1
|
Jin H, Kong F, Li X, Shen J. Artificial intelligence in microplastic detection and pollution control. ENVIRONMENTAL RESEARCH 2024; 262:119812. [PMID: 39155042 DOI: 10.1016/j.envres.2024.119812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The rising prevalence of microplastics (MPs) in various ecosystems has increased the demand for advanced detection and mitigation strategies. This review examines the integration of artificial intelligence (AI) with environmental science to improve microplastic detection. Focusing on image processing, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and hyperspectral imaging (HSI), the review highlights how AI enhances the efficiency and accuracy of these techniques. AI-driven image processing automates the identification and quantification of MPs, significantly reducing the need for manual analysis. FTIR and Raman spectroscopy accurately distinguish MP types by analyzing their unique spectral features, while HSI captures extensive spatial and spectral data, facilitating detection in complex environmental matrices. Furthermore, AI algorithms integrate data from these methods, enabling real-time monitoring, traceability prediction, and pollution hotspot identification. The synergy between AI and spectral imaging technologies represents a transformative approach to environmental monitoring and emphasizes the need to adopt innovative tools for protecting ecosystem health.
Collapse
Affiliation(s)
- Hui Jin
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Fanhao Kong
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiangyu Li
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Fang C, Zhang Z, Zhang X, Naidu R. Microplastics or micro-bioplastics released by wrinkling paper cup. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174123. [PMID: 38908597 DOI: 10.1016/j.scitotenv.2024.174123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Paper cups have been widely used such as in the fast-food industry for drinking and are generally made of disposable material. To make the paper cup waterproof and prevent leakage, a thin layer of plastic such as polylactic acid (PLA) is commonly coated onto the inner wall surface. This plastic layer can potentially release debris as microplastics, particularly when the cup is wrinkled/crumpled to break and peel off the coating layer, which is tested herein. Using scanning electron microscope (SEM), the broken coating layer can be clearly observed. We then identify the coating material as plastic using mass and Raman spectra. We further employ Raman imaging to identify the released and fallen down debris as microplastics. We cross-check Raman image with SEM image to benefit each other and increase the analysis certainty, because Raman imaging can identify plastic via hyper spectrum to increase the signal-to-noise ratio, while SEM can visualise plastic with a high resolution down to micro-/nano- size. We then employ particle analysis algorithm to estimate the release amount, at approximate 180 microplastic/wrinkle, or micro-bioplastic if considering the main material of PLA as a bioplastic. Overall, we should not wrinkle the paper cup to avoid the potential release of microplastics or micro-bioplastics particularly before and during the drinking process, and the characterisation in this report might be helpful for further research on microplastics.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
3
|
Shi Y, Miao H, Zhou S, Leng X, Wu Y, Huang Y. Visualized analysis of microplastics in residents' diets and regional investigation of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174166. [PMID: 38908578 DOI: 10.1016/j.scitotenv.2024.174166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Microplastics are widely distributed in ecosystems and are increasingly found in food. This poses a potential threat to human health. However, current detections of microplastic in food primarily focused on the simple matrices, such as water, milk, and beverages, with relatively few methods available for complex matrices. Due to the strong matrix interference, non-destructive detection of microplastics in food has always been challenging. Thus, in this study, infrared spectral imaging approach was employed in tandem with chemometrics to perform nondestructive and in-situ characterization of microplastics in twelve diverse Chinese diets including meat and seafood stuffs. Results demonstrate that the proposed method can efficiently characterize common microplastics, such as polypropylene (PP), polyethylene terephthalate (PET), and polyethylene (PE), etc., in various complex matrices. The IR spectral imaging was subsequently applied to the detection of microplastics in seafood samples collected from 24 provinces across China. Results revealed the widespread presence of microplastics in seafood diets with significant regional variations. Overall, this study offers an innovative and applicable means for detecting microplastics in complex foods and provides a reference for the rapid detection of microplastics in various materials.
Collapse
Affiliation(s)
- Yizhi Shi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Sanya Institute of China Agricultural University, Hainan 572025, China; China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Hongjian Miao
- China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Shuang Zhou
- China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xiaojing Leng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yue Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Sanya Institute of China Agricultural University, Hainan 572025, China; China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| |
Collapse
|
4
|
Snekkevik VK, Cole M, Gomiero A, Haave M, Khan FR, Lusher AL. Beyond the food on your plate: Investigating sources of microplastic contamination in home kitchens. Heliyon 2024; 10:e35022. [PMID: 39170486 PMCID: PMC11336334 DOI: 10.1016/j.heliyon.2024.e35022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Given that a substantial amount of time is spent in kitchens preparing food, the kitchen equipment used may be relevant in determining the composition and amount of microplastics ending up on our dinner plate. While previous research has predominantly focused on foodstuffs as a source of microplastics, we emphasise that micro- and nanoplastics are ubiquitous and likely originate from diverse sources. To address the existing knowledge gap regarding additional sources contributing to microplastics on our dinner plates, this review investigates various kitchen processes, utensils and equipment (excluding single-use items and foodstuffs) to get a better understanding of potential microplastic sources within a home kitchen. Conducting a narrative literature review using terms related to kitchenware and kitchen-affiliated equipment and processes, this study underscores that the selection of preparation tools, storage, serving, cooking, and cleaning procedures in our kitchens may have a significant impact on microplastic exposure. Mechanical, physical, and chemical processes occurring during food preparation contribute to the release of microplastic particles, challenging the assumption that exposure to microplastics in food is solely tied to food products or packaging. This review highlights diverse sources of microplastics in home kitchens, posing concerns for food safety and human health.
Collapse
Affiliation(s)
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory (PML), Plymouth, PL1 3DH, UK
| | - Alessio Gomiero
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Mekjarvik 12, 4072, Randaberg, Norway
| | - Marte Haave
- SALT Lofoten AS, Pb. 91, Fiskergata 23, 8301, Svolvær, Norway
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Nygårdsgt 112, 5008, Bergen, Norway
| | - Farhan R. Khan
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Nygårdsgt 112, 5008, Bergen, Norway
| | - Amy L. Lusher
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
5
|
Singh P, Varshney G, Kaur R. Primary Microplastics in the Ecosystem: Ecological Effects, Risks, and Comprehensive Perspectives on Toxicology and Detection Methods. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:314-365. [PMID: 38967482 DOI: 10.1080/26896583.2024.2370715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Recent discoveries of microplastics in cities, suburbs, and even remote locations, far from microplastic source regions, have raised the possibility of long-distance transmission of microplastics in many ecosystems. A little is known scientifically about the threat that it posed to the environment by microplastics. The problem's apparent size necessitates the rapid development of reliable scientific advice regarding the ecological risks of microplastics. These concerns are brought on by the lack of consistent sample and identification techniques, as well as the limited physical analysis and understanding of microplastic pollution. This review provides insight regarding some unaddressed issues about the occurrence, fate, movement, and impact of microplastics, in general, with special emphasis on primary microplastics. The approaches taken in the earlier investigations have been analyzed and different recommendations for future research have been suggested.
Collapse
Affiliation(s)
- Pooja Singh
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Gunjan Varshney
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Raminder Kaur
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| |
Collapse
|
6
|
Cole M, Gomiero A, Jaén-Gil A, Haave M, Lusher A. Microplastic and PTFE contamination of food from cookware. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172577. [PMID: 38641111 DOI: 10.1016/j.scitotenv.2024.172577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Microplastics are a prolific environmental contaminant that have been evidenced in human tissues. Human uptake of microplastic occurs via inhalation of airborne fibres and ingestion of microplastic-contaminated foods and beverages. Plastic and PTFE-coated cookware and food contact materials may release micro- and nanoplastics into food during food preparation. In this study, the extent to which non-plastic, new plastic and old plastic cookware releases microplastics into prepared food is investigated. Jelly is used as a food simulant, undergoing a series of processing steps including heating, cooling, mixing, slicing and storage to replicate food preparation steps undertaken in home kitchens. Using non-plastic cookware did not introduce microplastics to the food simulant. Conversely, using new and old plastic cookware resulted in significant increases in microplastic contamination. Microplastics comprised PTFE, polyethylene and polypropylene particulates and fibrous particles, ranging 13-318 μm. Assuming a meal was prepared daily per the prescribed methodology, new and old plastic cookware may be contributing 2409-4964 microplastics per annum into homecooked food. The health implications of ingesting microplastics remains unclear.
Collapse
Affiliation(s)
- Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory (PML), Plymouth PL1 3DH, UK.
| | - Alessio Gomiero
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072 Randaberg, Norway
| | - Adrián Jaén-Gil
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072 Randaberg, Norway
| | - Marte Haave
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072 Randaberg, Norway; SALT Lofoten AS, Pb. 91, Fiskergata 23, 8301 Svolvær, Norway
| | - Amy Lusher
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| |
Collapse
|
7
|
Liu Y, Cao Y, Li H, Liu H, Bi L, Chen Q, Peng R. A systematic review of microplastics emissions in kitchens: Understanding the links with diseases in daily life. ENVIRONMENT INTERNATIONAL 2024; 188:108740. [PMID: 38749117 DOI: 10.1016/j.envint.2024.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
The intensification of microplastics (MPs) pollution has emerged as a formidable environmental challenge, with profound global implications. The pervasive presence of MPs across a multitude of environmental mediums, such as the atmosphere, soil, and oceans, extends to commonplace items, culminating in widespread human ingestion and accumulation via channels like food, water, and air. In the domestic realm, kitchens have become significant epicenters for MPs pollution. A plethora of kitchen utensils, encompassing coated non-stick pans, plastic cutting boards, and disposable utensils, are known to release substantial quantities of MPs particles in everyday use, which can then be ingested alongside food. This paper conducts a thorough examination of contemporary research addressing the release of MPs from kitchen utensils during usage and focuses on the health risks associated with MPs ingestion, as well as the myriad factors influencing the release of MPs in kitchen utensils. Leveraging the insights derived from this analysis, this paper proposes a series of strategic recommendations and measures targeted at mitigating the production of MPs in kitchen settings. These initiatives are designed not solely to diminish the release of MPs but also to enhance public awareness regarding this pressing environmental concern. By adopting more informed practices in kitchens, we can significantly contribute to the reduction of the environmental burden of MPs pollution, thus safeguarding both human health and the ecological system.
Collapse
Affiliation(s)
- Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
8
|
Akbulut S, Akman PK, Tornuk F, Yetim H. Microplastic Release from Single-Use Plastic Beverage Cups. Foods 2024; 13:1564. [PMID: 38790864 PMCID: PMC11121293 DOI: 10.3390/foods13101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Microplastics (MPs) have attracted considerable attention as one of the most remarkable food and drink pollutants in recent years. Disposable cups, which are widely used as single-use containers, have been suspected as the primary sources of MPs found in cold and hot beverages. In this study, the effect of different exposure times (0, 5, 10 and 20 min) and temperatures (4 °C, 50 °C and 80 °C) on MP release from the single-use cups made of four different materials [polypropylene (PP), polystyrene (PS), polyethylene (PE) coated paper cups and expanded polystyrene (EPS)] into the water was investigated. The number of MPs ranged from 126 p/L to 1420 p/L, while the highest and lowest counts were observed in the PP (50 °C for 20 min) and PE-coated paper cups (4 °C 0 min), respectively. Washing the cups with ultrapure water prior to use reduced the MP release by 52-65%. SEM images demonstrated the abrasion on the surface of the disposable cups as a result of hot water exposure. Intensities of FTIR absorbance levels at some wavelengths were decreased by the water treatment, which could be evidence of surface abrasion. The annual MP exposure of consumers was calculated as 18,720-73,840 by the consumption of hot and cold beverages in disposable cups. In conclusion, as the level and potential toxicity of MP exposure in humans are not yet fully known, this study sheds light on the number of MPs transferred to cold and hot beverages from single-use disposable cups.
Collapse
Affiliation(s)
- Selen Akbulut
- Department of Food Technology, Vocational School of Health Services, Uskudar University, 34674 Istanbul, Türkiye
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34349 Istanbul, Türkiye; (P.K.A.); (F.T.)
| | - Perihan Kubra Akman
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34349 Istanbul, Türkiye; (P.K.A.); (F.T.)
| | - Fatih Tornuk
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34349 Istanbul, Türkiye; (P.K.A.); (F.T.)
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, 58140 Sivas, Türkiye
| | - Hasan Yetim
- Food Engineering Department, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Istanbul, Türkiye;
| |
Collapse
|
9
|
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: A human-centric insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170262. [PMID: 38253106 DOI: 10.1016/j.scitotenv.2024.170262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Micro- and nanoplastics are vast anthropogenic pollutants in our direct surroundings with a robust environmental stability and a potential for a long-lasting and increasing global circulation. This has raised concerns among the public and policy makers for human health upon exposure to these particles. The micro- and nanoplastic burden on humans is currently under debate, along with criticism on the experimental approaches used in hazard assessment. The present review presents an overview of the human-relevant aspects associated with the current micro-and nanoplastic burden. We focus on environmental circulation and the estimation of exposure quantities to humans, along with a state-of-the-art overview of particle accumulation in over 15 human organs and other specimen. Additionally, data regarding particle characteristics used in toxicity testing was extracted from 91 studies and discussed considering their environmental and human relevance.
Collapse
Affiliation(s)
- Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Centre Ghent, Faculty of Medicine and Health Sciences, Universiteit Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
10
|
Fang C, Awoyemi OS, Saianand G, Xu L, Niu J, Naidu R. Characterising microplastics in indoor air: Insights from Raman imaging analysis of air filter samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132969. [PMID: 37956564 DOI: 10.1016/j.jhazmat.2023.132969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
We are directly exposed to microplastic contamination via indoor air that we breathe daily, for which the characterisation of microplastics is still a challenge. Herein, two typical air filter samples were collected, one from an air-conditioner and another from a personal computer, both of which have been working for around half a year to collect and accumulate microplastics in the indoor air, like microplastic banks. After the sample preparation to remove the mineral dusts, Raman imaging was employed to directly and simultaneously identify and visualise microplastics of polyethylene terephthalate (PET) fibres, distinguish them from other fibres such as cellulose and cross-check them with a scanning electron microscope (SEM). To count the microplastics and to avoid the quantification bias, several areas were randomly scanned and imaged to statistically estimate the percentage of microplastic fibres in the analysed samples. The microplastics amount, which has been estimated at 73-88,000 fibers per filter per half a year, varies and depends on the indoor environment so that the air filter can work as a good indicator to monitor the quality of the indoor air from the microplastic perspective. Overall, human are directly exposed to this emerging contamination every day, raising environmental concerns. Raman imaging characterisation and its corresponding statistical information can help pursue further research on microplastics.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Olalekan Simon Awoyemi
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gopalan Saianand
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Lei Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
11
|
Li P, Liu J. Micro(nano)plastics in the Human Body: Sources, Occurrences, Fates, and Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38315819 DOI: 10.1021/acs.est.3c08902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The increasing global attention on micro(nano)plastics (MNPs) is a result of their ubiquity in the water, air, soil, and biosphere, exposing humans to MNPs on a daily basis and threatening human health. However, crucial data on MNPs in the human body, including the sources, occurrences, behaviors, and health risks, are limited, which greatly impedes any systematic assessment of their impact on the human body. To further understand the effects of MNPs on the human body, we must identify existing knowledge gaps that need to be immediately addressed and provide potential solutions to these issues. Herein, we examined the current literature on the sources, occurrences, and behaviors of MNPs in the human body as well as their potential health risks. Furthermore, we identified key knowledge gaps that must be resolved to comprehensively assess the effects of MNPs on human health. Additionally, we addressed that the complexity of MNPs and the lack of efficient analytical methods are the main barriers impeding current investigations on MNPs in the human body, necessitating the development of a standard and unified analytical method. Finally, we highlighted the need for interdisciplinary studies from environmental, biological, medical, chemical, computer, and material scientists to fill these knowledge gaps and drive further research. Considering the inevitability and daily occurrence of human exposure to MNPs, more studies are urgently required to enhance our understanding of their potential negative effects on human health.
Collapse
Affiliation(s)
- Penghui Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingfu Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
12
|
Wu T, Hu G, Ning J, Yang J, Zhou Y. A photoluminescence strategy for detection nanoplastics in water and biological imaging in cells and plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132695. [PMID: 37804760 DOI: 10.1016/j.jhazmat.2023.132695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Nanoplastics exposure poses a significant threat to the environment and human health, and accurate measurement of nanoparticles in aqueous solutions remains challenging. In this work, we synthesized the cationic fluorescent probe 4-[1-Cyano- 2-[4-(Diethylamino)-2-hydroxyphenyl]ethenyl]-1-ethylpyridinium (PCP) through a straightforward procedure for the rapid and accurate detection and labeling of nanoplastics in aqueous solutions. PCP binds to nanoplastics through electrostatic and hydrophobic interactions with restricted intramolecular rotation and exhibits enhanced fluorescence emission. Using carboxylation-modified polystyrene nanoplastics as a model, PCP could accurately detect concentrations as low as 0.525 mg∙L-1 in aqueous solution and perform wash-free semi-quantitative direct observation. The method demonstrated good reproducibility and recovery in actual sample spiking experiments. In addition, PCP-labeled nanoplastics were successfully used to visualize the uptake and distribution of cells and Arabidopsis thaliana when exposed to different concentrations of nanoplastics. This work provides a simple and sensitive method for efficiently identify, track, and quantify nanoplastics without requiring additional pretreatment and complex instrumentation, making it an ideal tool for accurately quantifying nanoplastics in aqueous solutions and studying the biological interactions of nanoplastics.
Collapse
Affiliation(s)
- Tian Wu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Guizhen Hu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Juan Ning
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jialu Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
13
|
Samouh H, Kumar V, Santiago HM, Garg N. Enhancing phase identification in waste-to-energy fly ashes: Role of Raman spectroscopy, background fluorescence, and photobleaching. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132462. [PMID: 37683344 DOI: 10.1016/j.jhazmat.2023.132462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Waste-to-Energy (WTE) facilities incinerate ∼11% (∼ 222 Mt) of global solid waste, generating bottom and fly ashes. Landfilling these ashes is costly, and risks releasing contaminants into the environment. Instead, using WTE ashes in secondary industrial applications can circumvent such environmental risks. However, their secondary use is restricted by their inconsistent mineralogy, which may vary due to fluctuating waste composition and combustion conditions. Therefore, there is a need for rapid and reliable monitoring of WTE fly ash mineralogy. Here, we evaluate the employment of Raman spectroscopy for that purpose. Our initial investigation of 12 unique WTE fly ashes resulted in excessive fluorescence, rendering key Raman peaks obscure. To address this issue, we report that a mere 2 min of photobleaching can significantly reduce this fluorescence, facilitating the detection of calcite, calcium sulfate, zincite, and carbon - phases previously undetectable in original spectra. These results show the potential of Raman spectroscopy for rapid monitoring of WTE fly ash mineralogy, which could be beneficial in diverting these ashes from landfill.
Collapse
Affiliation(s)
- Hamza Samouh
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Vikram Kumar
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Halle-Mari Santiago
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Nishant Garg
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|