1
|
Yao J, Yu Y, Nyberg SL. Induced Pluripotent Stem Cells for the Treatment of Liver Diseases: Novel Concepts. Cells Tissues Organs 2022; 211:368-384. [PMID: 32615573 PMCID: PMC7775900 DOI: 10.1159/000508182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
Millions of people worldwide with incurable liver disease die because of inadequate treatment options and limited availability of donor organs for liver transplantation. Regenerative medicine as an innovative approach to repairing and replacing cells, tissues, and organs is undergoing a major revolution due to the unprecedented need for organs for patients around the world. Induced pluripotent stem cells (iPSCs) have been widely studied in the field of liver regeneration and are considered to be the most promising candidate therapies. This review will conclude the current state of efforts to derive human iPSCs for potential use in the modeling and treatment of liver disease.
Collapse
Affiliation(s)
- Jia Yao
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Clinical Research and Project Management Office, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing, China
| | - Scott L. Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Corresponding Author: Scott L. Nyberg, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA, Tel: Rochester, MN 55905, USA, Fax: (507) 284-2511,
| |
Collapse
|
2
|
Hypoxia-Induced miR-210 Overexpression Promotes the Differentiation of Human-Induced Pluripotent Stem Cells to Hepatocyte-Like Cells on Random Nanofiber Poly-L-Lactic Acid/Poly ( ε-Caprolactone) Scaffolds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4229721. [PMID: 34858546 PMCID: PMC8630456 DOI: 10.1155/2021/4229721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
An alternative treatment to liver transplantation includes the use of differentiated stem cells. Hypoxia has been shown to endow human-induced pluripotent stem cells (hiPSCs) with enhanced hepatic differentiation. We have investigated a new strategy for hepatocyte differentiation from hiPSCs using a three-step differentiation protocol with lentiviral overexpression of hypoxia-microRNA-210 of cells grown on a hybrid scaffold. We analyzed the transduction of the miR-210 lentiviral and definitive endoderm and pluripotency gene markers, including SRY-box 17 (SOX17), forkhead box A2 (FOXA2), and octamer-binding transcription factor 4 (OCT-4) by Real-Time PCR and fluorescent microscope. The scanning electron microscopy (SEM) examined the 3D cell morphological changes. Immunocytochemistry staining was used together with assays for aspartate aminotransferase, alanine aminotransferase, and urea secretion to analyze hepatocyte biomarkers and functional markers consisting of α-fetoprotein (AFP), low-density lipoprotein (LDL) uptake, fat accumulation, and glycogen. The flow cytometry analyzed the generation of reactive oxygen species (ROS). Compared to cells transfected with the blank lentiviral vectors as a control, overexpressing miR-210 was at higher levels in hiPSCs. The expression of endodermal genes and glycogen synthesis significantly increased in the differentiated lentiviral miR-210 cells without any differences regarding lipid storage level. Additionally, cells containing miR-210 showed a greater expression of ALB, LDL, AST, ALT, urea, and insignificant lower AFP and ROS levels after 18 days. However, SEM showed no significant differences between cells under the differentiation process and controls. In conclusion, the differentiation of hiPSCs to hepatocyte-like cells under hypoxia miR-210 may be a suitable method for cell therapy and regenerative medicine.
Collapse
|
3
|
Jazaeri F, Sheibani M, Nezamoleslami S, Moezi L, Dehpour AR. Current Models for Predicting Drug-induced Cholestasis: The Role of Hepatobiliary Transport System. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:1-21. [PMID: 34567142 PMCID: PMC8457732 DOI: 10.22037/ijpr.2020.113362.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drug-induced cholestasis is the main type of liver disorder accompanied by high morbidity and mortality. Evidence for the role of hepatobiliary pumps in the cholestasis patho-mechanism is constantly increasing. Recognition of the interactions of chemical agents with these transporters at the initial phases of drug discovery can help develop new drug candidates with low cholestasis potential. This review delivers an outline of the role of these transport proteins in bile creation. It addresses the pathophysiological mechanism for drug-induced cholestasis. In-vitro models, including cell-based and membrane-based approaches and In-vivo models such as genetic knockout animals, are considered. The benefits and restrictions of each model are discussed in this review. Current understandings into the cellular and molecular process that control the activity of hepatobiliary pumps have directed to a better understanding of the pathophysiology of drug-induced cholestasis. A combination of in-vitro monitoring for transport interaction, in-silico predicting systems, and consideration of and metabolic and physicochemical properties must cause more effective monitoring of possible liver problems.
Collapse
Affiliation(s)
- Farahnaz Jazaeri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,F. J. and M. Sh. contributed equally to this work
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,F. J. and M. Sh. contributed equally to this work
| | - Sadaf Nezamoleslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad-Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Okuyama S, Kawamura F, Kubiura M, Tsuji S, Osaki M, Kugoh H, Oshimura M, Kazuki Y, Tada M. Real-time fluorometric evaluation of hepatoblast proliferation in vivo and in vitro using the expression of CYP3A7 coding for human fetus-specific P450. Pharmacol Res Perspect 2020; 8:e00642. [PMID: 32886454 PMCID: PMC7507068 DOI: 10.1002/prp2.642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The fields of drug discovery and regenerative medicine require large numbers of adult human primary hepatocytes. For this purpose, it is desirable to use hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells (PSCs). Premature hepatoblast-like cells (HB-LCs) differentiated from PSCs provide an intermediate source and steady supply of newly mature HLCs. To develop an efficient HB-LC induction method, we constructed a red fluorescent reporter, CYP3A7R, in which DsRed is placed under the transcriptional control of CYP3A7 coding for a human fetus-type P450 enzyme. Before using this reporter in human cells, we created transgenic mice using mouse embryonic stem cells (ESCs) carrying a CYP3A7R transgene and confirmed that CYP3A7R was specifically expressed in fetal and newborn livers and reactivated in the adult liver in response to hepatic regeneration. Moreover, we optimized the induction procedure of HB-LCs from transgenic mouse ESCs using semi-quantitative fluorometric evaluation. Activation of Wnt signaling together with chromatin modulation prior to Activin A treatment greatly improved the induction efficiency of HB-LCs. BMP2 and 1.7% dimethyl sulfoxide induced selective proliferation of HB-LCs, which matured to HLCs. Therefore, CYP3A7R will provide a fluorometric evaluation system for high content screening of chemicals that induce HB-LC differentiation, hepatocyte regeneration, and hepatotoxicity when it is introduced into human PSCs.
Collapse
Affiliation(s)
- Shota Okuyama
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Fumihiko Kawamura
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
| | - Musashi Kubiura
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Saori Tsuji
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Hiroyuki Kugoh
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Mitsuo Oshimura
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Yasuhiro Kazuki
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Masako Tada
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| |
Collapse
|
5
|
Ooeda K, Kubiura‐Ichimaru M, Tsuji S, Okuyama S, Yamashita M, Mine A, Kawamura F, Ueyama T, Tada M. A two-dimensional multiwell cell culture method for the production of CYP3A4-expressing hepatocyte-like cells from HepaRG cells. Pharmacol Res Perspect 2020; 8:e00652. [PMID: 32955797 PMCID: PMC7507088 DOI: 10.1002/prp2.652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 enzymes (CYP) function in drug metabolism in the liver. To evaluate numerous drug candidates, a high-content screening (HCS) system with hepatocyte-like cells (HLCs) that can replace adult human hepatocytes is required. Human hepatocellular carcinoma HepaRG is the only cell line capable of providing HLCs with high CYP3A4 expression comparable to that in adult hepatocytes after cell differentiation. The aim of this study was to design an ideal multiwell culture system for HLCs using transgenic HepaRG cells expressing the EGFP coding an enhanced green fluorescent protein under CYP3A4 transcriptional regulation. HLCs were matured on five different types of 96-well black plates. Culturing HLCs on glass-bottom Optical CVG plates significantly promoted cell maturation and increased metabolic activity by twofold under two-dimensional (2D) culture conditions, and these features were enhanced by 2% collagen coating. Three plates for three-dimensional (3D) cell cultures with a gas-exchangeable fabric or dimethylpolysiloxane membrane bottom formed multiple round colonies, whereas they were ineffective for CYP3A4 expression. Under optimized conditions presented here, HLCs lost responsiveness to nuclear receptor-mediated transcriptional induction of CYP3A4, suggesting that CYP3A4 transcription has already been fully upregulated. Therefore, HepaRG-derived HLCs will provide an alternative to human hepatocytes with high levels of CYP3A4 enzyme activity even under 2D culture conditions. This will improve a variety of drug screening methods.
Collapse
Affiliation(s)
- Keiko Ooeda
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Musashi Kubiura‐Ichimaru
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | | | - Shota Okuyama
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Mao Yamashita
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Akari Mine
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Fumihiko Kawamura
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | | | - Masako Tada
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| |
Collapse
|
6
|
Pareja E, Gómez-Lechón MJ, Tolosa L. Induced pluripotent stem cells for the treatment of liver diseases: challenges and perspectives from a clinical viewpoint. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:566. [PMID: 32775367 PMCID: PMC7347783 DOI: 10.21037/atm.2020.02.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The only curative treatment for severe end-stage liver disease (ESLD) is liver transplantation (LT) but it is limited by the shortage of organ donors. The increase of the incidence of liver disease has led to develop new therapeutic approaches such as liver cell transplantation. Current challenges that limit a wider application of this therapy include a limited cell source and the poor engraftment in the host liver of cryopreserved hepatocytes after thawing. Induced pluripotent stem cells (iPSCs) that can be differentiated into hepatocyte-like cells (HLCs) are being widely explored as an alternative to human hepatocytes because of their unlimited proliferation capacity and their potential ability to avoid the immune system. Their large-scale production could provide a new tool to produce enough HLCs for treating patients with metabolic diseases, acute liver failure (ALF), those with ESLD or patients not considered for organ transplantation. In this review we discuss current challenges for generating differentiated cells compatible with human application as well as in-depth safety evaluation. This analysis highlights the uncertainties and deficiencies that should be addressed before their clinical use but also points out the potential benefits that will produce a great impact in the field of hepatology.
Collapse
Affiliation(s)
- Eugenia Pareja
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Unidad Hepatobiliopancreáctica, Hospital Universitario Doctor Peset, Valencia, Spain
| | - M José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,CIBERehd, ISCIII, Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
7
|
Heydari Z, Najimi M, Mirzaei H, Shpichka A, Ruoss M, Farzaneh Z, Montazeri L, Piryaei A, Timashev P, Gramignoli R, Nussler A, Baharvand H, Vosough M. Tissue Engineering in Liver Regenerative Medicine: Insights into Novel Translational Technologies. Cells 2020; 9:E304. [PMID: 32012725 PMCID: PMC7072533 DOI: 10.3390/cells9020304] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Organ and tissue shortage are known as a crucially important public health problem as unfortunately a small percentage of patients receive transplants. In the context of emerging regenerative medicine, researchers are trying to regenerate and replace different organs and tissues such as the liver, heart, skin, and kidney. Liver tissue engineering (TE) enables us to reproduce and restore liver functions, fully or partially, which could be used in the treatment of acute or chronic liver disorders and/or generate an appropriate functional organ which can be transplanted or employed as an extracorporeal device. In this regard, a variety of techniques (e.g., fabrication technologies, cell-based technologies, microfluidic systems and, extracorporeal liver devices) could be applied in tissue engineering in liver regenerative medicine. Common TE techniques are based on allocating stem cell-derived hepatocyte-like cells or primary hepatocytes within a three-dimensional structure which leads to the improvement of their survival rate and functional phenotype. Taken together, new findings indicated that developing liver tissue engineering-based techniques could pave the way for better treatment of liver-related disorders. Herein, we summarized novel technologies used in liver regenerative medicine and their future applications in clinical settings.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 1665659911, Iran
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental & Clinical Research, Université Catholique de Louvain, B-1200 Brussels, Belgium;
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan 121135879, Iran;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, 119146 Moscow, Russia; (A.S.); (P.T.)
| | - Marc Ruoss
- Siegfried Weller Institute for Trauma Research, University of Tübingen, 72076 Tübingen, Germany; (M.R.); (A.N.)
| | - Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Abbas Piryaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119146 Moscow, Russia; (A.S.); (P.T.)
- Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 117977 Moscow, Russia
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Andreas Nussler
- Siegfried Weller Institute for Trauma Research, University of Tübingen, 72076 Tübingen, Germany; (M.R.); (A.N.)
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 1665659911, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
8
|
Lu X, Liu L, Shan W, Kong L, Chen N, Lou Y, Zeng S. The Role of the Sodium-taurocholate Co-transporting Polypeptide (NTCP) and Bile Salt Export Pump (BSEP) in Related Liver Disease. Curr Drug Metab 2019; 20:377-389. [PMID: 31258056 DOI: 10.2174/1389200220666190426152830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/10/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Sodium Taurocholate Co-transporting Polypeptide (NTCP) and Bile Salt Export Pump (BSEP) play significant roles as membrane transporters because of their presence in the enterohepatic circulation of bile salts. They have emerged as promising drug targets in related liver disease. METHODS We reviewed the literature published over the last 20 years with a focus on NTCP and BSEP. RESULTS This review summarizes the current perception about structure, function, genetic variation, and regulation of NTCP and BSEP, highlights the effects of their defects in some hepatic disorders, and discusses the application prospect of new transcriptional activators in liver diseases. CONCLUSION NTCP and BSEP are important proteins for transportation and homeostasis maintenance of bile acids. Further research is needed to develop new models for determining the structure-function relationship of bile acid transporters and screening for substrates and inhibitors, as well as to gain more information about the regulatory genetic mechanisms involved in the processes of liver injury.
Collapse
Affiliation(s)
- Xiaoyang Lu
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Lin Liu
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Wenya Shan
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Limin Kong
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Na Chen
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Yan Lou
- The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| |
Collapse
|
9
|
Yuan L, Zhang Y, Liu X, Chen Y, Zhang L, Cao J, Li X, Wang M, Wu K, Zhang J, Liu G, Tang Q, Yuan Q, Cheng T, Xia N. Agonist c-Met Monoclonal Antibody Augments the Proliferation of hiPSC-derived Hepatocyte-Like Cells and Improves Cell Transplantation Therapy for Liver Failure in Mice. Theranostics 2019; 9:2115-2128. [PMID: 31037160 PMCID: PMC6485278 DOI: 10.7150/thno.30009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023] Open
Abstract
Rationale: Hepatocyte-like cells (HLCs) derived from human induced pluripotent stem cells (hiPSCs) have been developed to address the shortage of primary human hepatocytes (PHHs) for therapeutic applications. However, the in vivo repopulation capacity of HLCs remains limited. This study investigated the roles of agonist antibody activating the c-Met receptor in promoting the in vivo proliferation and repopulation of engrafted PHHs and/or HLCs in mice with liver injuries due to different causes. Methods: An agonist c-Met receptor antibody (5D5) was used to treat PHHs and hiPSC-HLCs in both cell culture and hepatocyte-engrafted immunodeficient mice mimicking various inherited and acquired liver diseases. The promoting roles and potential influence on the hepatic phenotype of the 5D5 regimen in cell transplantation-based therapeutic applications were systematically evaluated. Results: In hiPSC-HLC cell cultures, 5D5 treatment significantly stimulated c-Met receptor downstream signalling pathways and accelerated cell proliferation in dose-dependent and reversible manners. In contrast, only slight but nonsignificant promotion was observed in 5D5-treated PHHs. In vivo administration of 5D5 greatly promoted the expansion of implanted hiPSC-HLCs in fumarylacetoacetate hydrolase (Fah) deficient mice, resulting in significantly increased human albumin levels and high human liver chimerism (over 40%) in the transplanted mice at week 8 after transplantation. More importantly, transplantation of hiPSC-HLCs in combination with 5D5 significantly prolonged animal survival and ameliorated liver pathological changes in mice with acute and/or chronic liver injuries caused by Fas agonistic antibody treatment, carbon tetrachloride treatment and/or tyrosinemic stress. Conclusion: Our results demonstrated that the proliferation of hiPSC-HLCs can be enhanced by antibody-mediated modulation of c-Met signalling and facilitate hiPSC-HLC-based therapeutic applications for life-threatening liver diseases.
Collapse
|
10
|
Chaudhari P, Tian L, Kim A, Zhu Q, Anders R, Schwarz KB, Sharkis S, Ye Z, Jang YY. Transient c-Src Suppression During Endodermal Commitment of Human Induced Pluripotent Stem Cells Results in Abnormal Profibrotic Cholangiocyte-Like Cells. Stem Cells 2018; 37:306-317. [PMID: 30471152 DOI: 10.1002/stem.2950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/05/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Directed differentiation of human induced pluripotent stem cells (iPSCs) toward hepatobiliary lineages has been increasingly used as models of human liver development/diseases. As protein kinases are important components of signaling pathways regulating cell fate changes, we sought to define the key molecular mediators regulating human liver development using inhibitors targeting tyrosine kinases during hepatic differentiation of human iPSCs. A library of tyrosine kinase inhibitors was used for initial screening during the multistage differentiation of human iPSCs to hepatic lineage. Among the 80 kinase inhibitors tested, only Src inhibitors suppressed endoderm formation while none had significant effect on later stages of hepatic differentiation. Transient inhibition of c-Src during endodermal induction of human iPSCs reduced endodermal commitment and expression of endodermal markers, including SOX17 and FOXA2, in a dose-dependent manner. Interestingly, the transiently treated cells later developed into profibrogenic cholangiocyte-like cells expressing both cholangiocyte markers, such as CK7 and CK19, and fibrosis markers, including Collagen1 and smooth muscle actin. Further analysis of these cells revealed colocalized expression of collagen and yes-associated protein (YAP; a marker associated with bile duct proliferation/fibrosis) and an increased production of interleukin-6 and tumor necrosis factor-α. Moreover, treatment with verteporfin, a YAP inhibitor, significantly reduced expression of fibrosis markers. In summary, these results suggest that c-Src has a critical role in cell fate determination during endodermal commitment of human iPSCs, and its alteration in early liver development in human may lead to increased production of abnormal YAP expressing profibrogenic proinflammatory cholangiocytes, similar to those seen in livers of patients with biliary fibrosis. Stem Cells 2019;37:306-317.
Collapse
Affiliation(s)
- Pooja Chaudhari
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen B Schwarz
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saul Sharkis
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaohui Ye
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yoon-Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Ni Y, Urban S. Stem cell-derived hepatocytes: A promising novel tool to study hepatitis B virus infection. J Hepatol 2017; 66:473-475. [PMID: 27965155 DOI: 10.1016/j.jhep.2016.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany; German Center of Infectious Diseases (DZIF), Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany; German Center of Infectious Diseases (DZIF), Heidelberg, Germany.
| |
Collapse
|
12
|
A transcriptomic study suggesting human iPSC-derived hepatocytes potentially offer a better in vitro model of hepatotoxicity than most hepatoma cell lines. Cell Biol Toxicol 2017; 33:407-421. [PMID: 28144825 DOI: 10.1007/s10565-017-9383-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 01/08/2023]
Abstract
Hepatocytes derived from human induced pluripotent stem cells (iPSCs) hold great promise as an in vitro liver model by virtue of their unlimited long-term supply, stability and consistency in functionality, and affordability of donor diversity. However, the suitability of iPSC-derived hepatocytes (iPSC-Heps) for toxicology studies has not been fully validated. In the current study, we characterized global gene expression profiles of iPSC-Heps in comparison to those of primary human hepatocytes (PHHs) and several human hepatoma cell lines (HepaRG, HuH-7, HepG2, and HepG2/C3A). Furthermore, genes associated with hepatotoxicity, drug-metabolizing enzymes, transporters, and nuclear receptors were extracted for more detailed comparisons. Our results showed that iPSC-Heps correlate more closely to PHHs than hepatoma cell lines, suggesting that iPSC-Heps had a relatively mature hepatic phenotype that more closely resembles that of adult hepatocytes. HepaRG was the sole exception but nonetheless suffers from lack of donor diversity and poor prediction of hepatotoxicity. The effects of sex differences and DMSO treatment on gene expression of the cellular models were also investigated. Overall, the results presented in the current study suggest that iPSC-Heps represent a reproducible source of human hepatocytes and a promising in vitro model for hepatotoxicity evaluation. Further studies are needed to develop a robust protocol for hepatocyte differentiation towards a more mature adult phenotype.
Collapse
|
13
|
Hepatocyte-like cells derived from induced pluripotent stem cells. Hepatol Int 2016; 11:54-69. [PMID: 27530815 DOI: 10.1007/s12072-016-9757-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022]
Abstract
The discovery that coordinated expression of a limited number of genes can reprogram differentiated somatic cells to induced pluripotent stem cells (iPSC) has opened novel possibilities for developing cell-based models of diseases and regenerative medicine utilizing cell reprogramming or cell transplantation. Directed differentiation of iPSCs can potentially generate differentiated cells belonging to any germ layer, including cells with hepatocyte-like morphology and function. Such cells, termed iHeps, can be derived by sequential cell signaling using available information on embryological development or by forced expression of hepatocyte-enriched transcription factors. In addition to the translational aspects of iHeps, the experimental findings have provided insights into the mechanisms of cell plasticity that permit one cell type to transition to another. However, iHeps generated by current methods do not fully exhibit all characteristics of mature hepatocytes, highlighting the need for additional research in this area. Here we summarize the current approaches and achievements in this field and discuss some existing hurdles and emerging approaches for improving iPSC differentiation, as well as maintaining such cells in culture for increasing their utility in disease modeling and drug development.
Collapse
|
14
|
Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol 2016; 65:182-199. [PMID: 26916529 DOI: 10.1016/j.jhep.2016.02.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/12/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers.
Collapse
Affiliation(s)
- Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Clara Steichen
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Noushin Dianat
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Weber
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France.
| |
Collapse
|
15
|
Csöbönyeiová M, Polák Š, Danišovič L. Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells. Can J Physiol Pharmacol 2016; 94:687-94. [PMID: 27128322 DOI: 10.1139/cjpp-2015-0459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Unexpected toxicity in areas such as cardiotoxicity, hepatotoxicity, and neurotoxicity is a serious complication of clinical therapy and one of the key causes for failure of promising drug candidates in development. Animal studies have been widely used for toxicology research to provide preclinical security evaluation of various therapeutic agents under development. Species differences in drug penetration of the blood-brain barrier, drug metabolism, and related toxicity contribute to failure of drug trials from animal models to human. The existing system for drug discovery has relied on immortalized cell lines, animal models of human disease, and clinical trials in humans. Moreover, drug candidates that are passed as being safe in the preclinical stage often show toxic effects during the clinical stage. Only around 16% drugs are approved for human use. Research on induced pluripotent stem cells (iPSCs) promises to enhance drug discovery and development by providing simple, reproducible, and economically effective tools for drug toxicity screening under development and, on the other hand, for studying the disease mechanism and pathways. In this review, we provide an overview of basic information about iPSCs, and discuss efforts aimed at the use of iPSC-derived hepatocytes, cardiomyocytes, and neural cells in drug discovery and toxicity testing.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- a Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| | - Štefan Polák
- a Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| | - L'uboš Danišovič
- b Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| |
Collapse
|
16
|
Stem Cell Therapies for Treatment of Liver Disease. Biomedicines 2016; 4:biomedicines4010002. [PMID: 28536370 PMCID: PMC5344247 DOI: 10.3390/biomedicines4010002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
Cell therapy is an emerging form of treatment for several liver diseases, but is limited by the availability of donor livers. Stem cells hold promise as an alternative to the use of primary hepatocytes. We performed an exhaustive review of the literature, with a focus on the latest studies involving the use of stem cells for the treatment of liver disease. Stem cells can be harvested from a number of sources, or can be generated from somatic cells to create induced pluripotent stem cells (iPSCs). Different cell lines have been used experimentally to support liver function and treat inherited metabolic disorders, acute liver failure, cirrhosis, liver cancer, and small-for-size liver transplantations. Cell-based therapeutics may involve gene therapy, cell transplantation, bioartificial liver devices, or bioengineered organs. Research in this field is still very active. Stem cell therapy may, in the future, be used as a bridge to either liver transplantation or endogenous liver regeneration, but efficient differentiation and production protocols must be developed and safety must be demonstrated before it can be applied to clinical practice.
Collapse
|
17
|
Noor F. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases. J Physiol 2015; 593:5043-55. [PMID: 26417843 DOI: 10.1113/jp271124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation.
Collapse
Affiliation(s)
- Fozia Noor
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| |
Collapse
|
18
|
Yang D, Wang ZQ, Deng JQ, Liao JY, Wang X, Xie J, Deng MM, Lü MH. Adipose-derived stem cells: A candidate for liver regeneration. J Dig Dis 2015; 16:489-98. [PMID: 26121206 DOI: 10.1111/1751-2980.12268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The scarcity of donor livers and the impracticality of hepatocyte transplantation represent the biggest obstacles for the treatment of liver failure. Adipose-derived stem cells, with their ability to differentiate into the hepatic lineage, provide a reliable alternative cell source with clear ethical and practical advantages. Moreover, adipose-derived stem cells can effectively repair liver damage by the dominant indirect pattern and increase the number of hepatocytes by the secondary direct pattern. In recent years, the development of the indirect pattern, which mainly includes immunomodulatory and trophic effects, has become a hot topic in the field of cell engineering. Therefore, adipose-derived stem cells are considered to be ideal therapeutic stem cells for human liver regeneration. In this article, we reviewed the advantages of adipose-derived stem cells in liver regeneration, and explore their underlying mechanisms.
Collapse
Affiliation(s)
- Dan Yang
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Zhong Qiong Wang
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Jia Qi Deng
- School of Foreign Languages of Sichuan Medical University, Luzhou, Sichuan Province, China
| | - Jing Yuan Liao
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Xuan Wang
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Jing Xie
- Department of Pediatric Surgery, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Ming Ming Deng
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Mu Han Lü
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| |
Collapse
|
19
|
From Human-Induced Pluripotent Stem Cells to Liver Disease Modeling: A Focus on Dyslipidemia. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0067-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Fang YL, Chen XG, W T G. Gene delivery in tissue engineering and regenerative medicine. J Biomed Mater Res B Appl Biomater 2014; 103:1679-99. [PMID: 25557560 DOI: 10.1002/jbm.b.33354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/07/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Abstract
As a promising strategy to aid or replace tissue/organ transplantation, gene delivery has been used for regenerative medicine applications to create or restore normal function at the cell and tissue levels. Gene delivery has been successfully performed ex vivo and in vivo in these applications. Excellent proliferation capabilities and differentiation potentials render certain cells as excellent candidates for ex vivo gene delivery for regenerative medicine applications, which is why multipotent and pluripotent cells have been intensely studied in this vein. In this review, gene delivery is discussed in detail, along with its applications to tissue engineering and regenerative medicine. A definition of a stem cell is compared to a definition of a stem property, and both provide the foundation for an in-depth look at gene delivery investigations from a germ lineage angle.
Collapse
Affiliation(s)
- Y L Fang
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - X G Chen
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - Godbey W T
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| |
Collapse
|
21
|
Vercauteren K, de Jong YP, Meuleman P. HCV animal models and liver disease. J Hepatol 2014; 61:S26-33. [PMID: 25443343 DOI: 10.1016/j.jhep.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 01/08/2023]
Abstract
The development and evaluation of effective therapies and vaccines for the hepatitis C virus (HCV) and the study of its interactions with the mammalian host have been hindered for a long time by the absence of suitable small animal models. Due to the narrow host tropism of HCV, the development of mice that can be robustly engrafted with human hepatocytes was a major breakthrough since they recapitulate the complete HCV life cycle. This model has been useful to investigate many aspects of the HCV life cycle, including antiviral interventions. However, studies of cellular immunity, immunopathogenesis and resulting liver diseases have been hampered by the lack of a small animal model with a functional immune system. In this review, we summarize the evolution of in vivo models for the study of HCV.
Collapse
Affiliation(s)
- Koen Vercauteren
- Center for Vaccinology, Ghent University Hospital, Ghent University, Gent, Belgium
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, USA
| | - Philip Meuleman
- Center for Vaccinology, Ghent University Hospital, Ghent University, Gent, Belgium.
| |
Collapse
|
22
|
Yu Y, Wang X, Nyberg SL. Potential and Challenges of Induced Pluripotent Stem Cells in Liver Diseases Treatment. J Clin Med 2014; 3:997-1017. [PMID: 26237490 PMCID: PMC4449640 DOI: 10.3390/jcm3030997] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 01/14/2023] Open
Abstract
Tens of millions of patients are affected by liver disease worldwide. Many of these patients can benefit from cell therapy involving living metabolically active cells, either by treatment of their liver disease, or by prevention of their disease phenotype. Cell therapies, including hepatocyte transplantation and bioartificial liver (BAL) devices, have been proposed as therapeutic alternatives to the shortage of transplantable livers. Both BAL and hepatocyte transplantation are cellular therapies that avoid use of a whole liver. Hepatocytes are also widely used in drug screening and liver disease modelling. However, the demand for human hepatocytes, heavily outweighs their availability by conventional means. Induced pluripotent stem cells (iPSCs) technology brings together the potential benefits of embryonic stem cells (ESCs) (i.e., self-renewal, pluripotency) and addresses the major ethical and scientific concerns of ESCs: embryo destruction and immune-incompatibility. It has been shown that hepatocyte-like cells (HLCs) can be generated from iPSCs. Furthermore, human iPSCs (hiPSCs) can provide an unlimited source of human hepatocytes and hold great promise for applications in regenerative medicine, drug screening and liver diseases modelling. Despite steady progress, there are still several major obstacles that need to be overcome before iPSCs will reach the bedside. This review will focus on the current state of efforts to derive hiPSCs for potential use in modelling and treatment of liver disease.
Collapse
Affiliation(s)
- Yue Yu
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province 210029, China.
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| | - Xuehao Wang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province 210029, China.
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| | - Scott L Nyberg
- Division of Experimental Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
23
|
Yu Y, Wang X, Nyberg SL. Application of Induced Pluripotent Stem Cells in Liver Diseases. CELL MEDICINE 2014; 7:1-13. [PMID: 26858888 DOI: 10.3727/215517914x680056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tens of millions of patients are affected by liver disease worldwide. Many of these patients can benefit from therapy involving hepatocyte transplantation. Liver transplantation is presently the only proven treatment for many medically refractory liver diseases including end-stage liver failure and inherited metabolic liver disease. However, the shortage in transplantable livers prevents over 40% of listed patients per year from receiving a liver transplant; many of these patients die before receiving an organ offer or become too sick to transplant. Therefore, new therapies are needed to supplement whole-organ liver transplantation and reduce mortality on waiting lists worldwide. Furthermore, the remarkable regenerative capacity of hepatocytes in vivo is exemplified by the increasing number of innovative cell-based therapies and animal models of human liver disorders. Induced pluripotent stem cells (iPSCs) have similar properties to those of embryonic stem cells (ESCs) but bypass the ethical concerns of embryo destruction. Therefore, generation of hepatocyte-like cells (HLCs) using iPSC technology may be beneficial for the treatment of severe liver diseases, screening of drug toxicities, basic research of several hepatocytic disorders, and liver transplantation. Here we briefly summarize the growing number of potential applications of iPSCs for treatment of liver disease.
Collapse
Affiliation(s)
- Yue Yu
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, China; †Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuehao Wang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, China; †Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Scott L Nyberg
- ‡ Division of Experimental Surgery, Mayo Clinic College of Medicine , Rochester, MN , USA
| |
Collapse
|
24
|
Asgari S, Moslem M, Bagheri-Lankarani K, Pournasr B, Miryounesi M, Baharvand H. Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev Rep 2014; 9:493-504. [PMID: 22076752 DOI: 10.1007/s12015-011-9330-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The generation of human induced pluripotent stem cells (hiPSCs) with a high differentiation potential provided a new source for hepatocyte generation not only for drug discovery and in vitro disease models, but also for cell replacement therapy. However, the reported hiPSC-derived hepatocyte-like cells (HLCs) were not well characterized and their transplantation, as the most promising clue of cell function was not reported. Here, we performed a growth factor-mediated differentiation of functional HLCs from hiPSCs and evaluated their potential for recovery of a carbon tetrachloride (CCl4)-injured mouse liver following transplantation. The hiPSC-derived hepatic lineage cells expressed hepatocyte-specific markers, showed glycogen and lipid storage activity, secretion of albumin (ALB), alpha-fetoprotein (AFP), urea, and CYP450 metabolic activity in addition to low-density lipoprotein (LDL) and indocyanin green (ICG) uptake. Similar results were observed with human embryonic stem cell (hESC)-derived HLCs. The transplantation of hiPSC-HLCs into a CCl4-injured liver showed incorporation of the hiPSC-HLCs into the mouse liver which resulted in a significant enhancement in total serum ALB after 1 week. A reduction of total serum LDH and bilirubin was seen when compared with the control and sham groups 1 and 5 weeks post-transplantation. Additionally, we detected human serum ALB and ALB-positive transplanted cells in both the host serum and livers, respectively, which showed functional integration of transplanted cells within the mouse livers. Therefore, our results have opened up a proof of concept that functional HLCs can be generated from hiPSCs, thus improving the general condition of a CCl4-injured mouse liver after their transplantation. These results may bring new insights in the clinical applications of hiPSCs once safety issues are overcome.
Collapse
Affiliation(s)
- Samira Asgari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, PO Box 19395-4644, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
25
|
Bishi DK, Mathapati S, Cherian KM, Guhathakurta S, Verma RS. In vitro hepatic trans-differentiation of human mesenchymal stem cells using sera from congestive/ischemic liver during cardiac failure. PLoS One 2014; 9:e92397. [PMID: 24642599 PMCID: PMC3958528 DOI: 10.1371/journal.pone.0092397] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/22/2014] [Indexed: 12/17/2022] Open
Abstract
Cellular therapy for end-stage liver failures using human mesenchymal stem cells (hMSCs)-derived hepatocytes is a potential alternative to liver transplantation. Hepatic trans-differentiation of hMSCs is routinely accomplished by induction with commercially available recombinant growth factors, which is of limited clinical applications. In the present study, we have evaluated the potential of sera from cardiac-failure-associated congestive/ischemic liver patients for hepatic trans-differentiation of hMSCs. Results from such experiments were confirmed through morphological changes and expression of hepatocyte-specific markers at molecular and cellular level. Furthermore, the process of mesenchymal-to-epithelial transition during hepatic trans-differentiation of hMSCs was confirmed by elevated expression of E-Cadherin and down-regulation of Snail. The functionality of hMSCs-derived hepatocytes was validated by various liver function tests such as albumin synthesis, urea release, glycogen accumulation and presence of a drug inducible cytochrome P450 system. Based on these findings, we conclude that sera from congestive/ischemic liver during cardiac failure support a liver specific microenvironment for effective hepatic trans-differentiation of hMSCs in vitro.
Collapse
Affiliation(s)
- Dillip Kumar Bishi
- Stem Cells and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
- Stem Cells and Tissue Engineering Laboratory, International Centre for Cardiothoracic and Vascular Diseases, Frontier Lifeline, Chennai, India
| | - Santosh Mathapati
- Stem Cells and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
- Stem Cells and Tissue Engineering Laboratory, International Centre for Cardiothoracic and Vascular Diseases, Frontier Lifeline, Chennai, India
| | - Kotturathu Mammen Cherian
- Stem Cells and Tissue Engineering Laboratory, International Centre for Cardiothoracic and Vascular Diseases, Frontier Lifeline, Chennai, India
| | - Soma Guhathakurta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
- * E-mail: (SG); (RSV)
| | - Rama Shanker Verma
- Stem Cells and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
- * E-mail: (SG); (RSV)
| |
Collapse
|
26
|
de Lima Toccafondo Vieira M, Tagliati CA. Hepatobiliary transporters in drug-induced cholestasis: a perspective on the current identifying tools. Expert Opin Drug Metab Toxicol 2014; 10:581-97. [PMID: 24588537 DOI: 10.1517/17425255.2014.884069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Impaired bile formation leads to the accumulation of cytotoxic bile salts in hepatocytes and, consequently, cholestasis and severe liver disease. Knowledge of the role of hepatobiliary transporters, especially the bile salt export pump (BSEP), in the pathogenesis of cholestasis is continuously increasing. AREAS COVERED This review provides an introduction into the role of these transport proteins in bile formation. It addresses the clinical relevance and pathophysiologic consequences of altered functions of these transporters by genetic mutations and drugs. In particular, the current practical aspects of identification and mitigation of drug candidates with liver liabilities employed during drug development, with an emphasis on preclinical screening for BSEP interaction, are discussed. EXPERT OPINION Within the potential pathogenetic mechanisms of acquired cholestasis, the inhibition of BSEP by drugs is well established. Interference of a new compound with BSEP transport activity should raise a warning sign to conduct follow-up experiments and to monitor liver function during clinical development. A combination of in vitro screening for transport interaction, in silico predicting models, and consideration of physicochemical and metabolic properties should lead to a more efficient screening of potential liver liability.
Collapse
Affiliation(s)
- Manuela de Lima Toccafondo Vieira
- Faculdade de Farmácia - UFMG, Departamento de Análises Clínicas e Toxicológicas, Av. Antônio Carlos, 6.627 - Pampulha, 31270-901 - Belo Horizonte - MG , Brazil +55 31 3547 3462 ;
| | | |
Collapse
|
27
|
Liu Z, Zhou J, Wang H, Zhao M, Wang C. Current status of induced pluripotent stem cells in cardiac tissue regeneration and engineering. Regen Med Res 2013; 1:6. [PMID: 25984325 PMCID: PMC4376510 DOI: 10.1186/2050-490x-1-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 02/20/2013] [Indexed: 12/23/2022] Open
Abstract
Myocardial infarction (MI) is associated with damage to the myocardium which results in a great loss of functional cardiomyocytes. As one of the most terminally differentiated organs, the endogenous regenerative potentials of adult hearts are extremely limited and insufficient to compensate for the myocardial loss occurring after MI. Consequentially, exogenous regenerative strategies, especially cell replacement therapy, have emerged and attracted increasing more attention in the field of cardiac tissue regeneration. A renewable source of seeding cells is therefore one of the most important subject in the field. Induced pluripotent stem cells (iPSCs), embryonic stem cell (ESC)-like cells that are derived from somatic cells by reprogramming, represent a promising candidate due to their high potentials for self-renewal, proliferation, differentiation and more importantly, they provide an invaluable method of deriving patient-specific pluripotent stem cells. Therefore, iPSC-based cardiac tissue regeneration and engineering has been extensively investigated in recent years. This review will discuss the achievements and current status in this field, including development of iPSC derivation, in vitro strategies for cardiac generation from iPSCs, cardiac application of iPSCs, challenges confronted at present as well as perspective in the future.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| | - Haibin Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| | - Mengge Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| |
Collapse
|
28
|
Szkolnicka D, Zhou W, Lucendo-Villarin B, Hay DC. Pluripotent stem cell-derived hepatocytes: potential and challenges in pharmacology. Annu Rev Pharmacol Toxicol 2013; 53:147-59. [PMID: 23294308 DOI: 10.1146/annurev-pharmtox-011112-140306] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The liver is a fascinating organ and performs a wide range of functions necessary for life. Because the hepatocyte is the major functional cell type found in the liver, it is important that we better understand its role in health and disease. Functional hepatocytes have been derived from many sources, including human stem cell populations. These models offer new opportunities to further our understanding of human liver biology from diverse genotypes and, in the future, to facilitate the development of novel medicines or cell-based therapies. This review discusses limitations in current cell-based models and the advantages offered by pluripotent stem cell-derived hepatocytes.
Collapse
Affiliation(s)
- Dagmara Szkolnicka
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | | | | | | |
Collapse
|
29
|
Vosough M, Omidinia E, Kadivar M, Shokrgozar MA, Pournasr B, Aghdami N, Baharvand H. Generation of functional hepatocyte-like cells from human pluripotent stem cells in a scalable suspension culture. Stem Cells Dev 2013; 22:2693-705. [PMID: 23731381 DOI: 10.1089/scd.2013.0088] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recent advances in human embryonic and induced pluripotent stem cell-based therapies in animal models of hepatic failure have led to an increased appreciation of the need to translate the proof-of-principle concepts into more practical and feasible protocols for scale up and manufacturing of functional hepatocytes. In this study, we describe a scalable stirred-suspension bioreactor culture of functional hepatocyte-like cells (HLCs) from the human pluripotent stem cells (hPSCs). To promote the initial differentiation of hPSCs in a carrier-free suspension stirred bioreactor into definitive endoderm, we used rapamycin for "priming" phase and activin A for induction. The cells were further differentiated into HLCs in the same system. HLCs were characterized and then purified based on their physiological function, the uptake of DiI-acetylated low-density lipoprotein (LDL) by flow cytometry without genetic manipulation or antibody labeling. The sorted cells were transplanted into the spleens of mice with acute liver injury from carbon tetrachloride. The differentiated HLCs had multiple features of primary hepatocytes, for example, the expression patterns of liver-specific marker genes, albumin secretion, urea production, collagen synthesis, indocyanin green and LDL uptake, glycogen storage, and inducible cytochrome P450 activity. They increased the survival rate, engrafted successfully into the liver, and continued to present hepatic function (i.e., albumin secretion after implantation). This amenable scaling up and outlined enrichment strategy provides a new platform for generating functional HLCs. This integrated approach may facilitate biomedical applications of the hPSC-derived hepatocytes.
Collapse
Affiliation(s)
- Massoud Vosough
- 1 Department of Biochemistry, Pasteur Institute of Iran , Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
30
|
Fattahi F, Asgari S, Pournasr B, Seifinejad A, Totonchi M, Taei A, Aghdami N, Salekdeh GH, Baharvand H. Disease-corrected hepatocyte-like cells from familial hypercholesterolemia-induced pluripotent stem cells. Mol Biotechnol 2013; 54:863-73. [PMID: 23247991 DOI: 10.1007/s12033-012-9635-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The generation of human induced pluripotent stem cells (hiPSCs) from an individual patient provides a unique tool for disease modeling, drug discovery, and cell replacement therapies. Patient-specific pluripotent stem cells can be expanded in vitro and are thus suitable for genetic manipulations. To date, several genetic liver disorders have been modeled using patient-specific hiPSCs. Here, we present the generation of corrected hepatocyte-like cells (HLCs) from hiPSCs of a familial hypercholesterolemia (FH) patient with a homozygous mutation in the low-density lipoprotein receptor (LDLR) gene. We generated hiPSCs from a patient with FH with the mutated gene encoding a truncated non-functional receptor. In order to deliver normal LDLR to the defective cells, we used a plasmid vector carrying the normal receptor ORF to genetically transform the hiPSCs. The transformed cells were expanded and directed toward HLCs. Undifferentiated defective hiPSCs and HLCs differentiated from the defective hiPSCs did not have the ability to uptake labeled low-density lipoprotein (LDL) particles. The differentiated transformed hiPSCs showed LDL-uptake ability and the correction of disease phenotype as well as expressions of hepatocyte-specific markers. The functionality of differentiated cells was also confirmed by indo-cyanine green (ICG) uptake assay, PAS staining, inducible cyp450 activity, and oil red staining. These data suggest that hiPSC technology can be used for generation of disease-corrected, patient-specific HLCs with potential value for disease modeling and drug discovery as well as cell therapy applications in future.
Collapse
Affiliation(s)
- Faranak Fattahi
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu Z, Wen X, Wang H, Zhou J, Zhao M, Lin Q, Wang Y, Li J, Li D, Du Z, Yao A, Cao F, Wang C. Molecular imaging of induced pluripotent stem cell immunogenicity with in vivo development in ischemic myocardium. PLoS One 2013; 8:e66369. [PMID: 23840453 PMCID: PMC3688792 DOI: 10.1371/journal.pone.0066369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
Whether differentiation of induced pluripotent stem cells (iPSCs) in ischemic myocardium enhances their immunogenicity, thereby increasing their chance for rejection, is unclear. Here, we dynamically demonstrated the immunogenicity and rejection of iPSCs in ischemic myocardium using bioluminescent imaging (BLI). Murine iPSCs were transduced with a tri-fusion (TF) reporter gene consisting of firefly luciferase-red fluorescent protein-truncated thymidine kinase (fluc-mrfp-tTK). Ascorbic acid (Vc) were used to induce iPSCs to differentiate into cardiomyocytes (CM). iPSCs and iPS-CMs were intramyocardially injected into immunocompetent or immunosuppressed allogenic murine with myocardial infarction. BLI was performed to track transplanted cells. Immune cell infiltration was evaluated by immunohistochemistry. Syngeneic iPSCs were also injected and evaluated. The results demonstrated that undifferentiated iPSCs survived and proliferated in allogenic immunocompetent recipients early post-transplantation, accompanying with mild immune cell infiltration. With in vivo differentiation, a progressive immune cell infiltration could be detected. While transplantation of allogenic iPSC-CMs were observed an acute rejection from receipts. In immune-suppressed recipients, the proliferation of iPSCs could be maintained and intramyocardial teratomas were formed. Transplantation of syngeneic iPSCs and iPSC-CMs were also observed progressive immune cell infiltration. This study demonstrated that iPSC immunogenicity increases with in vivo differentiation, which will increase their chance for rejection in iPSC-based therapy.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Xinyu Wen
- Department of Clinical Biochemistry, Chinese PLA General Hospital, Beijing, P.R. China
| | - Haibin Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Mengge Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Qiuxia Lin
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Dexue Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Zhiyan Du
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Anning Yao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Feng Cao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xian, Shanxi, P.R. China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
32
|
Liu Z, Tang Y, Lü S, Zhou J, Du Z, Duan C, Li Z, Wang C. The tumourigenicity of iPS cells and their differentiated derivates. J Cell Mol Med 2013; 17:782-91. [PMID: 23711115 PMCID: PMC3823182 DOI: 10.1111/jcmm.12062] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/01/2013] [Indexed: 01/15/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) provides a promising seeding cell for regenerative medicine. However, iPSC has the potential to form teratomas after transplantation. Therefore, it is necessary to evaluate the tumorigenic risks of iPSC and all its differentiated derivates prior to use in a clinical setting. Here, murine iPSCs were transduced with dual reporter gene consisting of monomeric red fluorescent protein (mRFP) and firefly luciferase (Fluc). Undifferentiated iPSCs, iPSC derivates from induced differentiation (iPSC-derivates), iPSC-derivated cardiomyocyte (iPSC-CMs) were subcutaneously injected into the back of nude mice. Non-invasive bioluminescence imaging (BLI) was longitudinally performed at day 1, 7, 14 and 28 after transplantation to track the survival and proliferation of transplanted cells. At day 28, mice were killed and grafts were explanted to detect teratoma formation. The results demonstrated that transplanted iPSCs, iPSC-derivates and iPSC-CMs survived in receipts. Both iPSCs and iPSC-derivates proliferated dramatically after transplantation, while only slight increase in BLI signals was observed in iPSC-CM transplanted mice. At day 28, teratomas were detected in both iPSCs and iPSC-derivates transplanted mice, but not in iPSC-CM transplanted ones. In vitro study showed the long-term existence of pluripotent cells during iPSC differentiation. Furthermore, when these cells were passaged in feeder layers as undifferentiated iPSCs, they would recover iPSC-like colonies, indicating the cause for differentiated iPSC's tumourigenicity. Our study indicates that exclusion of tumorigenic cells by screening in addition to lineage-specific differentiation is necessary prior to therapeutic use of iPSCs.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure. In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the key words such as liver failure, bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines, the incorporation of BAL with GS-HepG2 cells or alginate-encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functional hepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | |
Collapse
|
34
|
Aravalli RN, Cressman EN, Steer CJ. Hepatic differentiation of porcine induced pluripotent stem cells in vitro. Vet J 2012; 194:369-74. [DOI: 10.1016/j.tvjl.2012.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/06/2012] [Accepted: 05/19/2012] [Indexed: 12/14/2022]
|
35
|
Li YS, Harn HJ, Hsieh DK, Wen TC, Subeq YM, Sun LY, Lin SZ, Chiou TW. Cells and materials for liver tissue engineering. Cell Transplant 2012; 22:685-700. [PMID: 23127824 DOI: 10.3727/096368912x655163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation is currently the most efficacious treatment for end-stage liver diseases. However, one main problem with liver transplantation is the limited number of donor organs that are available. Therefore, liver tissue engineering based on cell transplantation that combines materials to mimic the liver is under investigation with the goal of restoring normal liver functions. Tissue engineering aims to mimic the interactions among cells with a scaffold. Particular materials or a matrix serve as a scaffold and provide a three-dimensional environment for cell proliferation and interaction. Moreover, the scaffold plays a role in regulating cell maturation and function via these interactions. In cultures of hepatic lineage cells, regulation of cell proliferation and specific function using biocompatible synthetic, biodegradable bioderived matrices, protein-coated materials, surface-modified nanofibers, and decellularized biomatrix has been demonstrated. Furthermore, beneficial effects of addition of growth factor cocktails to a flow bioreactor or coculture system on cell viability and function have been observed. In addition, a system for growing stem cells, liver progenitor cells, and primary hepatocytes for transplantation into animal models was developed, which produces hepatic lineage cells that are functional and that show long-term proliferation following transplantation. The major limitation of cells proliferated with matrix-based transplantation systems is the high initial cell loss and dysfunction, which may be due to the absence of blood flow and the changes in nutrients. Thus, the development of vascular-like scaffold structures, the formation of functional bile ducts, and the maintenance of complex metabolic functions remain as major problems in hepatic tissue engineering and will need to be addressed to enable further advances toward clinical applications.
Collapse
Affiliation(s)
- Yuan-Sheng Li
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Rodriguez-Osorio N, Urrego R, Cibelli JB, Eilertsen K, Memili E. Reprogramming mammalian somatic cells. Theriogenology 2012; 78:1869-86. [PMID: 22979962 DOI: 10.1016/j.theriogenology.2012.05.030] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 05/20/2012] [Accepted: 05/31/2012] [Indexed: 01/23/2023]
Abstract
Somatic cell nuclear transfer (SCNT), the technique commonly known as cloning, permits transformation of a somatic cell into an undifferentiated zygote with the potential to develop into a newborn animal (i.e., a clone). In somatic cells, chromatin is programmed to repress most genes and express some, depending on the tissue. It is evident that the enucleated oocyte provides the environment in which embryonic genes in a somatic cell can be expressed. This process is controlled by a series of epigenetic modifications, generally referred to as "nuclear reprogramming," which are thought to involve the removal of reversible epigenetic changes acquired during cell differentiation. A similar process is thought to occur by overexpression of key transcription factors to generate induced pluripotent stem cells (iPSCs), bypassing the need for SCNT. Despite its obvious scientific and medical importance, and the great number of studies addressing the subject, the molecular basis of reprogramming in both reprogramming strategies is largely unknown. The present review focuses on the cellular and molecular events that occur during nuclear reprogramming in the context of SCNT and the various approaches currently being used to improve nuclear reprogramming. A better understanding of the reprogramming mechanism will have a direct impact on the efficiency of current SCNT procedures, as well as iPSC derivation.
Collapse
|
37
|
|
38
|
Human induced pluripotent stem cells derived hepatocytes: rising promise for disease modeling, drug development and cell therapy. Protein Cell 2012; 3:246-50. [PMID: 22441839 DOI: 10.1007/s13238-012-2918-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 03/05/2012] [Indexed: 12/24/2022] Open
Abstract
Recent advances in the study of human hepatocytes derived from induced pluripotent stem cells (iPSC) represent new promises for liver disease study and drug discovery. Human hepatocytes or hepatocyte-like cells differentiated from iPSC recapitulate many functional properties of primary human hepatocytes and have been demonstrated as a powerful and efficient tool to model human liver metabolic diseases and facilitate drug development process. In this review, we summarize the recent progress in this field and discuss the future perspective of the application of human iPSC derived hepatocytes.
Collapse
|
39
|
Pietronave S, Prat M. Advances and applications of induced pluripotent stem cells. Can J Physiol Pharmacol 2012; 90:317-25. [DOI: 10.1139/y11-125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct reprogramming of somatic cells into pluripotent cells is an emerging technology for creating patient-specific cells, and potentially opens new scenarios in medical and pharmacological fields. From the discovery of Shinya Yamanaka, who first obtained pluripotent cells from fibroblasts by retrovirus-derived ectopic expression of defined embryonic transcription factors, new methods have been developed to generate safe induced pluripotent stem (iPS) cells without genomic manipulations. This review will focus on the recent advances in iPS technology and their application in pharmacology and medicine.
Collapse
Affiliation(s)
- Stefano Pietronave
- Laboratory of Histology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Maria Prat
- Laboratory of Histology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
40
|
Vessoni AT, Muotri AR, Okamoto OK. Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 2012; 21:513-20. [PMID: 22066548 DOI: 10.1089/scd.2011.0526] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a lysosome-dependent degradation pathway that allows cells to recycle damaged or superfluous cytoplasmic content, such as proteins, organelles, and lipids. As a consequence of autophagy, the cells generate metabolic precursors for macromolecular biosynthesis or ATP generation. Deficiencies in this pathway were associated to several pathological conditions, such as neurodegenerative and cardiac diseases, cancer, and aging. The aim of this review is to summarize recent discoveries showing that autophagy also plays a critical role in stem cell maintenance and in a variety of cell differentiation processes. We also discuss a possible role for autophagy during cellular reprogramming and induced pluripotent stem (iPS) cell generation by taking advantage of ATP generation for chromatin remodeling enzyme activity and mitophagy. Finally, the significance of autophagy modulation is discussed in terms of augmenting efficiency of iPS cell generation and differentiation processes.
Collapse
Affiliation(s)
- Alexandre Teixeira Vessoni
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
41
|
Zhang M, Zhong Y, Chen J. Model systems and clinical applications of hepatic stem cells for liver regeneration. Hepatol Int 2011. [DOI: 10.1007/s12072-011-9323-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
ANENE-NZELU CHUKWUEMEKA, WANG YAN, YU HANRY, LIANG LEOHWA. LIVER TISSUE MODEL FOR DRUG TOXICITY SCREENING. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519411004083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding the mechanisms involved in the biotransformation of new drugs and their toxicological implications is important for drug development. In this regard, a lot of effort has been put into research to recreate the liver tissue in the laboratory for the purpose of drug screening. This has also helped to minimize the use of laboratory animal and reduce incidence of post-market withdrawal of drugs. Despite the progress made so far, cell source remains a major limitation since primary human hepatocytes are scarce and the various cell alternatives do not express all the genes found in the normal liver. In terms of tissue construct, there is a current shift to 3D models since the cell–cell interactions found in the 3D configuration enhance the morphology and function of hepatocytes. Furthermore, the engineered tissue's performance can be optimized by cocultures, perfusion-based systems, and the use of scaffolds. Nanotechnology seems promising in the field of tissue engineering, as it has been proven that cell–matrix interactions at the nano level can influence greatly on the outcome of the tissue. The review explores the various cell sources, the 3D model, flow-based systems, cocultures, and nanoscaffolds use in hepatocytes in vitro drug testing
Collapse
Affiliation(s)
| | - YAN WANG
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Bioengineering and Nanotechnology, Singapore
| | - HANRY YU
- Institute of Bioengineering and Nanotechnology, Singapore
- Department of Physiology, National University of Singapore, Singapore
| | - LEO HWA LIANG
- Division of Bioengineering, National University of Singapore, Singapore
| |
Collapse
|
43
|
Medine CN, Lucendo-Villarin B, Zhou W, West CC, Hay DC. Robust generation of hepatocyte-like cells from human embryonic stem cell populations. J Vis Exp 2011:e2969. [PMID: 22064456 DOI: 10.3791/2969] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite progress in modelling human drug toxicity, many compounds fail during clinical trials due to unpredicted side effects. The cost of clinical studies are substantial, therefore it is essential that more predictive toxicology screens are developed and deployed early on in drug development (Greenhough et al 2010). Human hepatocytes represent the current gold standard model for evaluating drug toxicity, but are a limited resource that exhibit variable function. Therefore, the use of immortalised cell lines and animal tissue models are routinely employed due to their abundance. While both sources are informative, they are limited by poor function, species variability and/or instability in culture (Dalgetty et al 2009). Pluripotent stem cells (PSCs) are an attractive alternative source of human hepatocyte like cells (HLCs) (Medine et al 2010). PSCs are capable of self renewal and differentiation to all somatic cell types found in the adult and thereby represent a potentially inexhaustible source of differentiated cells. We have developed a procedure that is simple, highly efficient, amenable to automation and yields functional human HLCs (Hay et al 2008 ; Fletcher et al 2008 ; Hannoun et al 2010 ; Payne et al 2011 and Hay et al 2011). We believe our technology will lead to the scalable production of HLCs for drug discovery, disease modeling, the construction of extra-corporeal devices and possibly cell based transplantation therapies.
Collapse
Affiliation(s)
- Claire N Medine
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh
| | | | | | | | | |
Collapse
|
44
|
Busletta C, Novo E, Parola M. Human-induced pluripotent stem cells as a source of hepatocyte-like cells: new kids on the block. Hepatol Int 2011; 7:299-305. [DOI: 10.1007/s12072-011-9300-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/30/2011] [Indexed: 12/15/2022]
|
45
|
Krishna KA, Krishna KS, Berrocal R, Tummala A, Rao K, Rao KS. A review on the therapeutic potential of embryonic and induced pluripotent stem cells in hepatic repair. J Nat Sci Biol Med 2011; 2:141-4. [PMID: 22346225 PMCID: PMC3276003 DOI: 10.4103/0976-9668.92314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the liver being proliferatively quiescent, it maintains balance between cell gain and cell loss, invokes a rapid regenerative response following hepatocyte loss, and restores liver mass. Human liver has immense regenerative capacity. Liver comprises many cell types with specialized functions. Of these cell types, hepatocytes play several key roles, but are most vulnerable to damage. Recent studies suggest that the extrahepatic stem cell pool contributes to liver regeneration. Stem cell therapies have the potential to enhance hepatic regeneration. Both embryonic and induced pluripotent stem cells could be a suitable source to regenerate hepatocytes. In the present review, we discuss the therapeutic potential of stem cells in hepatic repair and focus on the clinical applications of stem cells.
Collapse
Affiliation(s)
- K. Ananda Krishna
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - K. Sai Krishna
- Department of Biotechnology, Meenakshi Medical College and Research Institute, Enathur, Kancheepuram, Tamilnadu, India
| | - Ruben Berrocal
- Institute for Scientific Research and Technology Services, National Secretariat for Science, Technology and Innovation, Clayton City of Knowledge, Republic of Panama
| | - Alekya Tummala
- Department of Clinical Biochemistry, Columbus College of Medicine, Republic of Panama
| | - K.S. Rao
- Institute for Scientific Research and Technology Services, National Secretariat for Science, Technology and Innovation, Clayton City of Knowledge, Republic of Panama
| | - K.R.S. Sambasiva Rao
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
- Institute for Scientific Research and Technology Services, National Secretariat for Science, Technology and Innovation, Clayton City of Knowledge, Republic of Panama
| |
Collapse
|
46
|
Jozefczuk J, Prigione A, Chavez L, Adjaye J. Comparative Analysis of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell-Derived Hepatocyte-Like Cells Reveals Current Drawbacks and Possible Strategies for Improved Differentiation. Stem Cells Dev 2011; 20:1259-75. [DOI: 10.1089/scd.2010.0361] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Justyna Jozefczuk
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alessandro Prigione
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lukas Chavez
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - James Adjaye
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- The Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Kumar A, Pati NT, Sarin SK. Use of stem cells for liver diseases-current scenario. J Clin Exp Hepatol 2011; 1:17-26. [PMID: 25755306 PMCID: PMC3940313 DOI: 10.1016/s0973-6883(11)60114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/04/2011] [Indexed: 12/12/2022] Open
Abstract
End-stage liver disease and liver failure are major health problems worldwide leading to high mortality and morbidity and high healthcare costs. Currently, orthotropic liver transplantation is the only effective treatment available to the patients of end-stage liver disease. However, a serious shortage of liver donors, high cost, and risk of organ rejection are the major obstacles to liver transplantation. Because of the ability of stem cells for differentiation into any tissue type, they have huge potential in therapy of various end-stage or degenerative diseases and traumatic injuries. Stem cell therapy has the potential to provide a valuable adjunct and alternative to liver transplantation and has immense potential in the management of end stage liver disease and liver failure. Stem cell therapy can be mediated by either a direct contribution to the functional hepatocyte population with embryonic, induced pluripotent, or adult stem cells or by promotion of endogenous regenerative processes with bone marrow-derived stem cells. Initial translational studies have been encouraging and have suggested improved liver function in advanced chronic liver disease and enhanced liver regeneration after portal vein embolization and partial hepatic resection. Stem cells infusion in cirrhotic patients has improved liver parameters and could form a viable bridge to transplantation. The present review summarizes basic of stem cell biology relevant to clinicians and an update on recent advances on the management of liver diseases using stem cells.
Collapse
Key Words
- AFP, alpha (α)-fetoprotein
- BM, bone marrow
- EPCAM, epithelial cell adhesion molecule
- ES, embryonic stem
- FSCs, fetal stem cells
- HPC, hepatic progenitor cells
- HSC, hematopoietic stem cells
- Hepatocyte transplantation
- ICAM, intercellular adhesion molecule
- MSCs, mesenchymal stem cells
- NCAM, neural cell adhesion molecule
- UCB, umbilical cord blood
- hAECs, human amniotic epithelial cells
- iPSCs, induced pluripotent stem cells
- liver transplantation
- stem cell
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Address for correspondence: Dr Ashish Kumar MD DM, Associate Professor, Department of Hepatology, Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi-110070, India
| | - Nirupama Trehan Pati
- Department of Research, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
48
|
Giri S, Bader A. Improved preclinical safety assessment using micro-BAL devices: the potential impact on human discovery and drug attrition. Drug Discov Today 2011; 16:382-97. [PMID: 21354326 DOI: 10.1016/j.drudis.2011.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 01/11/2011] [Accepted: 02/21/2011] [Indexed: 02/07/2023]
Abstract
Hepatotoxicity is often unpredictable in the early phase of drug discovery and leads to drug attrition in preclinical and clinical development. Here, we discuss the conventional preclinical liver models that do not mimic in vivo livers. We focus on key components such as new sources of hepatocyte-derived human stem cells, enhanced direct oxygenation, defined biocompatibility nanoscaffolds, organotypical cellular models, dynamic culture, and metabolite status inside and outside the cell for effective configuration for the development of a bioartificial liver (BAL) device to mimic the in vivo liver microenvironment. The potential for development of BAL devices could open up new avenues in: (i) hepatotoxicity assessment for selecting drug candidates during preclinical screening; and (ii) therapeutic approaches for liver cell therapy at the clinical stage.
Collapse
Affiliation(s)
- Shibashish Giri
- Centre for Biotechnology and Biomedicine, Department of Cell Techniques and Applied Stem Cell Biology, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | | |
Collapse
|
49
|
Stieger B, Geier A. Genetic variations of bile salt transporters as predisposing factors for drug-induced cholestasis, intrahepatic cholestasis of pregnancy and therapeutic response of viral hepatitis. Expert Opin Drug Metab Toxicol 2011; 7:411-25. [PMID: 21320040 DOI: 10.1517/17425255.2011.557067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug-induced cholestasis, intrahepatic cholestasis of pregnancy and viral hepatitis are acquired forms of liver disease. Cholestasis is a pathophysiologic state with impaired bile formation and subsequent accumulation of bile salts in hepatocytes. The bile salt export pump (BSEP) (ABCB11) is the key export system for bile salts from hepatocytes. AREAS COVERED This article provides an introduction into the physiology of bile formation followed by a summary of the current knowledge on the key bile salt transporters, namely, the sodium-taurocholate co-transporting polypeptide NTCP, the organic anion transporting polypeptides (OATPs), BSEP and the multi-drug resistance protein 3. The pathophysiologic consequences of altered functions of these transporters, with an emphasis on molecular and genetic aspects, are then discussed. EXPERT OPINION Knowledge of the role of hepatocellullar transporters, especially BSEP, in acquired cholestasis is continuously increasing. A common variant of BSEP (p.V444A) is now a well-established susceptibility factor for acquired cholestasis and recent evidence suggests that the same variant also influences the therapeutic response and disease progression of viral hepatitis C. Studies in large independent cohorts are now needed to confirm the relevance of p.V444A. Genome-wide association studies should lead to the identification of additional genetic factors underlying cholestatic liver disease.
Collapse
Affiliation(s)
- Bruno Stieger
- University Hospital Zurich, Division of Clinical Pharmacology and Toxicology, 8091 Zurich, Switzerland.
| | | |
Collapse
|
50
|
Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev Rep 2011. [PMID: 20821352 DOI: 10.1007/s12015-010-9189-3.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
The availability of disease-specific induced pluripotent stem cells (iPSCs) offers a unique opportunity for studying and modeling the effects of specific gene defects on human liver development in vitro and for testing small molecules or other potential therapies for relevant liver disorders. Here we report, for the first time, the derivation of iPSCs by the retroviral transduction of Yamanaka's factors in serum and feeder-free culture conditions from liver-specific patients with tyrosinemia, glycogen storage disease, progressive familial hereditary cholestasis, and two siblings with Crigler-Najjar syndrome. Furthermore, they were differentiated into functional hepatocyte-like cells efficiently. These iPSCs possessed properties of human embryonic stem cells (hESCs) and were successfully differentiated into three lineages that resembled hESC morphology, passaging, surface and pluripotency markers, normal karyotype, DNA methylation, and differentiation. The hepatic lineage-directed differentiation showed that the iPSC-derived hepatic cells expressed hepatocyte-specific markers. Their functionality was confirmed by glycogen and lipid storage activity, secretion of albumin, alpha-fetoprotein, and urea, CYP450 metabolic activity, as well as LDL and indocyanin green uptake. Our results provide proof of principal that human liver-disease specific iPSCs present an exciting potential venue toward cell-based therapeutics, drug metabolism, human liver development and disease models for liver failure disorders.
Collapse
|