1
|
De Clercq E. A scientific career from the early 1960s till 2023: A tale of the various protagonists. Biochem Pharmacol 2024; 228:116248. [PMID: 38701868 DOI: 10.1016/j.bcp.2024.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
In this era spanning more than 60 years (from the early 1960s till today (2023), a broad variety of actors played a decisive role: Piet De Somer, Tom C. Merigan, Paul A. Janssen, Maurice Hilleman, and Georges Smets. Two protagonists (Antonín Holý and John C. Martin) formed with me a unique triangle (the Holý Trinity). Walter Fiers' group (with the help of Jean Content) contributed to the cloning of human β-interferon, and Piet Herdewijn accomplished the chemical synthesis of an array of anti-HIV 2',3'-dideoxynucleoside analogues. Rudi Pauwels, Masanori Baba, Dominique Schols, Johan Neyts, Lieve Naesens, Anita Van Lierde, Graciela Andrei, Robert Snoeck and Dirk Daelemans, as members of my team, helped me in achieving the intended goal, the development of a selective therapy for virus infections. The collaboration with "Lowie" (Guangdi Li) generated a new dimension for the future.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
2
|
Perin N, Lončar B, Kadić M, Kralj M, Starčević K, Carvalho RA, Jarak I, Hranjec M. Design, Synthesis, Antitumor Activity and NMR-Based Metabolomics of Novel Amino Substituted Tetracyclic Imidazo[4,5-b]Pyridine Derivatives. ChemMedChem 2024; 19:e202300633. [PMID: 38757872 DOI: 10.1002/cmdc.202300633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Newly prepared tetracyclic imidazo[4,5-b]pyridine derivatives were synthesized to study their antiproliferative activity against human cancer cells. Additionally, the structure-activity was studied to confirm the impact of the N atom position in pyridine nuclei as well as the chosen amino side chains on antiproliferative activity. Targeted amino substituted regioisomers were prepared by using uncatalyzed amination from corresponding chloro substituted precursors. The most active compounds 6 a, 8 and 10 showed improved activity in comparison to standard drug etoposide with IC50 values in a nanomolar range of concentration (0.2-0.9 μM). NMR-based metabolomics is a powerful instrument to elucidate activity mechanism of new chemotherapeutics. Multivariate and univariate statistical analysis of metabolic profiles of non-small cell lung cancer cells before and after exposure to 6 a revealed significant changes in metabolism of essential amino acids, glycerophospholipids and oxidative defense. Insight into the changes of metabolic pathways that are heavily involved in cell proliferation and survival provide valuable guidelines for more detailed analysis of activity metabolism and possible targets of this class of bioactive compounds.
Collapse
Affiliation(s)
- Nataša Perin
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia
| | | | - Matej Kadić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000, Zagreb, Croatia
| | - Rui A Carvalho
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia
| |
Collapse
|
3
|
Azzouzi M, Ouafi ZE, Azougagh O, Daoudi W, Ghazal H, Barkany SE, Abderrazak R, Mazières S, Aatiaoui AE, Oussaid A. Design, synthesis, and computational studies of novel imidazo[1,2- a]pyrimidine derivatives as potential dual inhibitors of hACE2 and spike protein for blocking SARS-CoV-2 cell entry. J Mol Struct 2023; 1285:135525. [PMID: 37057139 PMCID: PMC10080474 DOI: 10.1016/j.molstruc.2023.135525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
In the present work, a new series of imidazo[1,2-a]pyrimidine Schiff base derivatives have been obtained using an easy and conventional synthetic route. The synthesized compounds were spectroscopically characterized using 1H, 13C NMR, LC-MS(ESI), and FT-IR techniques. Green metric calculations indicate adherence to several green chemistry principles. The energy of Frontier Molecular Orbitals (FMO), Molecular Electrostatic Potential (MEP), Quantum Theory of Atoms in Molecules (QTAIM), and Reduced Density Gradient (RDG) were determined by the Density Functional Theory (DFT) method at B3LYP/6-31 G (d, p) as the basis set. Moreover, molecular docking studies targeting the human ACE2 and the spike, key entrance proteins of the severe acute respiratory syndrome coronavirus-2 were carried out along with hACE2 natural ligand Angiotensin II, the MLN-4760 inhibitor as well as the Cannabidiolic Acid CBDA which has been demonstrated to bind to the spike protein and block cell entry. The molecular modeling results showed auspicious results in terms of binding affinity as the top-scoring compound exhibited a remarkable affinity (-9.1 and -7.3 kcal/mol) to the ACE2 and spike protein respectively compared to CBDA (-5.7 kcal/mol), the MLN-4760 inhibitor (-7.3 kcal/mol), and angiotensin II (-9.2 kcal/mol). These findings suggest that the synthesized compounds may potentially act as effective entrance inhibitors, preventing the SARS-CoV-2 infection of human cells. Furthermore, in silico, ADMET, and drug-likeness prediction expressed promising drug-like characteristics.
Collapse
Affiliation(s)
- Mohamed Azzouzi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Zainab El Ouafi
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences Casablanca, Casablanca, Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Walid Daoudi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Hassan Ghazal
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences Casablanca, Casablanca, Morocco
- Electronic Systems, Sensors and Nanobiotechnologies (E2SN), École Nationale Supérieure des Arts et Métiers (ENSAM), Mohammed V University, Rabat, Morocco
| | - Soufian El Barkany
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Rfaki Abderrazak
- National Center for Scientific and Technical Research (CNRST), Rabat, Morocco
| | - Stéphane Mazières
- Laboratory of IMRCP, University Paul Sabatier, CNRS UMR 5623, 118 route de Narbonne, Toulouse 31062, France
| | - Abdelmalik El Aatiaoui
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Adyl Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| |
Collapse
|
4
|
Zhou Z, Luo D, Li G, Yang Z, Cui L, Yang W. Copper-catalyzed three-component reaction to synthesize polysubstituted imidazo[1,2- a]pyridines. RSC Adv 2022; 12:20199-20205. [PMID: 35919587 PMCID: PMC9280286 DOI: 10.1039/d2ra02722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
An efficient three-component one-pot and operationally simple cascade of 2-aminopyridines with sulfonyl azides and terminal ynones is reported, providing a variety of polysubstituted imidazo[1,2-a]pyridine derivatives in moderate to excellent yields. In particular, the reaction goes a through CuAAC/ring-cleavage process and forms a highly active intermediate α-acyl-N-sulfonyl ketenimine with base free. Three-component one-pot synthesis of polysubstituted imidazo[1,2-a]pyridine derivatives through a base free CuAAC/ring-cleavage process.![]()
Collapse
Affiliation(s)
- Zitong Zhou
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Danyang Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Guanrong Li
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhongtao Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Liao Cui
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Weiguang Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
5
|
Althagafi I, Abdel-Latif E. Synthesis and Antibacterial Activity of New Imidazo[1,2-a]pyridines Festooned with Pyridine, Thiazole or Pyrazole Moiety. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1894185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ismail Althagafi
- Department of Chemistry, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ehab Abdel-Latif
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Kumar R, Mishra S, Shreya, Maurya SK. Recent advances in the discovery of potent RNA-dependent RNA-polymerase (RdRp) inhibitors targeting viruses. RSC Med Chem 2021; 12:306-320. [PMID: 34046618 PMCID: PMC8130609 DOI: 10.1039/d0md00318b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022] Open
Abstract
WHO has declared COVID-19 a pandemic, which has affected the whole world and has caused unprecedented social and economic disruption. Since the emergence of the disease, several druggable targets have been suggested including 3-chymotrypsin-like protease (3CLpro), spike, RNA-dependent RNA polymerase (RdRp), and the papain-like protease (PLpro) computational approach. From the beginning, viral replication has been the main focus for any antiviral drug development for viral diseases, including HCV, influenza virus, zika virus, norovirus, measles, dengue virus, and coronaviruses. This review lists the nucleoside, nucleotide, and non-nucleoside RdRp inhibitor analogues of various viral diseases that may be evaluated for drug development to treat COVID-19.
Collapse
Affiliation(s)
- Rahul Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh-176 061 India
- Academy of Scientific and Innovative Research, CSIR-HRDC Ghaziabad Uttar Pradesh 201 002 India
| | - Sahil Mishra
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh-176 061 India
| | - Shreya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh-176 061 India
| | - Sushil K Maurya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh-176 061 India
- Academy of Scientific and Innovative Research, CSIR-HRDC Ghaziabad Uttar Pradesh 201 002 India
| |
Collapse
|
7
|
Zhu ZQ, Guo D, Ji JJ, Zhu X, Tang J, Xie ZB, Le ZG. Visible-Light-Induced Dehydrogenative Imidoylation of Imidazo[1,2- a]pyridines with α-Amino Acid Derivatives and α-Amino Ketones. J Org Chem 2020; 85:15062-15071. [PMID: 33135893 DOI: 10.1021/acs.joc.0c01940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new and efficient visible-light-promoted dehydrogenative cross-coupling reaction of imidazo[1,2-a]pyridines with α-amino carbonyl compounds toward imidoyl imidazo[1,2-a]pyridines is developed. A diverse range of imidazo[1,2-a]pyridines undergoes the dehydrogenative imidoylation smoothly with α-amino carbonyl compounds to access the corresponding products in satisfactory yields. We have also proposed the possible reaction mechanism based on preliminary mechanistic studies. The synthetic method has the advantages of wide substrate scope, good functional tolerance, and mild reaction conditions, which make this transformation more practical and sustainable.
Collapse
Affiliation(s)
- Zhi-Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Dong Guo
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Jiu-Jian Ji
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Xiao Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Juan Tang
- Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Zong-Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
8
|
Karaaslan C, Doganc F, Alp M, Koc A, Karabay AZ, Göker H. Regioselective N-alkylation of some imidazole-containing heterocycles and their in vitro anticancer evaluation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Göker H, Özden S. Regioselective N–alkylation of 2– (3,4–dimethoxyphenyl)imidazo[4,5–b] and [4,5–c]pyridine oxide derivatives : Synthesis and structure elucidation by NMR. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Naresh G, Lakkaniga NR, Kharbanda A, Yan W, Frett B, Li H. Use of Imidazo[1,2‐
a
]pyridine as a Carbonyl Surrogate in a Mannich‐Like, Catalyst Free, One‐Pot Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gunaganti Naresh
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences 4301 W Markham St. 72205 Little Rock Arkansas USA
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences 4301 W Markham St. 72205 Little Rock Arkansas USA
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences 4301 W Markham St. 72205 Little Rock Arkansas USA
| | - Wei Yan
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences 4301 W Markham St. 72205 Little Rock Arkansas USA
| | - Brendan Frett
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences 4301 W Markham St. 72205 Little Rock Arkansas USA
| | - Hong‐yu Li
- Department of Pharmaceutical Sciences College of Pharmacy University of Arkansas for Medical Sciences 4301 W Markham St. 72205 Little Rock Arkansas USA
| |
Collapse
|
11
|
Ji JJ, Zhu ZQ, Xiao LJ, Guo D, Zhu X, Tang J, Wu J, Xie ZB, Le ZG. Photocatalyst-free decarboxylative aminoalkylation of imidazo[1,2-a]pyridines with N-aryl glycines enabled by visible light. Org Chem Front 2019. [DOI: 10.1039/c9qo00935c] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel, green and efficient visible-light-promoted decarboxylative aminoalkylation reaction of imidazo[1,2-a]pyridines with N-aryl glycines has been described.
Collapse
Affiliation(s)
- Jiu-Jian Ji
- School of Chemistry
- Biology and Material Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Zhi-Qiang Zhu
- School of Chemistry
- Biology and Material Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Li-Jin Xiao
- School of Chemistry
- Biology and Material Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Dong Guo
- School of Chemistry
- Biology and Material Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Xiao Zhu
- School of Chemistry
- Biology and Material Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Juan Tang
- Ministry of Education Key Laboratory of Functional Small Organic Molecule
- Department of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Jun Wu
- School of Chemistry
- Biology and Material Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Zong-Bo Xie
- School of Chemistry
- Biology and Material Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Zhang-Gao Le
- School of Chemistry
- Biology and Material Science
- East China University of Technology
- Nanchang 330013
- P. R. China
| |
Collapse
|
12
|
Anusha G, Reddy MVK, Govardhana Reddy PV. SingaCycle
TM
‐A1‐Catalyzed Successive Suzuki‐Miyaura and Buchwald Couplings for the Synthesis of Various New Pyridine Analogues. ChemistrySelect 2018. [DOI: 10.1002/slct.201802282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gokanapalli Anusha
- Department of ChemistryMotakatla Venkata Krishna ReddyYogi Vemana UniversityDepartment of Chemistry Kadapa – 516005, Andhra Pradesh India
| | - Motakatla Venkata Krishna Reddy
- Department of ChemistryMotakatla Venkata Krishna ReddyYogi Vemana UniversityDepartment of Chemistry Kadapa – 516005, Andhra Pradesh India
| | - Peddiahgari Vasu Govardhana Reddy
- Department of ChemistryMotakatla Venkata Krishna ReddyYogi Vemana UniversityDepartment of Chemistry Kadapa – 516005, Andhra Pradesh India
| |
Collapse
|
13
|
Mandour M, Vliegen I, Paeshuyse J, Neyts J. Rational design of antiviral drug combinations based on equipotency using HCV subgenomic replicon as an in vitro model. Antiviral Res 2017; 149:150-153. [PMID: 29154807 DOI: 10.1016/j.antiviral.2017.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/24/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Combination therapy of directly acting antivirals (DAA's) for the treatment of chronic HCV infections has proven to be a highly effective strategy to cure chronic infections with this virus. Here we studied, using HCV as an example, how to best design in vitro studies that explore the combined antiviral efficiency of combinations of three or more DAA's. To that end we used a HCV NS3 protease inhibitor, a NS5A targeting compound and two non-nucleoside NS5B polymerase inhibitors (each one targeting a different drug binding site). We demonstrate, employing HCV subgenomic replicon containing Huh 9-13 hepatoma cells, that quadruple therapy with these 4 different DAA's each at 1x their EC75, results in a highly efficient inhibition of viral replication. This is further reflected in the rapid clearance of the HCV replicon from the host cell. By contrast, neither equipotent combinations that consist of either molecules alone at 4x EC75 nor triple combinations at 1.33x the EC75 resulted in clearance. In contrast to the quadruple combo, drug-resistant variants emerged under mono-treatment and in most triple combo's. These data thus demonstrate that quadruple combinations at total suboptimal concentrations [i.e. concentrations at which neither mono- nor triple therapy is sufficiently potent] result rapidly in a pronounced antiviral efficacy. Altogether, this work provides an example as to how to design studies to explore the antiviral efficacy of combinations of more than two compounds.
Collapse
Affiliation(s)
- Mohamed Mandour
- Rega Institute for Medical Research, University of Leuven (KU Leuven), B-3000 Leuven, Belgium; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Inge Vliegen
- Rega Institute for Medical Research, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Jan Paeshuyse
- KU Leuven, Department of Biosystems, Division Animal and Human Health Engineering, Host Pathogen Interactions, B-3001 Leuven, Belgium.
| | - Johan Neyts
- Rega Institute for Medical Research, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| |
Collapse
|
14
|
Krause M, Foks H, Gobis K. Pharmacological Potential and Synthetic Approaches of Imidazo[4,5-b]pyridine and Imidazo[4,5-c]pyridine Derivatives. Molecules 2017; 22:molecules22030399. [PMID: 28273868 PMCID: PMC6155225 DOI: 10.3390/molecules22030399] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
The structural resemblance between the fused imidazopyridine heterocyclic ring system and purines has prompted biological investigations to assess their potential therapeutic significance. They are known to play a crucial role in numerous disease conditions. The discovery of their first bioactivity as GABAA receptor positive allosteric modulators divulged their medicinal potential. Proton pump inhibitors, aromatase inhibitors, and NSAIDs were also found in this chemical group. Imidazopyridines have the ability to influence many cellular pathways necessary for the proper functioning of cancerous cells, pathogens, components of the immune system, enzymes involved in carbohydrate metabolism, etc. The collective results of biochemical and biophysical properties foregrounded their medicinal significance in central nervous system, digestive system, cancer, inflammation, etc. In recent years, new preparative methods for the synthesis of imidazopyridines using various catalysts have been described. The present manuscript to the best of our knowledge is the complete compilation on the synthesis and medicinal aspects of imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridines reported from the year 2000 to date, including structure–activity relationships.
Collapse
Affiliation(s)
- Malwina Krause
- Department of Organic Chemistry, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| | - Henryk Foks
- Department of Organic Chemistry, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| | - Katarzyna Gobis
- Department of Organic Chemistry, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| |
Collapse
|
15
|
Dias Pires MJ, Poeira DL, Marques MMB. Metal-Catalyzed Cross-Coupling Reactions of Aminopyridines. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500952] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Inhibitors of the Hepatitis C Virus Polymerase; Mode of Action and Resistance. Viruses 2015; 7:5206-24. [PMID: 26426038 PMCID: PMC4632376 DOI: 10.3390/v7102868] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022] Open
Abstract
The hepatitis C virus (HCV) is a pandemic human pathogen posing a substantial health and economic burden in both developing and developed countries. Controlling the spread of HCV through behavioural prevention strategies has met with limited success and vaccine development remains slow. The development of antiviral therapeutic agents has also been challenging, primarily due to the lack of efficient cell culture and animal models for all HCV genotypes, as well as the large genetic diversity between HCV strains. On the other hand, the use of interferon-α-based treatments in combination with the guanosine analogue, ribavirin, achieved limited success, and widespread use of these therapies has been hampered by prevalent side effects. For more than a decade, the HCV RNA-dependent RNA polymerase (RdRp) has been targeted for antiviral development. Direct acting antivirals (DAA) have been identified which bind to one of at least six RdRp inhibitor-binding sites, and are now becoming a mainstay of highly effective and well tolerated antiviral treatment for HCV infection. Here we review the different classes of RdRp inhibitors and their mode of action against HCV. Furthermore, the mechanism of antiviral resistance to each class is described, including naturally occurring resistance-associated variants (RAVs) in different viral strains and genotypes. Finally, we review the impact of these RAVs on treatment outcomes with the newly developed regimens.
Collapse
|
17
|
Synthesis and antimicrobial activity of novel imidazo[1,2-a]pyridinopyrimidine-2,4,6(1H,3H,5H)-triones and thioxopyrimidine-4,6(1H,5H)diones. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2130-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
In vitro combinations containing Tegobuvir are highly efficient in curing cells from HCV replicon and in delaying/preventing the development of drug resistance. Antiviral Res 2015; 120:112-21. [PMID: 26036224 DOI: 10.1016/j.antiviral.2015.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 05/20/2015] [Accepted: 05/30/2015] [Indexed: 12/12/2022]
Abstract
Tegobuvir (GS-9190) is a non-nucleoside inhibitor of HCV RNA replication with proven antiviral activity in HCV-infected patients. The in vitro antiviral activity of Tegobuvir, when combined with one or two other direct acting antivirals (DAA) was assessed. When Tegobuvir was combined with either interferon α-2b, ribavirin, the protease inhibitor (PI) VX-950, the nucleoside polymerase inhibitor (NI) 2'-C-methylcytidine or various non-nucleoside polymerase inhibitors, an overall additive antiviral activity was observed. Adding Tegobuvir (at concentrations of 6, 30 or 150nM) to replicon-containing cells in the presence of suboptimal concentrations of the PI or of the various polymerase inhibitors either markedly delayed or completely prevented resistance development against these latter compounds. Tegobuvir (15nM), when combined with the PI, was able to cure replicon-containing cells from their replicon after a single passage, whereas either compound alone (at 2-fold higher concentration) was not. The triple combination of Tegobuvir (10nM), the PI and the NI resulted in clearance of replicon RNA after only two passages. In contrast, the inhibitors when used alone at 3-fold higher concentrations were not able to cure the cells from the replicon, after as long as 6 passages. Combinations containing low concentrations of Tegobuvir are thus highly effective in curing cells from HCV replicon and in delaying or preventing the development of resistance against other DAA.
Collapse
|
19
|
Cross-genotypic examination of hepatitis C virus polymerase inhibitors reveals a novel mechanism of action for thumb binders. Antimicrob Agents Chemother 2014; 58:7215-24. [PMID: 25246395 DOI: 10.1128/aac.03699-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antivirals (DAAs) targeting proteins encoded by the hepatitis C virus (HCV) genome have great potential for the treatment of HCV infections. However, the efficacy of DAAs designed to target genotype 1 (G1) HCV against non-G1 viruses has not been characterized fully. In this study, we investigated the inhibitory activities of nonnucleoside inhibitors (NNIs) against the HCV RNA-dependent RNA polymerase (RdRp). We examined the ability of six NNIs to inhibit G1b, G2a, and G3a subgenomic replicons in cell culture, as well as in vitro transcription by G1b and G3a recombinant RdRps. Of the six G1 NNIs, only the palm II binder nesbuvir demonstrated activity against G1, G2, and G3 HCV, in both replicon and recombinant enzyme models. The thumb I binder JTK-109 also inhibited G1b and G3a replicons and recombinant enzymes but was 41-fold less active against the G2a replicon. The four other NNIs, which included a palm I binder (setrobuvir), two thumb II binders (lomibuvir and filibuvir), and a palm β-hairpin binder (tegobuvir), all showed at least 40-fold decreases in potency against G2a and G3a replicons and the G3a enzyme. This antiviral resistance was largely conferred by naturally occurring amino acid residues in the G2a and G3a RdRps that are associated with G1 resistance. Lomibuvir and filibuvir (thumb II binders) inhibited primer-dependent but not de novo activity of the G1b polymerase. Surprisingly, these compounds instead specifically enhanced the de novo activity at concentrations of ≥ 100 nM. These findings highlight a potential differential mode of RdRp inhibition for HCV NNIs, depending on their prospective binding pockets, and also demonstrate a surprising enhancement of de novo activity for thumb RdRp binders. These results also provide a better understanding of the antiviral coverage for these polymerase inhibitors, which will likely be used in future combinational interferon-free therapies.
Collapse
|
20
|
Gali R, Banothu J, Bavantula R. One-Pot Multicomponent Synthesis of Novel Substituted Imidazo[1,2-a]Pyridine Incorporated Thiazolyl Coumarins and their Antimicrobial Activity. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Rajitha Gali
- Department of Chemistry; National Institute of Technology; Warangal Andhra Pradesh India
| | - Janardhan Banothu
- Department of Chemistry; National Institute of Technology; Warangal Andhra Pradesh India
| | - Rajitha Bavantula
- Department of Chemistry; National Institute of Technology; Warangal Andhra Pradesh India
| |
Collapse
|
21
|
Wilson RJ, Rosenberg AJ, Kaminsky L, Clark DA. Copper- and palladium-catalyzed amidation reactions for the synthesis of substituted imidazo[4,5-c]pyridines. J Org Chem 2014; 79:2203-12. [PMID: 24502584 DOI: 10.1021/jo500064j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Imidazo[4,5-c]pyridines were synthesized in three steps utilizing a palladium-catalyzed amidation/cyclization strategy. N-Aryl substrates were synthesized using copper-catalyzed amidation of 3-amino-N-Boc-4-chloropyridine. Complementary protocols for the selective chlorination of imidazo[4,5-c]pyridines at the C2 and C7 positions were also developed.
Collapse
Affiliation(s)
- Robert J Wilson
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University , Syracuse, New York 13244, United States
| | | | | | | |
Collapse
|
22
|
Obeid S, Alen J, Nguyen VH, Pham VC, Meuleman P, Pannecouque C, Le TN, Neyts J, Dehaen W, Paeshuyse J. Artemisinin analogues as potent inhibitors of in vitro hepatitis C virus replication. PLoS One 2013; 8:e81783. [PMID: 24349127 PMCID: PMC3859510 DOI: 10.1371/journal.pone.0081783] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/16/2013] [Indexed: 01/06/2023] Open
Abstract
We reported previously that Artemisinin (ART), a widely used anti-malarial drug, is an inhibitor of in vitro HCV subgenomic replicon replication. We here demonstrate that ART exerts its antiviral activity also in hepatoma cells infected with full length infectious HCV JFH-1. We identified a number of ART analogues that are up to 10-fold more potent and selective as in vitro inhibitors of HCV replication than ART. The iron donor Hemin only marginally potentiates the anti-HCV activity of ART in HCV-infected cultures. Carbon-centered radicals have been shown to be critical for the anti-malarial activity of ART. We demonstrate that carbon-centered radicals-trapping (the so-called TEMPO) compounds only marginally affect the anti-HCV activity of ART. This provides evidence that carbon-centered radicals are not the main effectors of the anti-HCV activity of the Artemisinin. ART and analogues may possibly exert their anti-HCV activity by the induction of reactive oxygen species (ROS). The combined anti-HCV activity of ART or its analogues with L-N-Acetylcysteine (L-NAC) [a molecule that inhibits ROS generation] was studied. L-NAC significantly reduced the in vitro anti-HCV activity of ART and derivatives. Taken together, the in vitro anti-HCV activity of ART and analogues can, at least in part, be explained by the induction of ROS; carbon-centered radicals may not be important in the anti-HCV effect of these molecules.
Collapse
Affiliation(s)
- Susan Obeid
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jo Alen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Van Hung Nguyen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, University Ghent, Ghent, Belgium
| | | | - Thanh Nguyen Le
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- * E-mail:
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jan Paeshuyse
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Peng HK, Chen WC, Lin YT, Tseng CK, Yang SY, Tzeng CC, Lee JC, Yang SC. Anti-hepatitis C virus RdRp activity and replication of novel anilinobenzothiazole derivatives. Antiviral Res 2013; 100:269-75. [DOI: 10.1016/j.antiviral.2013.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 12/12/2022]
|
24
|
Beaulieu PL. Design and Development of NS5B Polymerase Non‐nucleoside Inhibitors for the Treatment of Hepatitis C Virus Infection. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The hepatitis C virus (HCV) infects an estimated 130–170 million people worldwide and is associated with life‐threatening liver diseases. The recent introduction of the first two HCV direct‐acting antivirals (DAAs) as a complement to the interferon/ribavirin standard of care has provided patients with improved outcomes. Still, 25–30% of subjects infected with genotype 1 HCV do not respond adequately to treatment owing to the emergence of resistant virus and many suffer from severe side effects. A paradigm shift towards the development of interferon‐free combinations of DAAs with complementary modes of action is currently taking place. Virally encoded proteins and enzymes have become the target of HCV drug discovery efforts and several promising new agents are currently being evaluated in the clinic for treatment of chronic HCV infection. The NS5B RNA‐dependent RNA polymerase is responsible for replication of viral RNA and plays a pivotal role in the virus life cycle. NS5B is undoubtedly the most druggable HCV target and is susceptible to several classes of allosteric inhibitors that bind to four distinct sites on the enzyme. This chapter describes successful strategies that have led to the discovery of HCV NS5B antivirals. It is divided according to allosteric sites and describes how each of the known families of inhibitors was discovered, characterized and optimized to provide clinical candidates. When available, the strategies adopted by medicinal chemists to optimize initial leads and address challenges and liabilities encountered on the path to candidate selection are described, along with reported clinical outcomes.
Collapse
Affiliation(s)
- Pierre L. Beaulieu
- Boehringer Ingelheim (Canada) Ltd. 2100 Cunard Street, Laval, Québec Canada, H7S 2G5 resgeneral.lav@boehringer‐ingelheim.com
| |
Collapse
|
25
|
Enguehard-Gueiffier C, Musiu S, Henry N, Véron JB, Mavel S, Neyts J, Leyssen P, Paeshuyse J, Gueiffier A. 3-Biphenylimidazo[1,2-a]pyridines or [1,2-b]pyridazines and analogues, novel Flaviviridae inhibitors. Eur J Med Chem 2013; 64:448-63. [DOI: 10.1016/j.ejmech.2013.03.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/21/2013] [Accepted: 03/24/2013] [Indexed: 12/14/2022]
|
26
|
Resolution of the interaction mechanisms and characteristics of non-nucleoside inhibitors of hepatitis C virus polymerase. Antiviral Res 2013; 97:356-68. [PMID: 23305851 DOI: 10.1016/j.antiviral.2012.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/11/2012] [Accepted: 12/15/2012] [Indexed: 12/16/2022]
Abstract
Development of allosteric inhibitors into efficient drugs is hampered by their indirect mode-of-action and complex structure-kinetic relationships. To enable the design of efficient allosteric drugs targeting the polymerase of hepatitis C virus (NS5B), the interaction characteristics of three non-nucleoside compounds (filibuvir, VX-222, and tegobuvir) inhibiting HCV replication via NS5B have been analyzed. Since there was no logical correlation between the anti-HCV replicative and enzyme inhibitory effects of the compounds, surface plasmon resonance biosensor technology was used to resolve the mechanistic, kinetic, thermodynamic and chemodynamic features of their interactions with their target and their effect on its interaction with RNA. Tegobuvir could not be seen to interact with NS5B at all while filibuvir interacted in a single reversible step (except at low temperatures) and VX-222 in two serial steps, interpreted as an induced fit mechanism. Both filibuvir and VX-222 interfered with the interaction between NS5B and RNA. They competed for binding to the enzyme, suggesting that they had a common inhibition mechanism and identical or overlapping binding sites. The greater anti-HCV replicative activity of VX-222 over filibuvir is hypothesized to be due to a greater allosteric conformational effect, resulting in the formation of a less catalytically competent complex. In addition, the induced fit mechanism of VX-222 gives it a kinetic advantage over filibuvir, exhibited as a longer residence time. These insights have important consequences for the selection and optimization of new allosteric NS5B inhibitors.
Collapse
|
27
|
Sofia MJ, Chang W, Furman PA, Mosley RT, Ross BS. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J Med Chem 2012; 55:2481-531. [PMID: 22185586 DOI: 10.1021/jm201384j] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael J Sofia
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States.
| | | | | | | | | |
Collapse
|
28
|
Robinson M, Tian Y, Pagratis N, Delaney WE. Screening of Hepatitis C Virus Inhibitors Using Genotype 1a HCV Replicon Cell Lines. ACTA ACUST UNITED AC 2011; Chapter 17:Unit17.7. [DOI: 10.1002/9780471729259.mc1707s22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Yang Tian
- Gilead Sciences Foster City California
| | | | | |
Collapse
|
29
|
Mechanistic characterization of GS-9190 (Tegobuvir), a novel nonnucleoside inhibitor of hepatitis C virus NS5B polymerase. Antimicrob Agents Chemother 2011; 55:4196-203. [PMID: 21746939 DOI: 10.1128/aac.00307-11] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
GS-9190 (Tegobuvir) is a novel imidazopyridine inhibitor of hepatitis C virus (HCV) RNA replication in vitro and has demonstrated potent antiviral activity in patients chronically infected with genotype 1 (GT1) HCV. GS-9190 exhibits reduced activity against GT2a (JFH1) subgenomic replicons and GT2a (J6/JFH1) infectious virus, suggesting that the compound's mechanism of action involves a genotype-specific viral component. To further investigate the GS-9190 mechanism of action, we utilized the susceptibility differences between GT1b and GT2a by constructing a series of replicon chimeras where combinations of 1b and 2a nonstructural proteins were encoded within the same replicon. The antiviral activities of GS-9190 against the chimeric replicons were reduced to levels comparable to that of the wild-type GT2a replicon in chimeras expressing GT2a NS5B. GT1b replicons in which the β-hairpin region (amino acids 435 to 455) was replaced by the corresponding sequence of GT2a were markedly less susceptible to GS-9190, indicating the importance of the thumb subdomain of the polymerase in this effect. Resistance selection in GT1b replicon cells identified several mutations in NS5B (C316Y, Y448H, Y452H, and C445F) that contributed to the drug resistance phenotype. Reintroduction of these mutations into wild-type replicons conferred resistance to GS-9190, with the number of NS5B mutations correlating with the degree of resistance. Analysis of GS-9190 cross-resistance against previously reported NS5B drug-selected mutations showed that the resistance pattern of GS-9190 is different from other nonnucleoside inhibitors. Collectively, these data demonstrate that GS-9190 represents a novel class of nonnucleoside polymerase inhibitors that interact with NS5B likely through involvement of the β-hairpin in the thumb subdomain.
Collapse
|
30
|
Rehman S, Ashfaq UA, Javed T. Antiviral drugs against hepatitis C virus. GENETIC VACCINES AND THERAPY 2011; 9:11. [PMID: 21699699 PMCID: PMC3136400 DOI: 10.1186/1479-0556-9-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/23/2011] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem causes acute and chronic HCV infection. Current treatment of HCV includes pegylated interferon-α (PEG IFN- α) plus ribavirin (RBV) which has significant side effects depending upon the type of genotype. Currently, there is a need to develop antiviral agents, both from synthetic chemistry and Herbal sources. In the last decade, various novel HCV replication, helicase and entry inhibitors have been synthesized and some of which have been entered in different phases of clinical trials. Successful results have been acquired by executing combinational therapy of compounds with standard regime in different HCV replicons. Even though, diverse groups of compounds have been described as antiviral targets against HCV via Specifically Targeted Antiviral Therapy for hepatitis C (STAT-C) approach (in which compounds are designed to directly block HCV or host proteins concerned in HCV replication), still there is a need to improve the properties of existing antiviral compounds. In this review, we sum up potent antiviral compounds against entry, unwinding and replication of HCV and discussed their activity in combination with standard therapy. Conclusively, further innovative research on chemical compounds will lead to consistent standard therapy with fewer side effects.
Collapse
Affiliation(s)
- Sidra Rehman
- Division of Molecular Medicine, National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Usman A Ashfaq
- Division of Molecular Medicine, National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tariq Javed
- Division of Molecular Medicine, National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
31
|
Obeid S, Printsevskaya SS, Olsufyeva EN, Dallmeier K, Durantel D, Zoulim F, Preobrazhenskaya MN, Neyts J, Paeshuyse J. Inhibition of hepatitis C virus replication by semi-synthetic derivatives of glycopeptide antibiotics. J Antimicrob Chemother 2011; 66:1287-94. [PMID: 21436155 PMCID: PMC7109641 DOI: 10.1093/jac/dkr104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives Some semi-synthetic derivatives of glycopeptide antibiotics have been shown to exert in vitro antiviral activity against HIV and coronaviruses. Here we report and characterize the in vitro anti-hepatitis C virus (HCV) activity of several semi-synthetic derivatives of teicoplanin aglycone. Methods Anti-HCV activity was analysed in: (i) three different subgenomic HCV replicon systems using a luciferase or quantitative RT–PCR (qRT–PCR) assay; and (ii) an infectious HCV cell culture system by means of qRT–PCR and immunofluorescence assays. Results Several teicoplanin aglycone derivatives elicited selective anti-HCV activity in replicons as well as infectious cell culture systems, with LCTA-949 being the most potent derivative. LCTA-949 proved, in contrast to several directly acting antivirals for HCV, efficient in clearing cells of their replicons. When LCTA-949 was combined with HCV protease or polymerase inhibitors an overall additive effect was observed. Likewise, LCTA-949 was equipotent against wild-type replicons as well as against replicons resistant to polymerase and protease inhibitors. Following up to 4 months of selective pressure, no drug-resistant replicons were selected. When combined with the HCV NS3 protease inhibitor VX-950, LCTA-949 prevented the development of VX-950-resistant variants. Conclusions Semi-synthetic derivatives of teicoplanin aglycone constitute a novel class of HCV replication inhibitors that are not cross-resistant with various HCV protease and polymerase inhibitors and in particular are potent in clearing hepatoma cells of their replicons. This class of molecules also provides a good tool to obtain novel insights into the replication cycle of HCV and into cellular factors/processes that are crucial for viral replication.
Collapse
Affiliation(s)
- Susan Obeid
- Rega Institute for Medical Research, K.U. Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Salim MTA, Goto Y, Hamasaki T, Okamoto M, Aoyama H, Hashimoto Y, Musiu S, Paeshuyse J, Neyts J, Froeyen M, Herdewijn P, Baba M. Highly potent and selective inhibition of bovine viral diarrhea virus replication by γ-carboline derivatives. Antiviral Res 2010; 88:263-8. [PMID: 20869990 DOI: 10.1016/j.antiviral.2010.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/10/2010] [Accepted: 09/17/2010] [Indexed: 12/14/2022]
Abstract
Several novel γ-carboline derivatives were identified as selective inhibitors of bovine viral diarrhea virus (BVDV) replication in cell cultures. Among them, 3,4,5-trimethyl-γ-carboline (SK3M4M5M) was the most active against BVDV (Nose strain) in MDBK cells, with a 50% effective concentration of 0.017±0.005μM and a selectivity index of 435. The compound inhibited viral RNA synthesis in a dose-dependent fashion. In a time of drug-addition experiment during a single viral replication cycle, SK3M4M5M lost its antiviral activity when first added at 8h or later after infection, which coincides with the onset of viral RNA synthesis. When selected γ-carboline derivatives, including SK3M4M5M, were examined for their inhibitory effect on the mutant strains resistant to some classes of nonnucleoside BVDV RNA-dependent RNA polymerase inhibitors, all of which target the top of the finger domain of the polymerase, the strains displayed cross-resistance to the γ-carboline derivatives. These results indicate that the γ-carboline derivatives may possibly target a hot spot of the RNA-dependent RNA polymerase. Although SK3M4M5M was highly active against BVDV, the compound proved inactive against hepatitis C virus (HCV) in HCV RNA replicon cells.
Collapse
Affiliation(s)
- Mohammed T A Salim
- Center for Chronic Viral Diseases, Sakuragaoka, Kagoshima University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
De Clercq E. Yet another ten stories on antiviral drug discovery (part D): paradigms, paradoxes, and paraductions. Med Res Rev 2010; 30:667-707. [PMID: 19626594 DOI: 10.1002/med.20173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review article presents the fourth part (part D) in the series of stories on antiviral drug discovery. The stories told in part D focus on: (i) the cyclotriazadisulfonamide compounds; (ii) the {5-[(4-bromophenylmethyl]-2-phenyl-5H-imidazo[4,5-c]pyridine} compounds; (iii) (1H,3H-thiazolo[3,4-a]benzimidazole) derivatives; (iv) T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) and (v) its structurally closely related analogue pyrazine 2-carboxamide (pyrazinamide); (vi) new strategies for the treatment of hemorrhagic fever virus infections, including, as the most imminent, (vii) dengue fever, (viii) the veterinary use of acyclic nucleoside phosphonates; (ix) the potential (off-label) use of cidofovir in the treatment of papillomatosis, particularly RRP (recurrent respiratory papillomatosis); and (x) finally, the prophylactic use of tenofovir to prevent HIV infections.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
34
|
Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B, Cook S, Coutard B, Decroly E, de Lamballerie X, Gould EA, Grard G, Grimes JM, Hilgenfeld R, Jansson AM, Malet H, Mancini EJ, Mastrangelo E, Mattevi A, Milani M, Moureau G, Neyts J, Owens RJ, Ren J, Selisko B, Speroni S, Steuber H, Stuart DI, Unge T, Bolognesi M. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 2010; 87:125-48. [PMID: 19945487 PMCID: PMC3918146 DOI: 10.1016/j.antiviral.2009.11.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/08/2009] [Accepted: 11/21/2009] [Indexed: 12/28/2022]
Abstract
Flaviviridae are small enveloped viruses hosting a positive-sense single-stranded RNA genome. Besides yellow fever virus, a landmark case in the history of virology, members of the Flavivirus genus, such as West Nile virus and dengue virus, are increasingly gaining attention due to their re-emergence and incidence in different areas of the world. Additional environmental and demographic considerations suggest that novel or known flaviviruses will continue to emerge in the future. Nevertheless, up to few years ago flaviviruses were considered low interest candidates for drug design. At the start of the European Union VIZIER Project, in 2004, just two crystal structures of protein domains from the flaviviral replication machinery were known. Such pioneering studies, however, indicated the flaviviral replication complex as a promising target for the development of antiviral compounds. Here we review structural and functional aspects emerging from the characterization of two main components (NS3 and NS5 proteins) of the flavivirus replication complex. Most of the reviewed results were achieved within the European Union VIZIER Project, and cover topics that span from viral genomics to structural biology and inhibition mechanisms. The ultimate aim of the reported approaches is to shed light on the design and development of antiviral drug leads.
Collapse
Affiliation(s)
- Michela Bollati
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee JC, Tseng CK, Chen KJ, Huang KJ, Lin CK, Lin YT. A cell-based reporter assay for inhibitor screening of hepatitis C virus RNA-dependent RNA polymerase. Anal Biochem 2010; 403:52-62. [DOI: 10.1016/j.ab.2010.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/03/2010] [Accepted: 04/05/2010] [Indexed: 12/20/2022]
|
36
|
Delang L, Coelmont L, Neyts J. Antiviral therapy for hepatitis C virus: beyond the standard of care. Viruses 2010; 2:826-866. [PMID: 21994657 PMCID: PMC3185663 DOI: 10.3390/v2040826] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/09/2010] [Accepted: 03/17/2010] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) represents a major health burden, with an estimated 180 million chronically infected individuals worldwide. These patients are at increased risk of developing liver cirrhosis and hepatocellular carcinoma. Infection with HCV is the leading cause of liver transplantation in the Western world. Currently, the standard of care (SoC) consists of pegylated interferon alpha (pegIFN-α) and ribavirin (RBV). However this therapy has a limited efficacy and is associated with serious side effects. Therefore more tolerable, highly potent inhibitors of HCV replication are urgently needed. Both Specifically Targeted Antiviral Therapy for HCV (STAT-C) and inhibitors that are believed to interfere with the host-viral interaction are discussed.
Collapse
Affiliation(s)
| | | | - Johan Neyts
- Rega Institute for Medical Research, KULeuven, Minderbroedersstraat 10, 3000 Leuven, Belgium; E-Mails: (L.D.); (L.C.)
| |
Collapse
|
37
|
Non-nucleoside inhibitors of hepatitis C virus polymerase: current progress and future challenges. Future Med Chem 2010; 2:121-41. [DOI: 10.4155/fmc.09.148] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The current standard of care for hepatitis C virus (HCV) infection is a combination of PEGylated interferon and ribavirin, which offer limited efficacy and significant side effects. Novel HCV-specific inhibitors, including those directed at the viral polymerase, have become the focus of HCV drug-discovery efforts in the past decade. In addition to the active site targeted by traditional nucleoside inhibitors, at least four different allosteric-binding sites have been reported for the HCV polymerase, which offer ample opportunities for small-molecule inhibitors. In this review, we summarize the recent progress in the discovery of non-nucleoside HCV polymerase inhibitors with a focus on novel chemical matters, their clinical efficacy, safety and potential for combination therapy.
Collapse
|
38
|
Vrancken R, Haegeman A, Paeshuyse J, Puerstinger G, Rozenski J, Wright M, Tignon M, Le Potier MF, Neyts J, Koenen F. Proof of concept for the reduction of classical swine fever infection in pigs by a novel viral polymerase inhibitor. J Gen Virol 2009; 90:1335-1342. [DOI: 10.1099/vir.0.008839-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
5-[(4-Bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP) is a representative of a class of imidazopyridines with potentin vitroantiviral activity against pestiviruses including classical swine fever virus (CSFV). This study analysed whether the lead compound, BPIP, was able to reduce virus replication in infected piglets. The compound, administered in feed, was readily bioavailable and was well tolerated. Eight specific-pathogen-free pigs received a daily dose of 75 mg kg−1(mixed in feed) for a period of 15 consecutive days, starting 1 day before infection with the CSFV field isolate Wingene. BPIP-treated pigs developed a short, transient viraemia (one animal remained negative) and leukopenia (three animals did not develop leukopenia). Virus titres at peak viraemia (7 days post-infection) were markedly lower (∼1000-fold) than in untreated animals (P=0.00005) and the viral genome load in blood was also significantly lower (P≤0.001) in drug-treated animals than in untreated animals over the entire experiment. At the end of the experiment (day 33), no infectious virus was detectable in the tonsils of BPIP-treated animals, although low levels of viral RNA were detected. The inability to isolate infectious virus from the tonsils indicates that the risk of a persistent CSFV infection is negligible. Further optimization of the antiviral potency and bioavailability of this lead compound may result in molecules completely suppressing virus replication. A potent antiviral could potentially be used as a primary control measure against virus spread in case of an outbreak, in addition to present countermeasures. This study provides the first proof of concept for the prophylaxis/treatment of CSFV infection in pigs.
Collapse
Affiliation(s)
- Robert Vrancken
- Veterinary and Agrochemical Research Centre, Groeselenberg 99, B-1180 Ukkel, Belgium
| | - Andy Haegeman
- Veterinary and Agrochemical Research Centre, Groeselenberg 99, B-1180 Ukkel, Belgium
| | - Jan Paeshuyse
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroederstraat 10, B-3000 Leuven, Belgium
| | - Gerhard Puerstinger
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Jef Rozenski
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroederstraat 10, B-3000 Leuven, Belgium
| | - Matthew Wright
- Gilead Sciences, Drug Metabolism and Pharmacokinetics, 333 Lakeside Drive, Foster City, CA, USA
| | - Marylène Tignon
- Veterinary and Agrochemical Research Centre, Groeselenberg 99, B-1180 Ukkel, Belgium
| | - Marie-Frédérique Le Potier
- Agence Française de Sécurité Sanitaire des Aliments, Unité de Virologie Immunologie Porcines, BP53, F-22440 Ploufragan, France
| | - Johan Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroederstraat 10, B-3000 Leuven, Belgium
| | - Frank Koenen
- Veterinary and Agrochemical Research Centre, Groeselenberg 99, B-1180 Ukkel, Belgium
| |
Collapse
|