly demonstrate the limited possibility of the leaching of heavy metals from the MKPC matrix structure.
Collapse
Affiliation(s)
- Zbyšek Pavlík
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic; (M.Z.); (M.P.); (A.P.)
| | - Martina Záleská
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic; (M.Z.); (M.P.); (A.P.)
| | - Milena Pavlíková
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic; (M.Z.); (M.P.); (A.P.)
| | - Adam Pivák
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic; (M.Z.); (M.P.); (A.P.)
| | - Jana Nábělková
- Department of Sanitary and Ecological Engineering, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic;
| | - Ondřej Jankovský
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (O.J.); (A.J.); (O.C.); (F.P.)
| | - Adéla Jiříčková
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (O.J.); (A.J.); (O.C.); (F.P.)
| | - Oskar Chmel
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (O.J.); (A.J.); (O.C.); (F.P.)
| | - Filip Průša
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (O.J.); (A.J.); (O.C.); (F.P.)
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|