1
|
Xu Q, Fan Y, Loor JJ, Liang Y, Lv H, Sun X, Jia H, Xu C. Aloin protects mice from diet-induced non-alcoholic steatohepatitis via activation of Nrf2/HO-1 signaling. Food Funct 2021; 12:696-705. [PMID: 33410857 DOI: 10.1039/d0fo02684k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aloin, a naturally occurring anthraquinone glycoside derived from the Aloe species, has antioxidant and anti-inflammatory activities, but its role in non-alcoholic steatohepatitis (NASH) remains unknown. This study was designed to investigate the anti-inflammatory, antioxidant, and anti-apoptotic effects of aloin and the underlying mechanisms during NASH. Wild-type or nuclear erythroid 2-related factor 2 (Nrf2) knock-out (KO) mice were fed a choline-deficient, l-amino acid-defined, high-fat (CDAAH) diet and treated with aloin (10, 20 or 40 mg per kg bw per day) by gavage for twelve weeks. Liver and blood samples were collected to evaluate liver function, protein abundance, and histopathological status. Supplementing aloin at 20 mg kg-1 was optimal for mitigating liver damage during NASH, as evidenced by reduced alanine transaminase and aspartate aminotransferase activity in serum. Supplementation with aloin significantly reduced serum concentration or liver protein abundance of malondialdehyde, tumor necrosis factor alpha, Interleukin (IL)-1β and IL-6. Aloin treatment enhanced hepatic superoxide dismutase activity, glutathione and serum IL-10 levels in mice with NASH. Furthermore, supplementation with aloin inhibited hepatocyte apoptosis caused by Bcl-2 up-regulation and cleaved caspase-3 and Bax down-regulation. Mechanistically, by using Nrf2 KO mice, the protective effects of aloin were associated with enhanced antioxidant, anti-inflammatory and anti-apoptotic activity, all of which were mediated by Nrf2/heme oxygenase-1 (HO-1) signaling activation. Data suggested that aloin activates the Nrf2/HO-1 pathway and has protective potential against liver injury during NASH. Therefore, aloin supplementation might contribute to the prevention and treatment of NASH via activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Qiushi Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Qiao Y, Li X, Zhang X, Xiao F, Zhu Y, Fang Z, Sun J. Hepatocellular iNOS protects liver from NASH through Nrf2-dependent activation of HO-1. Biochem Biophys Res Commun 2019; 514:372-378. [PMID: 31043271 DOI: 10.1016/j.bbrc.2019.04.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 12/20/2022]
Abstract
Multiple molecular events are involved in non-alcoholic steatohepatitis (NASH). There is no consensus on the role of inducible nitric oxide synthase (iNOS) in the progression of NASH. The present study therefore investigated the role of iNOS in NASH pathogenesis using bone marrow-transplanted iNOS chimeric mice under high-fat diet (HFD) conditions. The chimeric mice were fed a HFD for 16 wk, and primary hepatocytes were stimulated with oleic acid (OA). The molecular mechanisms underlying the role of iNOS in NASH were investigated. Marked hepatic steatosis and injury observed in the HFD mice and OA-stimulated hepatocytes were reduced by hepatocyte-derived iNOS. Mechanistically, iNOS upregulated heme oxygenase 1 (HO-1) by augmenting nuclear factor erythroid 2-related factor 2 (Nrf-2) binding to the HO-1 gene promoter. In conclusion, hepatocyte-derived iNOS may play a protective role against the progression of NASH by upregulating HO-1 through Nrf-2. Upregulation of hepatocellular iNOS may represent a potentially new therapeutic paradigm to combat NASH.
Collapse
Affiliation(s)
- Yingli Qiao
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Xuehua Li
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Xueli Zhang
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Fei Xiao
- Department of Organ Transplantation, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Yu Zhu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, China; Medical College of Shandong University, Jinan, Shandong, 250021, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zheping Fang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, China.
| | - Jie Sun
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
3
|
Mouawad CA, Mrad MF, El-Achkar GA, Abdul-Sater A, Nemer GM, Creminon C, Lotersztajn S, Habib A. Statins Modulate Cyclooxygenase-2 and Microsomal Prostaglandin E Synthase-1 in Human Hepatic Myofibroblasts. J Cell Biochem 2015; 117:1176-86. [PMID: 26477987 DOI: 10.1002/jcb.25401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/06/2015] [Indexed: 12/22/2022]
Abstract
Statins have been shown to exert anti-inflammatory and anti-fibrogenic properties in the liver. In the present study, we explored the mechanisms underlying anti-fibrogenic effects of statins in isolated hepatic myofibroblasts and focused on cyclooxyegnase-2, a major anti-proliferative pathway in these cells. We show that simvastatin and fluvastatin inhibit thymidine incorporation in hMF in a dose-dependent manner. Pretreatment of cells with NS398, a COX-2 inhibitor, partially blunted this effect. cAMP levels, essential to the inhibition of hMF proliferation, were increased by statins and inhibited by non-steroidal anti-inflammatory drugs. Since statins modify prenylation of some important proteins in gene expression, we investigated the targets involved using selective inhibitors of prenyltransferases. Inhibition of geranylgeranylation resulted in the induction of COX-2 and mPGES-1. Using gel retardation assays, we further demonstrated that statins potentially activated the NFκB and CRE/E-box binding for COX-2 promoter and the binding of GC-rich regions and GATA for mPGES-1. Together these data demonstrate that statin limit hepatic myofibroblasts proliferation via a COX-2 and mPGES-1 dependent pathway. These data suggest that statin-dependent increase of prostaglandin in hMF contributes to its anti-fibrogenic effect.
Collapse
Affiliation(s)
- Charbel A Mouawad
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Department of Food Technologies, Al-Kafaat University, Ain Saadeh, Fanar, Lebanon
| | - May F Mrad
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Nehme and Therese Tohme Multiple Sclerosis Center-American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon
| | - Ali Abdul-Sater
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Deparment of Immunology, University of Toronto, Canada
| | - Georges M Nemer
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon
| | - Christophe Creminon
- iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, CEA Saclay - Bât. 136, 91191 Gif-Sur-Yvette Cedex, France
| | - Sophie Lotersztajn
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France.,Université Paris 7 Diderot, Sorbonne Paris Cité-Laboratoire d'excellence Inflamex, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, F-75018 Paris, France
| | - Aïda Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-236 Beirut, Lebanon.,Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France.,Université Paris 7 Diderot, Sorbonne Paris Cité-Laboratoire d'excellence Inflamex, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, F-75018 Paris, France
| |
Collapse
|
4
|
Kozakowska M, Szade K, Dulak J, Jozkowicz A. Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Antioxid Redox Signal 2014; 20:1827-50. [PMID: 24053682 PMCID: PMC3961774 DOI: 10.1089/ars.2013.5341] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Heme oxygenase-1 (HO-1) converts heme to biliverdin, carbon monoxide, and ferrous ions, but its cellular functions are far beyond heme metabolism. HO-1 via heme removal and degradation products acts as a cytoprotective, anti-inflammatory, immunomodulatory, and proangiogenic protein, regulating also a cell cycle. Additionally, HO-1 can translocate to nucleus and regulate transcription factors, so it can also act independently of enzymatic function. RECENT ADVANCES Recently, a body of evidence has emerged indicating a role for HO-1 in postnatal differentiation of stem and progenitor cells. Maturation of satellite cells, skeletal myoblasts, adipocytes, and osteoclasts is inhibited by HO-1, whereas neurogenic differentiation and formation of cardiomyocytes perhaps can be enhanced. Moreover, HO-1 influences a lineage commitment in pluripotent stem cells and maturation of hematopoietic cells. It may play a role in development of osteoblasts, but descriptions of its exact effects are inconsistent. CRITICAL ISSUES In this review we discuss a role of HO-1 in cell differentiation, and possible HO-1-dependent signal transduction pathways. Among the potential mediators, we focused on microRNA (miRNA). These small, noncoding RNAs are critical for cell differentiation. Recently we have found that HO-1 not only influences expression of specific miRNAs but also regulates miRNA processing enzymes. FUTURE DIRECTIONS It seems that interplay between HO-1 and miRNAs may be important in regulating fates of stem and progenitor cells and needs further intensive studies.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
| | | | | | | |
Collapse
|
5
|
Teixeira-Clerc F, Lotersztajn S. Reply: To PMID 23728734. Hepatology 2014; 59:353-4. [PMID: 23728618 DOI: 10.1002/hep.26533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/15/2013] [Indexed: 12/07/2022]
|
6
|
Dunning S, Ur Rehman A, Tiebosch MH, Hannivoort RA, Haijer FW, Woudenberg J, van den Heuvel FAJ, Buist-Homan M, Faber KN, Moshage H. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2027-34. [PMID: 23871839 DOI: 10.1016/j.bbadis.2013.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly proliferative and produce excessive amounts of extracellular matrix, leading to liver fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic liver injury have been implicated in this activation process. Therefore, activated hepatic stellate cells need to harbor highly effective anti-oxidants to protect against the toxic effects of ROS. AIM To investigate the protective mechanisms of activated HSCs against ROS-induced toxicity. METHODS Culture-activated rat HSCs were exposed to hydrogen peroxide. Necrosis and apoptosis were determined by Sytox Green or acridine orange staining, respectively. The hydrogen peroxide detoxifying enzymes catalase and glutathione-peroxidase (GPx) were inhibited using 3-amino-1,2,4-triazole and mercaptosuccinic acid, respectively. The anti-oxidant glutathione was depleted by L-buthionine-sulfoximine and repleted with the GSH-analogue GSH-monoethylester (GSH-MEE). RESULTS Upon activation, HSCs increase their cellular glutathione content and GPx expression, while MnSOD (both at mRNA and protein level) and catalase (at the protein level, but not at the mRNA level) decreased. Hydrogen peroxide did not induce cell death in activated HSCs. Glutathione depletion increased the sensitivity of HSCs to hydrogen peroxide, resulting in 35% and 75% necrotic cells at 0.2 and 1mmol/L hydrogen peroxide, respectively. The sensitizing effect was abolished by GSH-MEE. Inhibition of catalase or GPx significantly increased hydrogen peroxide-induced apoptosis, which was not reversed by GSH-MEE. CONCLUSION Activated HSCs have increased ROS-detoxifying capacity compared to quiescent HSCs. Glutathione levels increase during HSC activation and protect against ROS-induced necrosis, whereas hydrogen peroxide-detoxifying enzymes protect against apoptotic cell death.
Collapse
Affiliation(s)
- Sandra Dunning
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Han Z, Zhu T, Liu X, Li C, Yue S, Liu X, Yang L, Yang L, Li L. 15-deoxy-Δ12,14 -prostaglandin J2 reduces recruitment of bone marrow-derived monocyte/macrophages in chronic liver injury in mice. Hepatology 2012; 56:350-60. [PMID: 22371273 DOI: 10.1002/hep.25672] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 02/11/2012] [Indexed: 01/13/2023]
Abstract
UNLABELLED 15-Deoxy-Δ(12,14) -Prostaglandin J(2) (15d-PGJ(2) ), a natural peroxisome proliferator-activated receptor gamma (PPAR-γ) ligand, has been implicated as a new antiinflammatory compound with possible clinical applications. Based on this concept, this study was designed to evaluate the effects of 15d-PGJ(2) on bone marrow-derived monocyte/macrophage (BMM) migration, phagocytosis, and cytokine expression after liver injury using mouse models induced by cholestasis or carbon tetrachloride. Mice were lethally irradiated and received bone marrow transplants from enhanced green fluorescent protein transgenic mice. Our results showed that recruitment of BMM was significantly increased during chronic liver injury, and that 15d-PGJ(2) administration reduced BMM, but not neutrophil, dendritic, or T cell migration toward the damaged liver, involving reactive oxygen species generation and independently of PPAR-γ. Moreover, 15d-PGJ(2) inhibited the phagocytic activity of BMM and down-regulated inflammatory cytokine expression in vivo and in vitro. Accordingly, hepatic inflammation and fibrosis were strikingly ameliorated after 15d-PGJ(2) administration. CONCLUSION Our findings strongly suggest the antiinflammation and antifibrogenic potential of 15d-PGJ(2) in chronic liver diseases.
Collapse
Affiliation(s)
- Zhen Han
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yang H, Zhao LF, Zhao ZF, Wang Y, Zhao JJ, Zhang L. Heme oxygenase-1 prevents liver fibrosis in rats by regulating the expression of PPARγ and NF-κB. World J Gastroenterol 2012; 18:1680-8. [PMID: 22529699 PMCID: PMC3325536 DOI: 10.3748/wjg.v18.i14.1680] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/17/2011] [Accepted: 01/22/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of heme oxygenase (HO)-1 on liver fibrosis and the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and nuclear factor-kappa B (NF-κB) in rats.
METHODS: Sixty Wistar rats were used to construct liver fibrosis models and were randomly divided into 5 groups: group A (normal, untreated), group B (model for 4 wk, untreated), group C (model for 6 wk, untreated), group D [model for 6 wk, treated with zinc protoporphyrin IX (ZnPP-IX) from week 4 to week 6], group E (model for 6 wk, treated with hemin from week 4 to week 6). Next, liver injury was assessed by measuring serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and albumin levels. The degree of hepatic fibrosis was evaluated by measuring serum hyaluronate acid (HA), type IV collagen (IV-C) and by histological examination. Hydroxyproline (Hyp) content in the liver homogenate was determined. The expression levels of alpha-smooth muscle actin (α-SMA) in liver tissue were measured by real-time quantitative polymerase chain reaction (RT-PCR). The expression levels of PPARγ and NF-κB were determined by RT-PCR and Western blotting.
RESULTS: The expression of HO-1 increased with the development of fibrosis. Induction of HO-1 by hemin significantly attenuated the severity of liver injury and the levels of liver fibrosis as compared with inhibition of HO-1 by ZnPP-IX. The concentrations of serum ALT, AST, HA and IV-C in group E decreased compared with group C and group D (P < 0.01). Amount of Hyp and α-SMA in the liver tissues in group E decreased compared with group C (0.62 ± 0.14 vs 0.84 ± 0.07, 1.42 ± 0.17 vs 1.84 ± 0.17, respectively, P < 0.01) and group D (0.62 ± 0.14 vs 1.11 ± 0.16, 1.42 ± 0.17 vs 2.56 ± 0.37, respectively, P < 0.01). The expression of PPARγ at levels of transcription and translation decreased with the development of fibrosis especially in group D; and it increased in group E compared with groups C and D (0.88 ± 0.15 vs 0.56 ± 0.19, 0.88 ± 0.15 vs 0.41 ± 0.11, respectively, P < 0.01). The expression of NF-κB increased with the development of fibrosis especially in group D; and it decreased in group E compared with groups C and D (1.43 ± 0.31 vs 1.89 ± 0.29, 1.43 ± 0.31 vs 2.53 ± 0.54, respectively, P < 0.01).
CONCLUSION: Our data demonstrate a potential mechanism that HO-1 can prevent liver fibrosis by enhancing the expression of PPARγ and decreasing the expression of NF-κB in liver tissues.
Collapse
|
9
|
Louvet A, Teixeira-Clerc F, Chobert MN, Deveaux V, Pavoine C, Zimmer A, Pecker F, Mallat A, Lotersztajn S. Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology 2011; 54:1217-26. [PMID: 21735467 DOI: 10.1002/hep.24524] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/18/2011] [Indexed: 12/11/2022]
Abstract
Activation of Kupffer cells plays a central role in the pathogenesis of alcoholic liver disease. Because cannabinoid CB2 receptors (CB2) display potent anti-inflammatory properties, we investigated their role in the pathogenesis of alcoholic liver disease, focusing on the impact of CB2 on Kupffer cell polarization and the consequences on liver steatosis. Wild-type (WT) mice fed an alcohol diet showed an induction of hepatic classical (M1) and alternative (M2) markers. Cotreatment of alcohol-fed mice with the CB2 agonist, JWH-133, decreased hepatic M1 gene expression without affecting the M2 profile. In keeping with this, genetic ablation of CB2 enhanced hepatic induction of M1 gene signature and blunted the induction of M2 markers. CB2 also modulated alcohol-induced fatty liver, as shown by the reduction of hepatocyte steatosis in JWH-133-treated mice and its enhancement in CB2-/- animals. Studies in isolated Kupffer cells and cultured macrophages further demonstrated that CB2 inhibits M1 polarization and favors the transition to an M2 phenotype. In addition, conditioned-medium experiments showed that preventing M1 polarization in CB2-activated macrophages protects from lipid accumulation in hepatocytes. Heme oxygenase-1 (HO-1) mediated the anti-inflammatory effects of CB2 receptors. Indeed, alcohol-fed mice treated with JWH-133 showed increased hepatic expression of macrophage HO-1, as compared to vehicle-treated counterparts. In keeping with this, JWH-133 induced HO-1 expression in cultured macrophages, and the HO-1 inhibitor, zinc protoporphyrin, blunted the inhibitory effect of JWH-133 on lipopolysaccharide-induced nuclear factor-kappa B activation and M1 polarization. Altogether, these findings demonstrate that CB2 receptors display beneficial effects on alcohol-induced inflammation by regulating M1/M2 balance in Kupffer cells, thereby reducing hepatocyte steatosis via paracrine interactions between Kupffer cells and hepatocytes. These data identify CB2 agonists as potential therapeutic agents for the management of alcoholic liver disease.
Collapse
|
10
|
Albumin-binding and tumor vasculature determine the antitumor effect of 15-deoxy-Delta-(12,14)-prostaglandin-J(2) in vivo. Neoplasia 2010; 11:1348-58. [PMID: 20019843 DOI: 10.1593/neo.91188] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 12/14/2022] Open
Abstract
15-Deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)), a peroxisome proliferator-activated receptor gamma (PPARgamma) agonist, induces cell death in tumor cells in vitro; however, no study showed its in vivo effect on tumors. Here, we report that 15d-PGJ(2) shows antitumor effects in vivo in mice. However, its effects correlate with tumor uptake of albumin, to which it reversibly binds. 15d-PGJ(2) induces cell death in B16F10 melanoma and C26 colon carcinoma cells in vitro. These effects were not elicited through PPARgamma-dependent pathways because an irreversible PPARgamma antagonist GW9662 did not inhibit these effects. Caspase- and nuclear factor kappaB- (NF-kappaB) dependent pathways were found to be involved as determined with caspase-3/7 fluorescent assay and NF-kappaB containing plasmid transfection assay, respectively. Noticeably, 15d-PGJ(2) had significantly stronger effects in C26 cells compared with B16 cells in all assays. However, in vivo, there was no effect on C26 tumors, yet it significantly inhibited the B16 tumor growth in mice by 75%. We found that 15d-PGJ(2) rapidly bound to albumin and in vivo albumin greatly distributed to B16 tumors compared with C26 tumors, shown with gamma-camera imaging and immunohistochemical staining. Albumin accumulation can be attributed to the large blood vessel diameter in B16 tumors and an enhanced permeability and retention effect. These findings suggest that 15d-PGJ(2) can be an effective therapeutic agent for cancer, although its effects seem to be limited to the tumors allowing albumin penetration.
Collapse
|
11
|
Dunning S, Hannivoort RA, de Boer JF, Buist-Homan M, Faber KN, Moshage H. Superoxide anions and hydrogen peroxide inhibit proliferation of activated rat stellate cells and induce different modes of cell death. Liver Int 2009; 29:922-32. [PMID: 19386027 DOI: 10.1111/j.1478-3231.2009.02004.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND In chronic liver injury, hepatic stellate cells (HSCs) proliferate and produce excessive amounts of connective tissue causing liver fibrosis and cirrhosis. Oxidative stress has been implicated as a driving force of HSC activation and proliferation, although contradictory results have been described. AIM To determine the effects of oxidative stress on activated HSC proliferation, survival and signalling pathways. METHODS Serum-starved culture-activated rat HSCs were exposed to the superoxide anion donor menadione (5-25 micromol/L) or hydrogen peroxide (0.2-5 mmol/L). Haem oxygenase-1 mRNA expression, glutathione status, cell death, phosphorylation of mitogen-activated protein (MAP) kinases and proliferation were investigated. RESULTS Menadione induced apoptosis in a dose- and time-dependent, but caspase-independent manner. Hydrogen peroxide induced necrosis only at extremely high concentrations. Both menadione and hydrogen peroxide activated Jun N-terminal kinase (JNK) and p38. Hydrogen peroxide also activated extracellular signal-regulated protein. Menadione, but not hydrogen peroxide, reduced cellular glutathione levels. Inhibition of JNK or supplementation of glutathione reduced menadione-induced apoptosis. Non-toxic concentrations of menadione or hydrogen peroxide inhibited platelet-derived growth factor- or/and serum-induced proliferation. CONCLUSION Reactive oxygen species (ROS) inhibit HSC proliferation and promote HSC cell death in vitro. Different ROS induce different modes of cell death. Superoxide anion-induced HSC apoptosis is dependent on JNK activation and glutathione status.
Collapse
Affiliation(s)
- Sandra Dunning
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Wang F, Duan ZJ, Sun YJ. Influence of heme oxygenase-1 expression on immune liver fibrosis induced by cobalt protoporphyrin in rats. World J Gastroenterol 2009; 15:3009-14. [PMID: 19554654 PMCID: PMC2702109 DOI: 10.3748/wjg.15.3009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of heme oxygenase-1 (HO-1) expression on immune liver fibrosis induced by cobalt protoporphyrin (CoPP) in rats.
METHODS: An immune liver fibrosis model of rat was established by administering human serum albumin (HSA). The rats were divided into CoPP, liver fibrosis and normal control groups. Rats in the CoPP group received intraperitoneal CoPP concurrently with HSA. Expression of HO-1 protein was observed by Western blotting and immunohistochemistry. Hematoxylin and eosin (HE) staining was performed to assess fibrosis proliferation and distribution, proliferation extent of fibroblasts, and alterations in hepatocytes and inflammatory cells. Type I and III collagens were detected with Van Gieson’s (VG) staining and Foot’s reticular fiber staining, respectively. In addition, spindle-shaped cells existing at perisinusoidal locations beyond portal and septa areas were investigated with HE staining.
RESULTS: Western blotting and immunohistochemistry showed that the expression of HO-1 protein was higher in the CoPP group than in the liver fibrosis group (P < 0.05). Compared with the liver fibrosis group, the serological index of hepatic fibrosis in the CoPP group decreased significantly (P < 0.05). HE, VG and Foot’s staining revealed that administration of CoPP reduced the extent of hepatic fibrosis. The levels of serological indicators and the number of spindle-shaped cells at perisinuous locations beyond the portal and septa areas were reduced in the CoPP group. Only a few inflammatory cells were seen around the portal areas and central veins in the CoPP group.
CONCLUSION: Increased endogenous HO-1 may suppress liver fibrosis by protecting liver cells, inhibiting inflammatory cell infiltration and hepatic stellate cell transformation.
Collapse
|
13
|
Iles KE, Wright MM, Cole MP, Welty NE, Ware LB, Matthay MA, Schopfer FJ, Baker PR, Agarwal A, Freeman BA. Fatty acid transduction of nitric oxide signaling: nitrolinoleic acid mediates protective effects through regulation of the ERK pathway. Free Radic Biol Med 2009; 46:866-75. [PMID: 19133325 PMCID: PMC3104854 DOI: 10.1016/j.freeradbiomed.2008.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 11/19/2008] [Accepted: 12/02/2008] [Indexed: 12/31/2022]
Abstract
In vivo and in vitro studies revealed that nitroalkenes serve as protective mediators in the lung by inducing the cytoprotective enzyme heme oxygenase-1 (HO-1). Nitrolinoleic acid (LNO2) increased HO-1 mRNA, protein, and activity in cultured pulmonary epithelial cells treated with 5 to 50 microM LNO2 and in lungs of rats injected intraperitoneally with 2.6 mg/kg LNO2 twice daily for 20 days. Western blotting revealed that HO-1 protein increased significantly within 4 h of in vitro LNO2 addition and was preceded by an increase in HO-1 mRNA, consistent with transcriptional regulation of HO-1 expression by LNO2. LNO2 also dephosphorylated and activated eukaryotic initiation factor 2alpha, a key translational regulatory protein, indicating that increased translation may also contribute to LNO2-induced increases in HO-1. Exposure of cells to LNO2 activated ERK and JNK, as evidenced by increased phosphorylation. Downstream targets of ERK and JNK, Elk-1 and c-Jun, respectively, were also phosphorylated in response to LNO2 exposure. However, inhibitor studies revealed that only the ERK pathway is necessary for the LNO2-mediated increase in HO-1 mRNA and protein. These data reveal that LNO2 induces pulmonary epithelial HO-1 expression and downstream adaptive responses to inflammation via both transcriptional and translational regulatory mechanisms.
Collapse
Affiliation(s)
- Karen E. Iles
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville TN
- The Center for Free Radical Biology, Vanderbilt University School of Medicine, Nashville TN
- Address correspondence to: Karen E. Iles, Ph.D, Department of Anesthesiology, University of Alabama at Birmingham, 1530 3rd Ave South, BMR II 304, Birmingham AL 35294, Phone: 205-975-2761/Fax: 205-934-7447, , Or to: Bruce A. Freeman, Ph.D, Department of Pharmacology and Chemical Biology, University of Pittsburgh, E1340 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261 Phone: 412-648-9319/ Fax: 412-648-2229,
| | - Marcienne M. Wright
- Department of Medicine, Vanderbilt University School of Medicine, Nashville TN
| | - Marsha P. Cole
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan E. Welty
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville TN
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville TN
| | | | - Francisco J. Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul R.S. Baker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anupam Agarwal
- Department of Medicine, Vanderbilt University School of Medicine, Nashville TN
- The Center for Free Radical Biology, Vanderbilt University School of Medicine, Nashville TN
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Address correspondence to: Karen E. Iles, Ph.D, Department of Anesthesiology, University of Alabama at Birmingham, 1530 3rd Ave South, BMR II 304, Birmingham AL 35294, Phone: 205-975-2761/Fax: 205-934-7447, , Or to: Bruce A. Freeman, Ph.D, Department of Pharmacology and Chemical Biology, University of Pittsburgh, E1340 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261 Phone: 412-648-9319/ Fax: 412-648-2229,
| |
Collapse
|
14
|
O'Brien JJ, Baglole CJ, Garcia-Bates TM, Blumberg N, Francis CW, Phipps RP. 15-deoxy-Delta12,14 prostaglandin J2-induced heme oxygenase-1 in megakaryocytes regulates thrombopoiesis. J Thromb Haemost 2009; 7:182-9. [PMID: 18983509 PMCID: PMC2821682 DOI: 10.1111/j.1538-7836.2008.03191.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Platelet production is an intricate process that is poorly understood. Recently, we demonstrated that the natural peroxisome proliferator-activated receptor gamma (PPARgamma) ligand, 15-deoxy-Delta(12,14) prostaglandin J(2) (15d-PGJ(2)), augments platelet numbers by increasing platelet release from megakaryocytes through the induction of reactive oxygen species (ROS). 15d-PGJ(2) can exert effects independent of PPARgamma, such as increasing oxidative stress. Heme oxygenase-1 (HO-1) is a potent antioxidant and may influence platelet production. OBJECTIVES To further investigate the influence of 15d-PGJ(2) on megakaryocytes and to understand whether HO-1 plays a role in platelet production. METHODS Meg-01 cells (a primary megakaryoblastic cell line) and primary human megakaryocytes derived from cord blood were used to examine the effects of 15d-PGJ(2) on HO-1 expression in megakaryocytes and their daughter platelets. The role of HO-1 activity in thrombopoiesis was studied using established in vitro models of platelet production. RESULTS AND CONCLUSIONS 15d-PGJ(2) potently induced HO-1 protein expression in Meg-01 cells and primary human megakaryocytes. The platelets produced from these megakaryocytes also expressed elevated levels of HO-1. 15d-PGJ(2)-induced HO-1 was independent of PPARgamma, but could be replicated using other electrophilic prostaglandins, suggesting that the electrophilic properties of 15d-PGJ(2) were important for HO-1 induction. Interestingly, inhibiting HO-1 activity enhanced ROS generation and augmented 15d-PGJ(2)-induced platelet production, which could be attenuated by antioxidants. These new data reveal that HO-1 negatively regulates thrombopoiesis by inhibiting ROS.
Collapse
Affiliation(s)
- J J O'Brien
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
15
|
Jozkowicz A, Was H, Taha H, Kotlinowski J, Mleczko K, Cisowski J, Weigel G, Dulak J. 15d-PGJ2 upregulates synthesis of IL-8 in endothelial cells through induction of oxidative stress. Antioxid Redox Signal 2008; 10:2035-46. [PMID: 18665800 DOI: 10.1089/ars.2008.2032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
15-Deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) is a cyclopentenone prostaglandin regarded as antiinflammatory mediator, which can act through peroxisome proliferator-activated receptor-gamma (PPARgamma) or through G protein-coupled surface receptors. It has been demonstrated that 15d-PGJ(2) potently increases the generation of interleukin-8 (IL-8) in human microvascular endothelial cells (HMEC-1s); however, the mechanism of this induction is not known. The aim of the study was to find the pathway involved in 15d-PGJ(2)-mediated IL-8 stimulation. Our data confirmed that the effect of 15d-PGJ(2) is independent of PPARgamma. For the first time, we excluded the activation of G proteins and the contribution of G protein-coupled surface receptors in endothelial cells treated with 15d-PGJ(2). Instead, we demonstrated that stimulation of IL-8 involved induction of oxidative stress, activation of p38 kinases, and increase in stability of IL-8 mRNA. Upregulation of IL-8 promoter, although measurable, seemed to play a less-pronounced role. Additionally, our results indicate the involvement of cAMP elevation and may suggest a role for ATF2 transcription factor. Concomitant induction of heme oxygenase-1 in HMEC-1s did not influence the synthesis of IL-8. In summary, we showed that 15d-PGJ(2), acting through oxidative stress, may exert proinflammatory effects. The upregulation of IL-8 is mostly associated with p38-mediated stabilization of mRNA.
Collapse
Affiliation(s)
- Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
McCarty MF, Barroso-Aranda J, Contreras F. Genistein and phycocyanobilin may prevent hepatic fibrosis by suppressing proliferation and activation of hepatic stellate cells. Med Hypotheses 2008; 72:330-2. [PMID: 18789597 DOI: 10.1016/j.mehy.2008.07.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 12/18/2022]
Abstract
Hepatic fibrosis reflects hepatotoxin-mediated activation of hepatic stellate cells, resulting in their proliferation and transformation to myofibroblasts that secrete collagen. This activation is suppressed by estrogen, an effect which explains the decreased risk for hepatic fibrosis enjoyed by premenopausal women and by postmenopausal women receiving hormone replacement therapy. Since stellate cells have been found to express the beta but not the alpha isoform of the estrogen receptor, it can be predicted that nutritional intakes of the soy isoflavone genistein - a selective agonist for ERbeta in the low nanomolar plasma concentrations achievable with these intakes - have potential for suppressing hepatic fibrosis, in both men and women. The antiproliferative impact of estrogen on stellate cells is mediated at least in part by suppression of NADPH oxidase activity; oxidant production by this enzyme complex plays a crucial role in stellate cell activation. Alternatively, it may be feasible to inhibit NADPH oxidase with phycocyanobilin (PCB), a biliverdin homolog found in spirulina that has recently been shown to inhibit the NADPH oxidase activity of human cell cultures in low micromolar concentrations. Joint administration of soy isoflavones and PCB in appropriate doses might have considerable potential for prevention of hepatic fibrosis in at-risk subjects.
Collapse
|
17
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
18
|
Lee SH, Seo GS, Kim HS, Woo SW, Ko G, Sohn DH. 2′,4′,6′-Tris(methoxymethoxy) chalcone attenuates hepatic stellate cell proliferation by a heme oxygenase-dependent pathway. Biochem Pharmacol 2006; 72:1322-33. [PMID: 16982036 DOI: 10.1016/j.bcp.2006.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/08/2006] [Accepted: 08/08/2006] [Indexed: 01/21/2023]
Abstract
Proliferation of hepatic stellate cells (HSCs) is central for the development of fibrosis during liver injury. We have shown previously that butein (3,4,2',4'-tetrahydroxychalcone) suppresses myofibroblastic differentiation of rat HSCs. Our aim in this study was to determine whether a new synthetic chalcone derivative, 2',4',6'-tris(methoxymethoxy) chalcone (TMMC) inhibits HSC proliferation induced by serum- or platelet-derived growth factor (PDGF). TMMC significantly inhibited growth factor-induced HSC proliferation. The inhibition of PDGF-induced proliferation by TMMC was associated with the phosphatidylinositol 3-kinase-Akt-p70(S6K) pathways. TMMC induced the expression of heme oxygenase 1 (HO-1) in HSCs. Using the chemical inhibitor tin protoporphyrin, we also found that the inhibitory action of TMMC on PDGF-induced proliferation is mediated by HO-1. Glutathione (GSH) depletion produced by TMMC activated extracellular signal-regulated kinase (ERK), which led to c-Fos expression and transactivation of activator protein 1 (AP-1) and HO-1 gene expression in the HSCs. These results demonstrate that TMMC preferentially activates ERK and that this activation leads to the transcriptional activation of AP-1 and consequently to HO-1 expression. HO-1 expression might be responsible for the antiproliferative effect of TMMC on HSCs.
Collapse
Affiliation(s)
- Sung Hee Lee
- College of Pharmacy, Medicinal Resources Research Institute, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
19
|
Teixeira-Clerc F, Julien B, Grenard P, Tran Van Nhieu J, Deveaux V, Li L, Serriere-Lanneau V, Ledent C, Mallat A, Lotersztajn S. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat Med 2006; 12:671-6. [PMID: 16715087 DOI: 10.1038/nm1421] [Citation(s) in RCA: 420] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 04/28/2006] [Indexed: 01/06/2023]
Abstract
Hepatic fibrosis, the common response associated with chronic liver diseases, ultimately leads to cirrhosis, a major public health problem worldwide. We recently showed that activation of hepatic cannabinoid CB2 receptors limits progression of experimental liver fibrosis. We also found that during the course of chronic hepatitis C, daily cannabis use is an independent predictor of fibrosis progression. Overall, these results suggest that endocannabinoids may drive both CB2-mediated antifibrogenic effects and CB2-independent profibrogenic effects. Here we investigated whether activation of cannabinoid CB1 receptors (encoded by Cnr1) promotes progression of fibrosis. CB1 receptors were highly induced in human cirrhotic samples and in liver fibrogenic cells. Treatment with the CB1 receptor antagonist SR141716A decreased the wound-healing response to acute liver injury and inhibited progression of fibrosis in three models of chronic liver injury. We saw similar changes in Cnr1-/- mice as compared to wild-type mice. Genetic or pharmacological inactivation of CB1 receptors decreased fibrogenesis by lowering hepatic transforming growth factor (TGF)-beta1 and reducing accumulation of fibrogenic cells in the liver after apoptosis and growth inhibition of hepatic myofibroblasts. In conclusion, our study shows that CB1 receptor antagonists hold promise for the treatment of liver fibrosis.
Collapse
MESH Headings
- Animals
- Cannabinoid Receptor Modulators/metabolism
- Disease Progression
- Female
- Humans
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis/pathology
- Liver Cirrhosis/therapy
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Piperidines/metabolism
- Piperidines/therapeutic use
- Pyrazoles/metabolism
- Pyrazoles/therapeutic use
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/metabolism
- Retrospective Studies
- Rimonabant
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta1
Collapse
|
20
|
Julien B, Grenard P, Teixeira-Clerc F, Van Nhieu JT, Li L, Karsak M, Zimmer A, Mallat A, Lotersztajn S. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 2005; 128:742-55. [PMID: 15765409 DOI: 10.1053/j.gastro.2004.12.050] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Hepatic myofibroblasts are central for the development of liver fibrosis associated with chronic liver diseases, and blocking their accumulation may prevent fibrogenesis. Cannabinoids are the active components of marijuana and act via 2 G-protein-coupled receptors, CB1 and CB2. Here, we investigated whether liver fibrogenic cells are a target of cannabinoids. METHODS CB2 receptors were characterized in biopsy specimens of normal human liver and active cirrhosis by immunohistochemistry, and in cultures of hepatic stellate cells and hepatic myofibroblasts by reverse-transcription polymerase chain reaction (RT-PCR), immunocytochemistry, and GTPgammaS assays. Functional studies were performed in cultured hepatic myofibroblasts and activated hepatic stellate cells. Carbon tetrachloride-induced liver fibrosis was studied in mice invalidated for CB2 receptors. RESULTS In liver biopsy specimens from patients with active cirrhosis of various etiologies, CB2 receptors were expressed in nonparenchymal cells located within and at the edge of fibrous septa in smooth muscle alpha-actin-positive cells. In contrast, CB2 receptors were not detected in normal human liver. CB2 receptors were also detected in cultured hepatic myofibroblasts and in activated hepatic stellate cells. Their activation triggered potent antifibrogenic effects, namely, growth inhibition and apoptosis. Growth inhibition involved cyclooxygenase-2, and apoptosis resulted from oxidative stress. Finally, mice invalidated for CB2 receptors developed enhanced liver fibrosis following chronic carbon tetrachloride treatment as compared with wild-type mice. CONCLUSIONS These data constitute the first demonstration that CB2 receptors are highly up-regulated in the cirrhotic liver, predominantly in hepatic fibrogenic cells. Moreover, this study also highlights the antifibrogenic role of CB2 receptors during chronic liver injury.
Collapse
|