1
|
Qin H, Sun C, Kong D, Zhu Y, Shao B, Ren S, Wang H, Zhang J, Xu Y, Wang H. CD73 mediates the therapeutic effects of endometrial regenerative cells in concanavalin A-induced hepatitis by regulating CD4 + T cells. Stem Cell Res Ther 2023; 14:277. [PMID: 37775797 PMCID: PMC10543328 DOI: 10.1186/s13287-023-03505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND As a kind of mesenchymal-like stromal cells, endometrial regenerative cells (ERCs) have been demonstrated effective in the treatment of Concanavalin A (Con A)-induced hepatitis. However, the therapeutic mechanism of ERCs is not fully understood. Ecto-5`-nucleotidase (CD73), an enzyme that could convert immune-stimulative adenosine monophosphate (AMP) to immune-suppressive adenosine (ADO), was identified highly expressed on ERCs. The present study was conducted to investigate whether the expression of CD73 on ERCs is critical for its therapeutic effects in Con A-induced hepatitis. METHODS ERCs knocking out CD73 were generated with lentivirus-mediated CRISPR-Cas9 technology and identified by flow cytometry, western blot and AMPase activity assay. CD73-mediated immunomodulatory effects of ERCs were investigated by CD4+ T cell co-culture assay in vitro. Besides, Con A-induced hepatitis mice were randomly assigned to the phosphate-buffered saline treated (untreated), ERC-treated, negative lentiviral control ERC (NC-ERC)-treated, and CD73-knockout-ERC (CD73-KO-ERC)-treated groups, and used to assess the CD73-mediated therapeutic efficiency of ERCs. Hepatic histopathological analysis, serum transaminase concentrations, and the proportion of CD4+ T cell subsets in the liver and spleen were performed to assess the progression degree of hepatitis. RESULTS Expression of CD73 on ERCs could effectively metabolize AMP to ADO, thereby inhibiting the activation and function of conventional CD4+ T cells was identified in vitro. In addition, ERCs could markedly reduce levels of serum and liver transaminase and attenuate liver damage, while the deletion of CD73 on ERCs dampens these effects. Furthermore, ERC-based treatment achieved less infiltration of CD4+ T and Th1 cells in the liver and reduced the population of systemic Th1 and Th17 cells and the levels of pro-inflammatory cytokines such as IFN-γ and TNF-α, while promoting the generation of Tregs in the liver and spleen, while deletion of CD73 on ERCs significantly impaired their immunomodulatory effects locally and systemically. CONCLUSION Taken together, it is concluded that CD73 is critical for the therapeutic efficiency of ERCs in the treatment of Con A-induced hepatitis.
Collapse
Affiliation(s)
- Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yini Xu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Tian Z, Shofer FS, Sandroni AZ, Zhao L, Scanzello CR, Zhang Y. Expression of Human Interleukin 8 in Mice Alters Their Natural Behaviors. J Inflamm Res 2022; 15:2413-2424. [PMID: 35444450 PMCID: PMC9013918 DOI: 10.2147/jir.s355669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Objective To examine the effects of human interleukin (IL) 8 expression on mouse behavior. Methods A mouse line expressing human IL8 in the intervertebral discs (IVD) and cartilaginous tissues (hIL8+ ) was generated. Mouse spontaneous behaviors, including locomotion, climbing, rearing, grooming, eating, drinking, and immobility were recorded with a fully automatic, non-invasive platform. Results Distance traveled by the hIL8+ mice declined with age compared with control littermates, and male hIL8+ mice traveled a shorter distance than male controls and females of either genotype (p <0.05). The hIL8+ mice also spent less time in locomotion than control mice (p <0.01), and male hIL8+ mice spent the least amount of time and had lowest count in locomotion compared with the other 3 groups at 12 weeks of age or greater (p <0.05). The hIL8+ mice spent less time climbing than controls, and male mice spent less time climbing than female mice of the same genotype (p <0.01). The hIL8+ mice spent more time eating and less time drinking than controls, and all mice spent less time eating and more time drinking with increasing age. Finally, hIL8+ mice spent more time immobile than controls, and male hIL8+ mice spent more time immobile than any other group (p <0.05). Conclusion The hIL8+ mice, especially hIL8+ males, showed reduced ambulation and climbing. Mice showed age-related decrease in eating and increase in drinking and grooming time that was also influenced by expression of hIL8. These changes in natural behaviors in control mice are consistent with functional decline with age. Effects of hIL8 superimposed on the natural aging process could involve systemic (e.g., on the brain) and local (e.g., in the spine and joint tissues) mechanisms. Future exploration of these mechanisms might be productive.
Collapse
Affiliation(s)
- Zuozhen Tian
- Department of Physical Medicine & Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Frances S Shofer
- Department of Physical Medicine & Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, PA, USA,Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alec Z Sandroni
- Department of Physical Medicine & Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Carla R Scanzello
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Section of Rheumatology, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Yejia Zhang
- Department of Physical Medicine & Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, PA, USA,Section of Rehabilitation Medicine, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA,Correspondence: Yejia Zhang, Department of Physical Medicine & Rehabilitation, Hospital of the University of Pennsylvania, Philadelphia, PA, USA, Email ;
| |
Collapse
|
3
|
Brent JM, Tian Z, Yao L, Huang J, Markova DZ, Shofer FS, Brice AK, Qin L, Scanzello CR, Vitale F, Chen D, Zhang Y. Functional Deficits in Mice Expressing Human Interleukin 8. Comp Med 2020; 70:205-215. [PMID: 32312361 DOI: 10.30802/aalas-cm-19-000049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We showed previously that inflammatory mediators, including IL8, in intervertebral disc tissues from patients with discogenic back pain may play a key role in back pain. To investigate the molecular mechanism of IL8 signaling in back pain, we generated a mouse model that conditionally expresses human (h) IL8. We hypothesized that hIL8 levels affect mouse activity and function. Briefly, hIL8 cDNA was inserted into the pCALL2 plasmid, linearized, and injected into mouse embryos. Resulting pCALL2-hIL8 mice were then bred with GDF5-Cre mice to express the transgene in cartilage and intervertebral disc (IVD) tissues. Functional capacities including nest-making and other natural behaviors were measured. Both male and female mice expressing hIL8 showed lower nesting scores than did littermates that did not express hIL8 (n = 14 to 16 per group). At 28 wk of age, mice expressing hIL8 (n = 35) spent more time immobile and eating during each night than littermate controls (n = 33). Furthermore, hIL8-expressing mice traveled shorter distances and at a lower average speed than littermate controls. Thus, in an initial effort to investigate the relationship between this chemokine and mouse behavior, we have documented changes in normal activities in mice conditionally expressing hIL8.
Collapse
Affiliation(s)
- Julie Michelle Brent
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, Pennsylvania;,
| | - Zuozhen Tian
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania; Department of Orthopaedics-Sports Medicine and Joint Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Dessislava Z Markova
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Frances S Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Angela K Brice
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania
| | - Carla R Scanzello
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania; Department of Rheumatology, Perelman School of Medicine, University of Pennsylvania; Corporal Michael J Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Flavia Vitale
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania; Department of Neurology, Perelman School of Medicine, University of Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Corporal Michael J Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Yejia Zhang
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania; Corporal Michael J Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Hepatitis B Virus Activates Signal Transducer and Activator of Transcription 3 Supporting Hepatocyte Survival and Virus Replication. Cell Mol Gastroenterol Hepatol 2017; 4:339-363. [PMID: 28884137 PMCID: PMC5581872 DOI: 10.1016/j.jcmgh.2017.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The human hepatitis B virus (HBV) is a major cause of chronic hepatitis and hepatocellular carcinoma, but molecular mechanisms driving liver disease and carcinogenesis are largely unknown. We therefore studied cellular pathways altered by HBV infection. METHODS We performed gene expression profiling of primary human hepatocytes infected with HBV and proved the results in HBV-replicating cell lines and human liver tissue using real-time polymerase chain reaction and Western blotting. Activation of signal transducer and activator of transcription (STAT3) was examined in HBV-replicating human hepatocytes, HBV-replicating mice, and liver tissue from HBV-infected individuals using Western blotting, STAT3-luciferase reporter assay, and immunohistochemistry. The consequences of STAT3 activation on HBV infection and cell survival were studied by chemical inhibition of STAT3 phosphorylation and small interfering RNA-mediated knockdown of STAT3. RESULTS Gene expression profiling of HBV-infected primary human hepatocytes detected no interferon response, while genes encoding for acute phase and antiapoptotic proteins were up-regulated. This gene regulation was confirmed in liver tissue samples of patients with chronic HBV infection and in HBV-related hepatocellular carcinoma. Pathway analysis revealed activation of STAT3 to be the major regulator. Interleukin-6-dependent and -independent activation of STAT3 was detected in HBV-replicating hepatocytes in cell culture and in vivo. Prevention of STAT3 activation by inhibition of Janus tyrosine kinases as well as small interfering RNA-mediated knockdown of STAT3-induced apoptosis and reduced HBV replication and gene expression. CONCLUSIONS HBV activates STAT3 signaling in hepatocytes to foster its own replication but also to prevent apoptosis of infected cells. This very likely supports HBV-related carcinogenesis.
Collapse
Key Words
- APR, acute phase response
- Apoptosis
- CRP, C-reactive protein
- DMSO, dimethyl sulfoxide
- FCS, fetal calf serum
- HBV pg RNA, hepatitis B pregenomic RNA
- HBV, Hepatitis B virus
- HBVtg, hepatitis B transgenic
- HBeAg, hepatitis B early antigen
- HCC, hepatocellular carcinoma
- HNF, hepatocyte nuclear factor
- Hepatitis B Virus Infection
- Hepatocellular Carcinoma
- IFN, interferon
- IL-6, interleukin 6
- IRF3, interferon regulatory factor 3
- NAC, N-acetyl-L-cysteine
- PCR, polymerase chain reaction
- PHH, primary human hepatocyte
- ROS, reactive oxygen species
- RT, reverse transcription
- STAT3 Signaling
- STAT3, signal transducer and activator of transcription 3
- cDNA, complementary DNA
- cRNA, complementary RNA
- cccDNA, covalently closed circular DNA
- mRNA, messenger RNA
- p.i., postinfection
- pSTAT3, phosphorylated signal transducer and activator of transcription 3
- pgRNA, pregenomic RNA
- siRNA, small interfering RNA
Collapse
|
5
|
Kamalakar A, Bendre MS, Washam CL, Fowler TW, Carver A, Dilley JD, Bracey JW, Akel NS, Margulies AG, Skinner RA, Swain FL, Hogue WR, Montgomery CO, Lahiji P, Maher JJ, Leitzel KE, Ali SM, Lipton A, Nicholas RW, Gaddy D, Suva LJ. Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans. Bone 2014; 61:176-85. [PMID: 24486955 PMCID: PMC3967592 DOI: 10.1016/j.bone.2014.01.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 12/31/2022]
Abstract
Skeletal metastases of breast cancer and subsequent osteolysis connote a dramatic change in the prognosis for the patient and significantly increase the morbidity associated with disease. The cytokine interleukin 8 (IL-8/CXCL8) is able to directly stimulate osteoclastogenesis and bone resorption in mouse models of breast cancer bone metastasis. In this study, we determined whether circulating levels of IL-8 were associated with increased bone resorption and breast cancer bone metastasis in patients and investigated IL-8 action in vitro and in vivo in mice. Using breast cancer patient plasma (36 patients), we identified significantly elevated IL-8 levels in bone metastasis patients compared with patients lacking bone metastasis (p<0.05), as well as a correlation between plasma IL-8 and increased bone resorption (p<0.05), as measured by NTx levels. In a total of 22 ER+ and 15 ER- primary invasive ductal carcinomas, all cases examined stained positive for IL-8 expression. In vitro, human MDA-MB-231 and MDA-MET breast cancer cell lines secrete two distinct IL-8 isoforms, both of which were found to stimulate osteoclastogenesis. However, the more osteolytic MDA-MET-derived full length IL-8(1-77) had significantly higher potency than the non-osteolytic MDA-MB-231-derived IL-8(6-77), via the CXCR1 receptor. MDA-MET breast cancer cells were injected into the tibia of nude mice and 7days later treated daily with a neutralizing IL-8 monoclonal antibody. All tumor-injected mice receiving no antibody developed large osteolytic bone tumors, whereas 83% of the IL-8 antibody-treated mice had no evidence of tumor at the end of 28days and had significantly increased survival. The pro-osteoclastogenic activity of IL-8 in vivo was confirmed when transgenic mice expressing human IL-8 were examined and found to have a profound osteopenic phenotype, with elevated bone resorption and inherently low bone mass. Collectively, these data suggest that IL-8 plays an important role in breast cancer osteolysis and that anti-IL-8 therapy may be useful in the treatment of the skeletal related events associated with breast cancer.
Collapse
Affiliation(s)
- Archana Kamalakar
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Manali S Bendre
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charity L Washam
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tristan W Fowler
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adam Carver
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Joshua D Dilley
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John W Bracey
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nisreen S Akel
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Robert A Skinner
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Frances L Swain
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - William R Hogue
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Corey O Montgomery
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Parshawn Lahiji
- Division of Gastroenterology, San Francisco General Hospital, University of California San Francisco Liver Center, San Francisco, CA, USA
| | - Jacqueline J Maher
- Division of Gastroenterology, San Francisco General Hospital, University of California San Francisco Liver Center, San Francisco, CA, USA
| | - Kim E Leitzel
- Division of Oncology, Pennsylvania State University, Hershey Cancer Institute, Pennsylvania State Hershey Medical Center, Hershey, PA, USA
| | - Suhail M Ali
- Division of Oncology, Pennsylvania State University, Hershey Cancer Institute, Pennsylvania State Hershey Medical Center, Hershey, PA, USA
| | - Alan Lipton
- Division of Oncology, Pennsylvania State University, Hershey Cancer Institute, Pennsylvania State Hershey Medical Center, Hershey, PA, USA
| | - Richard W Nicholas
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dana Gaddy
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Larry J Suva
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
6
|
Milovanovic M, Volarevic V, Radosavljevic G, Jovanovic I, Pejnovic N, Arsenijevic N, Lukic ML. IL-33/ST2 axis in inflammation and immunopathology. Immunol Res 2012; 52:89-99. [PMID: 22392053 DOI: 10.1007/s12026-012-8283-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family of cytokines, binds to its plasma membrane receptor, heterodimeric complex consisted of membrane-bound ST2L and IL-1R accessory protein, inducing NFkB and MAPK activation. IL-33 exists as a nuclear precursor and may act as an alarmin, when it is released after cell damage or as negative regulator of NFκB gene transcription, when acts in an intracrine manner. ST2L is expressed on several immune cells: Th2 lymphocytes, NK, NKT and mast cells and on cells of myeloid lineage: monocytes, dendritic cells and granulocytes. IL-33/ST2 axis can promote both Th1 and Th2 immune responses depending on the type of activated cell and microenvironment and cytokine network in damaged tissue. We previously described and discuss here the important role of IL-33/ST2 axis in experimental models of type 1 diabetes, experimental autoimmune encephalomyelitis, fulminant hepatitis and breast cancer. We found that ST2 deletion enhance the development of T cell-mediated autoimmune disorders, EAE and diabetes mellitus type I. Disease development was accompanied by dominantly Th1/Th17 immune response but also higher IL-33 production, which suggest that IL-33 in receptor independent manner could promote the development of inflammatory autoreactive T cells. IL-33/ST2 axis has protective role in Con A hepatitis. ST2-deficient mice had more severe hepatitis with higher influx of inflammatory cells in liver and dominant Th1/Th17 systemic response. Pretreatment of mice with IL-33 prevented Con A-induced liver damage through prevention of apoptosis of hepatocytes and Th2 amplification. Deletion of IL-33/ST2 axis enhances cytotoxicity of NK cells, production of IFN-γ in these cells and systemic production of IFN-γ, IL-17 and TNF-α, which leads to attenuated tumor growth. IL-33 treatment of tumor-bearing mice suppresses activity of NK cells, dendritic cell maturation and enhances alternative activation of macrophages. In conclusion, we observed that IL-33 has attenuated anti-inflammatory effects in T cell-mediated responses and that both IL-33 and ST2 could be further explored as potential therapeutic targets in treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Marija Milovanovic
- Faculty of Medicine, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | | | | | | | | | | | | |
Collapse
|
7
|
Radosavljevic G, Volarevic V, Jovanovic I, Milovanovic M, Pejnovic N, Arsenijevic N, Hsu DK, Lukic ML. The roles of Galectin-3 in autoimmunity and tumor progression. Immunol Res 2012; 52:100-10. [PMID: 22418727 DOI: 10.1007/s12026-012-8286-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Galectin-3, a unique chimera-type member of the β-galactoside-binding soluble lectin family, is widely expressed in numerous cells. Here, we discuss the role of Galectin-3 in T-cell-mediated inflammatory (auto) immunity and tumor rejection by using Galectin-3-deficient mice and four disease models of human pathology: experimental autoimmune encephalomyelitis (EAE), Con-A-induced hepatitis, multiple low-dose streptozotocin-induced diabetes (MLD-STZ diabetes) and metastatic melanoma. We present evidence which suggest that Galectin-3 plays an important pro-inflammatory role in Con-A-induced hepatitis by promoting the activation of T lymphocytes, NKT cells and DCs, cytokine secretion, prevention of M2 macrophage polarization and apoptosis of mononuclear cells, and it leads to severe liver injury. In addition, experiments in Galectin-3-"knock-out" mice indicate that Galectin-3 is also involved in immune-mediated β-cell damage and is required for diabetogenesis in MLD-STZ model by promoting the expression of IFN-gamma, TNF-alpha, IL-17 and iNOS in immune and accessory effector cells. Next, our data demonstrated that Galectin-3 plays an important disease-exacerbating role in EAE through its multifunctional roles in preventing cell apoptosis and increasing IL-17 and IFN-gamma synthesis, but decreasing IL-10 production. Finally, based on our findings, we postulated that expression of Galectin-3 in the host may also facilitate melanoma metastasis by affecting tumor cell adhesion and modulating anti-melanoma immune response, in particular innate antitumor immunity. Taken together, we discuss the evidence of pro-inflammatory and antitumor activities of Galectin-3 and suggest that Galectin-3 may be an important therapeutic target.
Collapse
Affiliation(s)
- Gordana Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medicine, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hall RJ, Shenkin SD, Maclullich AMJ. A systematic literature review of cerebrospinal fluid biomarkers in delirium. Dement Geriatr Cogn Disord 2012; 32:79-93. [PMID: 21876357 DOI: 10.1159/000330757] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) analysis has great potential to advance understanding of delirium pathophysiology. METHODS A systematic literature review of CSF studies of DSM or ICD delirium was performed. RESULTS In 8 studies of 235 patients, delirium was associated with: elevated serotonin metabolites, interleukin-8, cortisol, lactate and protein, and reduced somatostatin, β-endorphin and neuron-specific enolase. Elevated acetylcholinesterase predicted poor outcome after delirium and higher dopamine metabolites were associated with psychotic features. CONCLUSIONS No clear conclusions emerged, but the current literature suggests multiple areas for further investigation with more detailed studies.
Collapse
Affiliation(s)
- Roanna J Hall
- Edinburgh Delirium Research Group, Geriatric Medicine, Division of Health Sciences, School of Clinical Sciences and Community Health, UK. roanna.hall @ ed.ac.uk
| | | | | |
Collapse
|
9
|
Protective role of IL-33/ST2 axis in Con A-induced hepatitis. J Hepatol 2012; 56:26-33. [PMID: 21703183 DOI: 10.1016/j.jhep.2011.03.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/16/2011] [Accepted: 03/18/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS We used Concanavalin A-induced liver injury to study the role of Interleukin 33 and its receptor ST2 in the induction of inflammatory pathology and hepatocellular damage. METHODS We tested susceptibility to Concanavalin A induced hepatitis in ST2 deficient and wild type BALB/c mice and analyzed the effects of single injection of Interleukin 33 as evaluated by liver enzyme test, quantitative histology, mononuclear cell infiltration, cytokine production, intracellular staining of immune cells, and markers of apoptosis in the liver. RESULTS ST2 deficient mice developed significantly more severe hepatitis and had significantly higher number of mononuclear cells in the liver, CD4+ and CD8+ T cells, NKp46+ and CD3+NKp46+ cells, and F4/80+ macrophages. The level of pro-inflammatory cytokines in the sera and number of TNF alpha, IFN gamma, and IL-17 producing cells was higher in ST2 deficient mice. In contrast, number of CD4+Foxp3+ cells was statistically higher in wild type mice. Additionally, treatment of wild type mice with single (1 μg) injection of Interleukin 33 led to attenuation of the liver injury and milder infiltration of mononuclear cells, increase in total number of liver CD4+Foxp3+ cells and IL-4 producing CD4+ T cells. Interleukin 33 also suppressed the activation of caspase 3, prevented the expression of BAX, and enhanced the expression of antiapoptotic Bcl-2 in the liver. CONCLUSIONS We concluded that Interleukin 33/ST2 axis downregulated Concanavalin A-induced liver injury and should be evaluated as potential target in fulminant hepatitis in humans.
Collapse
|
10
|
Buechler C, Wanninger J, Neumeier M. Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol 2011; 17:2801-11. [PMID: 21734787 PMCID: PMC3120939 DOI: 10.3748/wjg.v17.i23.2801] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/17/2010] [Accepted: 11/24/2010] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprising hepatic steatosis, non-alcoholic steatohepatitis (NASH), and progressive liver fibrosis is considered the most common liver disease in western countries. Fatty liver is more prevalent in overweight than normal-weight people and liver fat positively correlates with hepatic insulin resistance. Hepatic steatosis is regarded as a benign stage of NAFLD but may progress to NASH in a subgroup of patients. Besides liver biopsy no diagnostic tools to identify patients with NASH are available, and no effective treatment has been established. Visceral obesity is a main risk factor for NAFLD and inappropriate storage of triglycerides in adipocytes and higher concentrations of free fatty acids may add to increased hepatic lipid storage, insulin resistance, and progressive liver damage. Most of the adipose tissue-derived proteins are elevated in obesity and may contribute to systemic inflammation and liver damage. Adiponectin is highly abundant in human serum but its levels are reduced in obesity and are even lower in patients with hepatic steatosis or NASH. Adiponectin antagonizes excess lipid storage in the liver and protects from inflammation and fibrosis. This review aims to give a short survey on NAFLD and the hepatoprotective effects of adiponectin.
Collapse
|
11
|
Wanninger J, Neumeier M, Weigert J, Bauer S, Weiss TS, Schäffler A, Krempl C, Bleyl C, Aslanidis C, Schölmerich J, Buechler C. Adiponectin-stimulated CXCL8 release in primary human hepatocytes is regulated by ERK1/ERK2, p38 MAPK, NF-kappaB, and STAT3 signaling pathways. Am J Physiol Gastrointest Liver Physiol 2009; 297:G611-8. [PMID: 19608729 DOI: 10.1152/ajpgi.90644.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adiponectin is believed to exert hepatoprotective effects and induces CXCL8, a chemokine that functions as a survival factor, in vascular cells. In the current study, it is demonstrated that adiponectin also induces CXCL8 expression in primary human hepatocytes but not in hepatocellular carcinoma cell lines. Knock down of the adiponectin receptor (AdipoR) 1 or AdipoR2 by small-interfering RNA indicates that AdipoR1 is involved in adiponectin-stimulated CXCL8 release. Adiponectin activates nuclear factor (NF)-kappaB in primary hepatocytes and pharmacological inhibition of NF-kappaB, the p38 mitogen-activated protein kinase, and extracellular signal-regulated kinase (ERK) 1/ERK2 reduces adiponectin-mediated CXCL8 secretion. Furthermore, adiponectin also activates STAT3 involved in interleukin (IL)-6 and leptin-mediated CXCL8 induction in primary hepatocytes. Inhibition of JAK2 by AG-490 does not abolish adiponectin-stimulated CXCL8, indicating that this kinase is not involved. Pretreatment of primary cells with "STAT3 Inhibitor VI," however, elevates hepatocytic CXCL8 secretion, demonstrating that STAT3 is a negative regulator of CXCL8 in these cells. In accordance with this assumption, IL-6, a well-characterized activator of STAT3, reduces hepatocytic CXCL8. Therefore, adiponectin-stimulated induction of CXCL8 seems to be tightly controlled in primary human hepatocytes, whereas neither NF-kappaB, STAT3, nor CXCL8 are influenced in hepatocytic cell lines. CXCL8 is a survival factor, and its upregulation by adiponectin may contribute to the hepatoprotective effects of this adipokine.
Collapse
Affiliation(s)
- Josef Wanninger
- Department of Internal Medicine I, University Hospital of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sheikh N, Tron K, Dudas J, Ramadori G. Cytokine-induced neutrophil chemoattractant-1 is released by the noninjured liver in a rat acute-phase model. J Transl Med 2006; 86:800-14. [PMID: 16715102 DOI: 10.1038/labinvest.3700435] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The source of serum cytokine-induced neutrophil chemoattractant (CINC-1) and consequences of its presence in the tissue of synthesis have not been clearly elucidated under acute-phase situation. To pursue this question, turpentine oil (TO) was intramuscularly injected into rats, and RNA and local protein levels of acute-phase cytokines and of CINC-1 were studied in the TO injected gluteal muscle, as well as in noninjured muscle, in the liver, kidney, lung and spleen. The serum levels of acute-phase mediators and of CINC-1 were measured together with total leukocyte subpopulations. Recruitment of inflammatory cells in muscle and in the other organs was investigated by quantitative immunohistochemical methods. The effect of acute-phase mediators, including interferon gamma (IFN-gamma) on the synthesis of CINC-1 in cultured hepatocytes was also investigated at the RNA and protein level. We found that the sera of the TO-treated rats contained elevated levels of IL-6, IL-1beta and CINC-1. Increased serum levels of IFN-gamma were also observed not only in the injured muscle but also and to a higher extent in the liver. However, while neutrophils and mononuclear phagocytes were found in the injured muscle, no inflammatory cells were detected at the non-'inflamed' site, namely, the liver or in the other organs. In vitro, treatment of cultured hepatocytes with IL-1beta led to elevated CINC-1 gene expression. This was true to a lesser extent upon IL-6 and tumor necrosis factor (TNF-alpha) exposure. Interestingly, IFN-gamma did not effect CINC-1 gene expression. These results indicate that CINC-1 behaves as an acute-phase protein and its expression is inducible in hepatocytes. However, CINC-1-production in the liver does not lead to recruitment of inflammatory cells into the organ.
Collapse
Affiliation(s)
- Nadeem Sheikh
- Department of Internal Medicine, Division of Gastroenterology and Endocrinology, University Hospital Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|