1
|
Moloi TP, Ziqubu K, Mazibuko-Mbeje SE, Mabaso NH, Ndlovu Z. Aflatoxin B 1-induced hepatotoxicity through mitochondrial dysfunction, oxidative stress, and inflammation as central pathological mechanisms: A review of experimental evidence. Toxicology 2024; 509:153983. [PMID: 39491743 DOI: 10.1016/j.tox.2024.153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Aflatoxin B1 (AFB1) is a class of mycotoxin known to contaminate agricultural products, animal feed and animal food products, subsequently causing detrimental effects on human and animal health. AFB1 is the most common and potent aflatoxin found in food and contributes significantly to liver injury as well as the development of hepatocellular carcinoma. Although the liver is a primary target organ for AFB1 toxicity and biotransformation, underlying mechanisms implicated in liver injuries induced by these mycotoxins remain to be fully elucidated for therapeutic purposes. This review aims to dissect the complexities of the pathophysiological and molecular mechanisms implicated in hepatotoxicity induced by AFB1, including mitochondrial dysfunction, oxidative stress and hepatic inflammation. Mechanistically, AFB1 disrupt mitochondrial bioenergetics and membrane potential, promotes mitochondrial cholesterol trafficking and induces mitophagy. Moreover, mitochondrial dysfunction may lead to hepatic oxidative stress as a consequence of uncontrolled production of reactive oxygen species and defects in the antioxidant defense system. Retrieved experimental evidence also showed that AFB1 may lead to hepatic inflammation through gut microbiota dysbiosis, the release of DAMPs and cytokines, and immune cell recruitment. Overall, these mechanisms could be utilized as potential targets to extrapolate treatment for liver injury caused by AFB1.
Collapse
Affiliation(s)
- Tsholofelo P Moloi
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | | | - Nonduduzo H Mabaso
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Zibele Ndlovu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa.
| |
Collapse
|
2
|
Baeken MW. Sirtuins and their influence on autophagy. J Cell Biochem 2024; 125:e30377. [PMID: 36745668 DOI: 10.1002/jcb.30377] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Sirtuins and autophagy are well-characterized agents that can promote longevity and protect individual organisms from age-associated diseases like neurodegenerative disorders. In recent years, more and more data has been obtained that discerned potential overlaps and crosstalk between Sirtuin proteins and autophagic activity. This review aims to summarize the advances within the field for each individual Sirtuin in mammalian systems. In brief, most Sirtuins have been implicated in promoting autophagy, with Sirtuin 1 and Sirtuin 6 showing the highest immediate involvement, while Sirtuin 4 and Sirtuin 5 only demonstrate occasional influence. The way Sirtuins regulate autophagy, however, is very diverse, as they have been shown to regulate gene expression of autophagy-associated genes and posttranslational modifications of proteins, with consequences for the activity and cellular localization of these proteins. They have also been shown to determine specific proteins for autophagic degradation. Overall, much data has been accumulated over recent years, yet many open questions remain. Especially although the dynamic between Sirtuin proteins and the immediate regulation of autophagic players like Light Chain 3B has been confirmed, many of these proteins have various orthologues in mammalian systems, and research so far has not exceeded the bona fide components of autophagy.
Collapse
Affiliation(s)
- Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
3
|
Ngcobo NN, Sibiya NH. The role of high mobility group box-1 on the development of diabetes complications: A plausible pharmacological target. Diab Vasc Dis Res 2024; 21:14791641241271949. [PMID: 39271468 PMCID: PMC11406611 DOI: 10.1177/14791641241271949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Diabetes mellitus has emerged as a pressing global concern, with a notable increase in recent years. Despite advancements in treatment, existing medications struggle to halt the progression of diabetes and its associated complications. Increasing evidence underscores inflammation as a significant driver in the onset of diabetes mellitus. Therefore, perspectives on new therapies must consider shifting focus from metabolic stress to inflammation. High mobility group box (HMGB-1), a nuclear protein regulating gene expression, gained attention as an endogenous danger signal capable of sparking inflammatory responses upon release into the extracellular environment in the late 1990s. PURPOSE Given the parallels between inflammatory responses and type 2 diabetes (T2D) development, this review paper explores HMGB-1's potential involvement in onset and progression of diabetes complications. Specifically, we will review and update the understanding of HMGB-1 and its inflammatory pathways in insulin resistance, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. CONCLUSIONS HMGB-1 and its receptors i.e. receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs) present promising targets for antidiabetic interventions. Ongoing and future projects in this realm hold promise for innovative approaches targeting HMGB-1-mediated inflammation to ameliorate diabetes and its complications.
Collapse
Affiliation(s)
- Nokwanda N Ngcobo
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo H Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
4
|
Cole-Skinner B, Andre NM, Blankenheim Z, Root KM, Jafri K, Simmons GE. Oleate alters the immune response in non-small cell lung adenocarcinoma through regulation of HMGB1 release. Front Cell Dev Biol 2024; 12:1348707. [PMID: 39100092 PMCID: PMC11294209 DOI: 10.3389/fcell.2024.1348707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
Background: Cancer cell evasion of the immune response is critical to cancer development and metastases. Clinicians' ability to kickstart the immune system to target these rogue cells is an ever-growing area of research and medicine. This study delved into the relationship between lipid metabolism, High Mobility Group Box 1 protein (HMGB1)-a pro-inflammatory damage-associated molecular pattern protein-and immune regulation within non-small cell lung adenocarcinoma (NSCLC). Method: To address this question, we used a combination of proteomics, molecular biology, and bioinformatic techniques to investigate the relationship between fatty acids and immune signals within NSCLC. Results: We found that the expression of stearoyl CoA desaturase 1 (SCD1) was decreased in NSCLC tumors compared to normal tissues. This emphasized the critical role of lipid metabolism in tumor progression. Interestingly, monounsaturated fatty acid (MUFA) availability affected the expression of programmed death ligand-1 (PD-L1), a pivotal immune checkpoint target in lung cancer cells and immune cells, as well as HMGB1, suggesting a novel approach to modulating the immune response. This study uncovered a complex interplay between SCD1, PD-L1, and HMGB1, influencing the immunological sensitivity of tumors. Conclusion: Our work underscores the critical importance of understanding the intricate relationships between lipid metabolism and immune modulation to develop more effective NSCLC treatments and personalized therapies. As we continue to explore these connections, we hope to contribute significantly to the ever-evolving field of cancer research, improving patient outcomes and advancing precision medicine in NSCLC.
Collapse
Affiliation(s)
- Breanna Cole-Skinner
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, United States
| | - Nicole M. Andre
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Zachary Blankenheim
- Department of Biomedical Sciences, School of Medicine, University of Minnesota, Duluth, United States
| | - Kate M. Root
- Department of Biomedical Sciences, School of Medicine, University of Minnesota, Duluth, United States
| | - Kisa Jafri
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Glenn E. Simmons
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, United States
| |
Collapse
|
5
|
Parvaresh H, Paczek K, Al-Bari MAA, Eid N. Mechanistic insights into fasting-induced autophagy in the aging heart. World J Cardiol 2024; 16:109-117. [PMID: 38576517 PMCID: PMC10989221 DOI: 10.4330/wjc.v16.i3.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Autophagy is a prosurvival mechanism for the clearance of accumulated abnormal proteins, damaged organelles, and excessive lipids within mammalian cells. A growing body of data indicates that autophagy is reduced in aging cells. This reduction leads to various diseases, such as myocardial hypertrophy, infarction, and atherosclerosis. Recent studies in animal models of an aging heart showed that fasting-induced autophagy improved cardiac function and longevity. This improvement is related to autophagic clearance of damaged cellular components via either bulk or selective autophagy (such as mitophagy). In this editorial, we summarize the mechanisms of autophagy in normal and aging hearts. In addition, the protective effect of fasting-induced autophagy in cardiac aging has been highlighted.
Collapse
Affiliation(s)
- Hannaneh Parvaresh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Katarzyna Paczek
- Department of Chiropractic, International Medical University, Kuala Lumpur 57000, Malaysia
| | | | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
6
|
Abstract
Studies have found that intermittent fasting (IF) can prevent diabetes, cancer, heart disease, and neuropathy, while in humans it has helped to alleviate metabolic syndrome, asthma, rheumatoid arthritis, Alzheimer's disease, and many other disorders. IF involves a series of coordinated metabolic and hormonal changes to maintain the organism's metabolic balance and cellular homeostasis. More importantly, IF can activate hepatic autophagy, which is important for maintaining cellular homeostasis and energy balance, quality control, cell and tissue remodeling, and defense against extracellular damage and pathogens. IF affects hepatic autophagy through multiple interacting pathways and molecular mechanisms, including adenosine monophosphate (AMP)-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), silent mating-type information regulatory 2 homolog-1 (SIRT1), peroxisomal proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR), as well as signaling pathways and molecular mechanisms such as glucagon and fibroblast growth factor 21 (FGF21). These pathways can stimulate the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), play a cytoprotective role, downregulate the expression of aging-related molecules, and prevent the development of steatosis-associated liver tumors. By influencing the metabolism of energy and oxygen radicals as well as cellular stress response systems, IF protects hepatocytes from genetic and environmental factors. By activating hepatic autophagy, IF has a potential role in treating a variety of liver diseases, including non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis, hepatic fibrosis, and hepatocellular carcinoma. A better understanding of the effects of IF on liver autophagy may lead to new approaches for the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Tang
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Peipei Song
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Cole-Skinner B, Andre NM, Blankenheim Z, Root K, Simmons GE. Unsaturated fatty acid alters the immune response in non-small cell lung adenocarcinoma through regulation of HMGB1 trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566231. [PMID: 37986958 PMCID: PMC10659279 DOI: 10.1101/2023.11.08.566231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Cancer cell evasion of the immune response is critical to cancer development and metastases. The ability of clinicians to kickstart the immune system to target these rogue cells is an ever-growing area of research and medicine. In this study, we delved into the relationship between lipid metabolism, High Mobility Group Box 1 protein (HMGB1), and immune regulation within non-small cell lung adenocarcinoma (NSCLC), shedding light on novel therapeutic avenues and potential personalized approaches for patients. We found that the expression of stearoyl CoA desaturase 1 (SCD1) was decreased in NSCLC tumors compared to normal tissues. This emphasized the critical role of lipid metabolism in tumor progression. Interestingly, monounsaturated fatty acid (MUFA) availability impacted the expression of programmed death receptor ligand -1 (PD-L1), a pivotal immune checkpoint target in lung cancer cells and immune cells, suggesting a novel approach to modulating the immune response. This study uncovered a complex interplay between HMGB1, SCD1, and PD-L1, influencing the immunological sensitivity of tumors. Our work underscores the importance of understanding the intricate relationships between lipid metabolism and immune modulation to develop more effective NSCLC treatments and personalized therapies. As we continue to explore these connections, we hope to contribute to the ever-evolving field of cancer research, improving patient outcomes and advancing precision medicine in NSCLC.
Collapse
Affiliation(s)
- Breanna Cole-Skinner
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia
| | - Nicole M. Andre
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca
| | - Zachary Blankenheim
- Department of Biomedical Sciences, University of Minnesota School of Medicine, Duluth
| | - Kate Root
- Department of Biomedical Sciences, University of Minnesota School of Medicine, Duluth
| | - Glenn E. Simmons
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca
| |
Collapse
|
8
|
Small S, Iglesies-Grau J, Gariepy C, Wilkinson M, Taub P, Kirkham A. Time-Restricted Eating: A Novel Dietary Strategy for Cardiac Rehabilitation. Can J Cardiol 2023; 39:S384-S394. [PMID: 37734709 DOI: 10.1016/j.cjca.2023.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/23/2023] Open
Abstract
Cardiac rehabilitation (CR) is a multimodal program considered to be the standard of care for secondary prevention of cardiovascular disease (CVD). The primary goals of CR are managing CVD risk factors and improving quality of life. Exercise is the cornerstone, but nutrition education delivered by registered dietitians (RDs) is a core component of CR. Yet patient constraints to adherence to dietary change and limited availability of RDs represent major barriers to the success of completion of nutrition intervention during CR. Therefore, nutritional strategies that reduce CVD risk factors, barriers to adherence, and have capacity for broad dissemination are warranted within CR programs. In this review, we propose time-restricted eating (TRE) as a nutrition strategy to improve the outcomes of CR by drawing on parallels to CVD in other populations and describe the available preliminary data on the efficacy of TRE for CVD. TRE is a dietary strategy that involves alternating periods of fasting and consumption of calories each day. We outline the feasibility, safety, and beneficial cardiometabolic impact of TRE from TRE research in other populations. We also discuss the potential for synergistic benefits of exercise when combined with TRE. Although there is currently limited research on TRE within CR programs, we highlight CR as a unique clinical setting where TRE could play a role in secondary prevention of CVD. Overall, we outline the potential of TRE as a promising nutrition strategy to enhance the benefits of CR.
Collapse
Affiliation(s)
- Stephanie Small
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; Cardiovascular Prevention and Rehabilitation Program, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Josep Iglesies-Grau
- Centre EPIC and Research Centre, Montréal Heart Institute, Montréal, Québec, Canada; Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Chantal Gariepy
- Centre EPIC and Research Centre, Montréal Heart Institute, Montréal, Québec, Canada
| | - Michael Wilkinson
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, University of California San Diego, La Jolla, California, USA
| | - Pam Taub
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, University of California San Diego, La Jolla, California, USA
| | - Amy Kirkham
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; Cardiovascular Prevention and Rehabilitation Program, Toronto Rehabilitation Institute, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Koike MK, Barbeiro DF, Souza HPD, Machado MCC. Does fasting protect liver from ischemia and reperfusion injury? Acta Cir Bras 2023; 38:e384723. [PMID: 37878985 PMCID: PMC10592748 DOI: 10.1590/acb384723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/13/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE To evaluate local and systemic effects of 24-hour fasting in liver ischemia and reperfusion injury. METHODS Twenty-one adult male Wistar rats (330-390 g) were submitted to 60 minutes of hepatic ischemia followed by 24 hours of reperfusion. Before the day of the experiment, the animals fasted, but free access to water was allowed. Two groups were constituted: Control: non-fasted, that is, feeding ad libitum before surgical procedure; Fasting: rats underwent previous fasting of 24 hours. Hepatic ischemia was performed using vascular clamp in hepatic pedicle. At 24 hours after liver reperfusion, blood and tissue samples were collected. To analysis, liver lobes submitted to ischemia was identified as ischemic liver and paracaval non-ischemic lobes as non-ischemic liver. We evaluated: malondialdehyde levels, hepatocellular function (alanine aminotransferase, aspartate aminotransferase activities, and both ratio), cytokines (interleukins-6, -10, and tumor necrosis factor-alpha), hepatic ischemia and reperfusion injury (histology). RESULTS Malondialdehyde measured in non-ischemic and ischemic liver samples, hepatocellular function and cytokines were comparable between groups. Histological findings were distinct in three regions evaluated. Microvesicular steatosis was comparable between 24-hour fasting and non-fasted control groups in periportal region of hepatic lobe. In contrast, steatosis was more pronounced in zones 2 and 3 of ischemic liver samples of fasting compared to control groups. CONCLUSIONS These data indicates that fasting does not protect, but it can be also detrimental to liver submitted to ischemia/reperfusion damage. At that time, using long fasting before liver surgery in the real world may be contraindicated.
Collapse
Affiliation(s)
- Marcia Kiyomi Koike
- Universidade de São Paulo - School of Medicine - Department of Clinical Medicine - São Paulo (SP) - Brazil
| | - Denise Frediani Barbeiro
- Universidade de São Paulo - School of Medicine - Department of Clinical Medicine - São Paulo (SP) - Brazil
| | - Heraldo Possolo de Souza
- Universidade de São Paulo - School of Medicine - Department of Clinical Medicine - São Paulo (SP) - Brazil
| | | |
Collapse
|
10
|
Shabkhizan R, Haiaty S, Moslehian MS, Bazmani A, Sadeghsoltani F, Saghaei Bagheri H, Rahbarghazi R, Sakhinia E. The Beneficial and Adverse Effects of Autophagic Response to Caloric Restriction and Fasting. Adv Nutr 2023; 14:1211-1225. [PMID: 37527766 PMCID: PMC10509423 DOI: 10.1016/j.advnut.2023.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Each cell is equipped with a conserved housekeeping mechanism, known as autophagy, to recycle exhausted materials and dispose of injured organelles via lysosomal degradation. Autophagy is an early-stage cellular response to stress stimuli in both physiological and pathological situations. It is thought that the promotion of autophagy flux prevents host cells from subsequent injuries by removing damaged organelles and misfolded proteins. As a correlate, the modulation of autophagy is suggested as a therapeutic approach in diverse pathological conditions. Accumulated evidence suggests that intermittent fasting or calorie restriction can lead to the induction of adaptive autophagy and increase longevity of eukaryotic cells. However, prolonged calorie restriction with excessive autophagy response is harmful and can stimulate a type II autophagic cell death. Despite the existence of a close relationship between calorie deprivation and autophagic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible effects of prolonged and short-term calorie restriction on autophagic response and cell homeostasis.
Collapse
Affiliation(s)
- Roya Shabkhizan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ebrahim Sakhinia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Chen H, Deng J, Gao H, Song Y, Zhang Y, Sun J, Zhai J. Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Commun Signal 2023; 21:185. [PMID: 37507744 PMCID: PMC10375653 DOI: 10.1186/s12964-023-01177-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/30/2023] Open
Abstract
The silent information regulator 2 homolog 1-NACHT, LRR and PYD domains-containing protein 3 (SIRT1-NLRP3) pathway has a crucial role in regulation of the inflammatory response, and is closely related to the occurrence and development of several inflammation-related diseases. NLRP3 is activated to produce the NLRP3 inflammasome, which leads to activation of caspase-1 and cleavage of pro-interleukin (IL)-1β and pro-IL-18 to their active forms: IL-1β and IL-18, respectively. They are proinflammatory cytokines which then cause an inflammatory response.SIRT1 can inhibit this inflammatory response through nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B pathways. This review article focuses mainly on how the SIRT1-NLRP3 pathway influences the inflammatory response and its relationship with melatonin, traumatic brain injury, neuroinflammation, depression, atherosclerosis, and liver damage. Video Abstract.
Collapse
Affiliation(s)
- Huiyue Chen
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
| | - Jiayu Deng
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Yanqing Song
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueming Zhang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jingmeng Sun
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China.
| |
Collapse
|
12
|
Yalcin B, Yay AH, Tan FC, Özdamar S, Yildiz OG. Investigation of the anti-oxidative and anti-inflammatory effects of melatonin on experimental liver damage by radiation. Pathol Res Pract 2023; 246:154477. [PMID: 37148837 DOI: 10.1016/j.prp.2023.154477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/19/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Radiotherapy is one of the inevitable treatment approaches for several types of cancer. We aimed to show the protective and therapeutic effects of daily use of melatonin on liver tissues subjected to a single dose of 10 Gy (gamma-ray) total body radiation. Rats were divided into 6 groups, of which 10 were in each: control, sham, melatonin, radiation, radiation+melatonin, and melatonin+radiation. The rats received 10 Gy of external radiation throughout their entire bodies. The rats were given 10 mg/kg/day of melatonin intraperitoneally before or after radiation treatment, depending on the group. Histological methods, immunohistochemical analysis (Caspase-3, Sirtuin-1, α-SMA, NFΚB-p65), biochemical analysis by ELİSA (SOD, CAT, GSH-PX, MDA, TNF-α, TGF-β, PDGF, PGC-1α) and the Comet assay as a marker of DNA damage were applied to the liver tissues. Histopathological examinations showed structural changes in the liver tissue of the radiation group. Radiation treatment increased the immunoreactivity of Caspase-3, Sirtuin-1 and α-SMA, but these effects were relatively attenuated in the melatonin-treated groups. The melatonin+radiation group had statistically significant results close to those of the control group, in terms of Caspase-3, NFΚB-p65 and Sirtuin-1 immunoreactivity. In melatonin treated groups, hepatic biochemical markers, MDA, SOD, TNF-α, TGF-β levels, and DNA damage parameters were decreased. Administration of melatonin before and after radiation has beneficial effects, but using it before radiation may be more efficient. Accordingly, daily melatonin usage could mitigate ionizing radiation induced damage.
Collapse
Affiliation(s)
- Betul Yalcin
- Adıyaman University, Faculty of Medicine, Department of Histology and Embryology, Adıyaman, Turkey.
| | - Arzu Hanım Yay
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fazile Cantürk Tan
- Erciyes University, Faculty of Medicine, Department of Biophysics, Kayseri, Turkey
| | - Saim Özdamar
- Pamukkale University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Oğuz Galip Yildiz
- Erciyes University, Faculty of Medicine, Department of Radiation Oncology, Kayseri, Turkey
| |
Collapse
|
13
|
Liu Y, Li J, Kang W, Liu S, Liu J, Shi M, Wang Y, Liu X, Chen X, Huang K. Aflatoxin B1 induces liver injury by disturbing gut microbiota-bile acid-FXR axis in mice. Food Chem Toxicol 2023; 176:113751. [PMID: 37030333 DOI: 10.1016/j.fct.2023.113751] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/04/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of major pollutant in food and feed worldwide. The purpose of this study is to investigate the mechanism of AFB1-induced liver injury. Our results showed that AFB1 caused hepatic bile duct proliferation, oxidative stress, inflammation and liver injury in mice. AFB1 exposure induced gut microbiota dysbiosis and reduced fecal bile salt hydrolase (BSH) activity. AFB1 exposure promoted hepatic bile acid (BA) synthesis and changed intestinal BA metabolism, especially increased intestinal conjugated bile acids levels. AFB1 exposure inhibited intestinal farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF-15) signaling. Furthermore, the mice received fecal microbiota transplantation from AFB1-treated mice induced liver injury, reduced intestinal FXR signaling and increased hepatic BA synthesis. Finally, the intestine-restricted FXR agonist treatment decreased hepatic BA synthesis, ROS level, inflammation and liver injury in AFB1-treated mice. This study suggests that modifying the gut microbiota, altering intestinal BA metabolism and/or activating intestinal FXR/FGF-15 signaling may be of value for the treatment of AFB1-induced liver disease.
Collapse
|
14
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
15
|
Yu C, Chen P, Miao L, Di G. The Role of the NLRP3 Inflammasome and Programmed Cell Death in Acute Liver Injury. Int J Mol Sci 2023; 24:3067. [PMID: 36834481 PMCID: PMC9959699 DOI: 10.3390/ijms24043067] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Acute liver injury (ALI) is a globally important public health issue that, when severe, rapidly progresses to acute liver failure, seriously compromising the life safety of patients. The pathogenesis of ALI is defined by massive cell death in the liver, which triggers a cascade of immune responses. Studies have shown that the aberrant activation of the nod-like receptor protein 3 (NLRP3) inflammasome plays an important role in various types of ALI and that the activation of the NLRP3 inflammasome causes various types of programmed cell death (PCD), and these cell death effectors can in turn regulate NLRP3 inflammasome activation. This indicates that NLRP3 inflammasome activation is inextricably linked to PCD. In this review, we summarize the role of NLRP3 inflammasome activation and PCD in various types of ALI (APAP, liver ischemia reperfusion, CCl4, alcohol, Con A, and LPS/D-GalN induced ALI) and analyze the underlying mechanisms to provide references for future relevant studies.
Collapse
Affiliation(s)
- Chaoqun Yu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Longyu Miao
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Guohu Di
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
16
|
Abstract
Experimental trials in organisms ranging from yeast to humans have shown that various forms of reducing food intake (caloric restriction) appear to increase both overall and healthy lifespan, delaying the onset of disease and slowing the progression of biomarkers of aging. The gut microbiota is considered one of the key environmental factors strongly contributing to the regulation of host health. Perturbations in the composition and activity of the gut microbiome are thought to be involved in the emergence of multiple diseases. Indeed, many studies investigating gut microbiota have been performed and have shown strong associations between specific microorganisms and metabolic diseases including overweight, obesity, and type 2 diabetes mellitus as well as specific gastrointestinal disorders, neurodegenerative diseases, and even cancer. Dietary interventions known to reduce inflammation and improve metabolic health are potentiated by prior fasting. Inversely, birth weight differential host oxidative phosphorylation response to fasting implies epigenetic control of some of its effector pathways. There is substantial evidence for the efficacy of fasting in improving insulin signaling and blood glucose control, and in reducing inflammation, conditions for which, additionally, the gut microbiota has been identified as a site of both risk and protective factors. Accordingly, human gut microbiota, both in symbiont and pathobiont roles, have been proposed to impact and mediate some health benefits of fasting and could potentially affect many of these diseases. While results from small-N studies diverge, fasting consistently enriches widely recognized anti-inflammatory gut commensals such as Faecalibacterium and other short-chain fatty acid producers, which likely mediates some of its health effects through immune system and barrier function impact.
Collapse
Affiliation(s)
- Sofia K Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| |
Collapse
|
17
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
18
|
Yang K, Cao F, Wang W, Tian Z, Yang L. The relationship between HMGB1 and autophagy in the pathogenesis of diabetes and its complications. Front Endocrinol (Lausanne) 2023; 14:1141516. [PMID: 37065747 PMCID: PMC10090453 DOI: 10.3389/fendo.2023.1141516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels and has become the third leading threat to human health after cancer and cardiovascular disease. Recent studies have shown that autophagy is closely associated with diabetes. Under normal physiological conditions, autophagy promotes cellular homeostasis, reduces damage to healthy tissues and has bidirectional effects on regulating diabetes. However, under pathological conditions, unregulated autophagy activation leads to cell death and may contribute to the progression of diabetes. Therefore, restoring normal autophagy may be a key strategy to treat diabetes. High-mobility group box 1 protein (HMGB1) is a chromatin protein that is mainly present in the nucleus and can be actively secreted or passively released from necrotic, apoptotic, and inflammatory cells. HMGB1 can induce autophagy by activating various pathways. Studies have shown that HMGB1 plays an important role in insulin resistance and diabetes. In this review, we will introduce the biological and structural characteristics of HMGB1 and summarize the existing knowledge on the relationship between HMGB1, autophagy, diabetes, and diabetic complications. We will also summarize potential therapeutic strategies that may be useful for the prevention and treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Kun Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Cao
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture, Haidian District Shuangyushu Community Health Service Center, Beijing, China
| | - Weili Wang
- Institute of Basic Research in Clinical Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lu Yang, ; Zhenyu Tian,
| | - Lu Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Yang, ; Zhenyu Tian,
| |
Collapse
|
19
|
Abstract
Abstract
Background
Clinical data on the modern topic fasting among cancer patients are rare. This review aimed to summarise published clinical data on fasting and its effects on patients undergoing chemotherapy and therefore to give some directions in advising patients with the desire to fast.
Method
A systematic search was conducted searching five electronic databases (Embase, Cochrane, PsychInfo, CINAHL and Medline) to find studies concerning the use, effectiveness and potential harm of fasting during therapy on cancer patients. The main endpoints were quality of life, side effects and toxicities of the fasting intervention.
Results
The search results totaled 3983 hits. After systematic sorting according to standardised pre-defined criteria, nine publications which covered eight studies with 379 patients were included in this systematic review. The majority of the patients included were diagnosed with breast- and gynaecological cancers. Fasting duration and timepoints ranged significantly (24–140 h before, and on the day of, chemotherapy to 56 h after chemotherapy). In one study patients were fasting before cancer surgery. The studies were mostly low to moderate quality and reported heterogeneous results. Overall, the studies were insufficiently powered to detect significant effects on the predefined endpoints.
Conclusion
Fasting for short periods does not have any beneficial effect on the quality of life of cancer patients during treatment. Evidence on fasting regimes reducing side effects and toxicities of chemotherapy is missing. In contrast, as the negative effects of unintentional weight loss are known to impact clinical outcomes severely, fasting is not indicated in this context.
Collapse
|
20
|
Taucher E, Mykoliuk I, Fediuk M, Smolle-Juettner FM. Autophagy, Oxidative Stress and Cancer Development. Cancers (Basel) 2022; 14:cancers14071637. [PMID: 35406408 PMCID: PMC8996905 DOI: 10.3390/cancers14071637] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Autophagy, as an important cellular repair mechanism, is important for the prevention of several diseases, including metabolic and neurologic disorders, and cancer. Hence, dysfunctional autophagy has been linked to these diseases, and in recent years researchers have tried to outline therapeutic targets in autophagy-related pathways as a treatment. With this review of the literature, we want to give an overview about the connection between oxidative stress, autophagy and cancer. Abstract Autophagy is an important cellular repair mechanism, aiming at sequestering misfolded and dysfunctional proteins and damaged cell organelles. Dysfunctions in the autophagy process have been linked to several diseases, like infectious and neurodegenerative diseases, type II diabetes mellitus and cancer. Living organisms are constantly subjected to some degree of oxidative stress, mainly induced by reactive oxygen and nitrogen species. It has been shown that autophagy is readily induced by reactive oxygen species (ROS) upon nutrient deprivation. In recent years, research has increasingly focused on outlining novel therapeutic targets related to the autophagy process. With this review of the literature, we want to give an overview about the link between autophagy, oxidative stress and carcinogenesis.
Collapse
Affiliation(s)
- Elisabeth Taucher
- Division of Pulmonology, Department of Internal Medicine, Medical University Graz, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-12183
| | - Iurii Mykoliuk
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| | - Melanie Fediuk
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| | - Freyja-Maria Smolle-Juettner
- Division of Thoracic Surgery, Department of Surgery, Medical University Graz, 8036 Graz, Austria; (I.M.); (M.F.); (F.-M.S.-J.)
| |
Collapse
|
21
|
Huang Z, Pu J, Luo Y, Fan J, Li K, Peng D, Zong K, Zhou B, Guan X, Zhou F. FAM49B, restrained by miR-22, relieved hepatic ischemia/reperfusion injury by inhibiting TRAF6/IKK signaling pathway in a Rac1-dependent manner. Mol Immunol 2022; 143:135-146. [PMID: 35131594 DOI: 10.1016/j.molimm.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury plays a pivotal pathogenic role in trauma, hepatectomy, and liver transplantation. However, the whole mechanism remains undescribed. The objective of this study is to investigate the internal mechanism by which microRNA-22 (miR-22) targets family with sequence similarity 49 member B (FAM49B), thus aggravating hepatic I/R injury. Here, we found that miR-22 was upregulated while FAM49B was reduced in hepatic I/R injury. Inhibition of miR-22 in vitro was able to intensify expression of FAM49B, thus reducing phosphorylation of inhibitors of nuclear factor kappa-B kinase (IKK) and downstream pro-inflammatory proteins. A dual luciferase reporter assay indicated that miR-22 directly targeted FAM49B. Remission of hepatic pathologic alterations, apoptosis, and release of cytokines derived from constraints of miR-22 were abolished in vivo by repressing FAM49B. Further interference of Ras-related C3 botulinum toxin substrate 1 (Rac1) reversed the function of FAM49B inhibition, thus achieving anti-inflammatory consequences.
Collapse
Affiliation(s)
- Zuotian Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junliang Pu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhai Luo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Fan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaili Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dadi Peng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kezhen Zong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baoyong Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Fachun Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Hofer SJ, Carmona‐Gutierrez D, Mueller MI, Madeo F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol Med 2022; 14:e14418. [PMID: 34779138 PMCID: PMC8749464 DOI: 10.15252/emmm.202114418] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Age-associated diseases are rising to pandemic proportions, exposing the need for efficient and low-cost methods to tackle these maladies at symptomatic, behavioral, metabolic, and physiological levels. While nutrition and health are closely intertwined, our limited understanding of how diet precisely influences disease often precludes the medical use of specific dietary interventions. Caloric restriction (CR) has approached clinical application as a powerful, yet simple, dietary modulation that extends both life- and healthspan in model organisms and ameliorates various diseases. However, due to psychological and social-behavioral limitations, CR may be challenging to implement into real life. Thus, CR-mimicking interventions have been developed, including intermittent fasting, time-restricted eating, and macronutrient modulation. Nonetheless, possible side effects of CR and alternatives thereof must be carefully considered. We summarize key concepts and differences in these dietary interventions in humans, discuss their molecular effects, and shed light on advantages and disadvantages.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioHealth GrazGrazAustria
- BioTechMed GrazGrazAustria
| | | | - Melanie I Mueller
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioHealth GrazGrazAustria
- BioTechMed GrazGrazAustria
| |
Collapse
|
23
|
Preoperative fasting confers protection against intestinal ischaemia/reperfusion injury by modulating gut microbiota and their metabolites in a mouse model. Br J Anaesth 2021; 128:501-512. [PMID: 34930601 DOI: 10.1016/j.bja.2021.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Intestinal ischaemia/reperfusion (I/R) injury is a grave surgical event with high morbidity and mortality. Preoperative fasting might confer protection against intestinal I/R injury by altering the composition of gut microbiota and their respective metabolites. METHODS An intestinal I/R mouse model was established and subjected to preoperative fasting for 24 h or fed ad libitum. Intestinal I/R injury was assessed using histological examination and survival analysis. Faecal samples were collected for 16S rDNA sequencing and metabolomic analysis. Faecal transplantation of fasted and non-fasted mice and humans was conducted to evaluate the effects of gut microbiota on intestinal I/R. Murine small intestinal cells wecre subjected to oxygen and glucose deprivation/reoxygenation as an in vitro I/R model. RESULTS Preoperative fasting protected against intestinal I/R injury and improved survival in mice (P<0.001). In addition, 16S rDNA sequencing revealed that preoperative fasting increased the diversity and restructured the composition of the gut microbiota after intestinal I/R. Mice that received microbiota from fasted mice and humans showed less intestinal damage than those that received microbiota from fed subjects. Metabolomic analysis showed that the profiles of gut microbial metabolites differed between fasted and fed groups. Specifically, the concentration of petroselinic acid was significantly higher in the fasted group (P=0.009). Treatment of intestinal I/R mice with petroselinic acid alleviated intestinal injury in vivo and decreased cell apoptosis by mediating AMP-activated protein kinase-mammalian target of rapamycin-P70S6K signaling in vitro. CONCLUSIONS Preoperative fasting protected against intestinal I/R injury by modulating gut microbiota and petroselinic acid, suggesting a novel therapeutic strategy.
Collapse
|
24
|
Papegay B, Nuyens V, Albert A, Cherkaoui-Malki M, Andreoletti P, Leo O, Kruys V, Boogaerts JG, Vamecq J. Adenosine Diphosphate and the P2Y13 Receptor Are Involved in the Autophagic Protection of Ex Vivo Perfused Livers From Fasted Rats: Potential Benefit for Liver Graft Preservation. Liver Transpl 2021; 27:997-1006. [PMID: 33306256 DOI: 10.1002/lt.25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 01/13/2023]
Abstract
Studies on how to protect livers perfused ex vivo can help design strategies for hepatoprotection and liver graft preservation. The protection of livers isolated from 24-hour versus 18-hour starved rats has been previously attributed to autophagy, which contributes to the energy-mobilizing capacity ex vivo. Here, we explored the signaling pathways responsible for this protection. In our experimental models, 3 major signaling candidates were considered in view of their abilities to trigger autophagy: high mobility group box 1 (HMGB1), adenosine monophosphate-activated protein kinase (AMPK), and purinergic receptor P2Y13. To this end, ex vivo livers isolated from starved rats were perfused for 135 minutes, after which perfusate samples were studied for protein release and biopsies were performed for evaluating signaling protein contents. For HMGB1, no significant difference was observed between livers isolated from rats starved for 18 and 24 hours at perfusion times of both 0 and 135 minutes. The phosphorylated and total forms of AMPK, but not their ratios, were significantly higher in 24-hour fasted than in 18-hour fasted livers. However, although the level of phosphorylated AMPK increased, perfusing ex vivo 18-hour fasted livers with 1 mM 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, did not protect the livers. In addition, the adenosine diphosphate (ADP; and not adenosine monophosphate [AMP]) to AMP + ADP + adenosine triphosphate ratio increased in the 24-hour starved livers compared with that in the 18-hour starved livers. Moreover, perfusing 24-hour starved livers with 0.1 mM 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde (MRS2211), a specific antagonist of the P2Y13 receptor, induced an increase in cytolysis marker levels in the perfusate samples and a decrease in the levels of autophagic marker microtubule-associated proteins 1 light chain 3 II (LC3II)/actin (and a loss of p62/actin decrease), indicating autophagy inhibition and a loss of protection. The P2Y13 receptor and ADP (a physiological activator of this receptor) are involved in the protection of ex vivo livers. Therapeutic opportunities for improving liver graft preservation through the stimulation of the ADP/P2Y13 receptor axis are further discussed.
Collapse
Affiliation(s)
- Bérengère Papegay
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Vincent Nuyens
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Adelin Albert
- Department of Biostatistics, University Hospital of Liège, Liège, Belgium
| | - Mustapha Cherkaoui-Malki
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Pierre Andreoletti
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Oberdan Leo
- Laboratory of Immunobiology and ULB Centre for Research in Immunology (U-CRI), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), Gosselies, Belgium
| | - Jean G Boogaerts
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Joseph Vamecq
- Inserm, and Hormonology/Metabolism/Nutrition/Oncology Department of the Centre of Biology and Pathology, Metabolism Branch, University Hospital Center of Lille and EA 7364-RADEME (Rare Developmental and Metabolic Disorders), North France University Lille, Lille, France
| |
Collapse
|
25
|
Gu XX, Xu XX, Liao HH, Wu RN, Huang WM, Cheng LX, Lu YW, Mo J. Dexmedetomidine hydrochloride inhibits hepatocyte apoptosis and inflammation by activating the lncRNA TUG1/miR-194/SIRT1 signaling pathway. J Inflamm (Lond) 2021; 18:20. [PMID: 34039367 PMCID: PMC8157629 DOI: 10.1186/s12950-021-00287-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/06/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver injury seriously threatens the health of people. Meanwhile, dexmedetomidine hydrochloride (DEX) can protect against liver injury. However, the mechanism by which Dex mediates the progression of liver injury remains unclear. Thus, this study aimed to investigate the function of DEX in oxygen and glucose deprivation (OGD)-treated hepatocytes and its underlying mechanism. METHODS In order to investigate the function of DEX in liver injury, WRL-68 cells were treated with OGD. Cell viability was measured by MTT assay. Cell apoptosis was detected by flow cytometry. Inflammatory cytokines levels were measured by ELISA assay. The interaction between miR-194 and TUG1 or SIRT1 was detected by dual-luciferase reporter. Gene and protein levels were measured by qPCR or western blotting. RESULTS DEX notably reversed OGD-induced inflammation and apoptosis in WRL-68 cell. Meanwhile, the effect of OGD on TUG1, SIRT1 and miR-194 expression in WRL-68 cells was reversed by DEX treatment. However, TUG1 knockdown or miR-194 overexpression reversed the function of DEX in OGD-treated WRL-68 cells. Moreover, TUG1 could promote the expression of SIRT1 by sponging miR-194. Furthermore, knockdown of TUG1 promoted OGD-induced cell growth inhibition and inflammatory responses, while miR-194 inhibitor or SIRT1 overexpression partially reversed this phenomenon. CONCLUSIONS DEX could suppress OGD-induced hepatocyte apoptosis and inflammation by mediation of TUG1/miR-194/SIRT1 axis. Therefore, this study might provide a scientific basis for the application of DEX on liver injury treatment.
Collapse
Affiliation(s)
- Xiao-Xia Gu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Xiao-Xia Xu
- Operating room, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Hui-Hua Liao
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Ruo-Na Wu
- Operating room, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Wei-Ming Huang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Li-Xia Cheng
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Yi-Wen Lu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Jian Mo
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China.
| |
Collapse
|
26
|
Li SW, Takahara T, Que W, Fujino M, Guo WZ, Hirano SI, Ye LP, Li XK. Hydrogen-rich water protects against liver injury in nonalcoholic steatohepatitis through HO-1 enhancement via IL-10 and Sirt 1 signaling. Am J Physiol Gastrointest Liver Physiol 2021; 320:G450-G463. [PMID: 33439102 DOI: 10.1152/ajpgi.00158.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) could progress to hepatic fibrosis in the absence of effective control. The purpose of our experiment was to investigate the protective effect of drinking water with a high concentration of hydrogen, namely, hydrogen-rich water (HRW), on mice with nonalcoholic fatty liver disease to elucidate the mechanism underlying the therapeutic action of molecular hydrogen. The choline-supplemented, l-amino acid-defined (CSAA) or the choline-deficient, l-amino acid-defined (CDAA) diet for 20 wk was used to induce NASH and fibrosis in the mice model and simultaneously treated with the high-concentration 7-ppm HRW for different periods (4 wk, 8 wk, and 20 wk). Primary hepatocytes were stimulated by palmitate to mimic liver lipid metabolism during fatty liver formation. Primary hepatocytes were cultured in a closed vessel filled with 21% O2 + 5% CO2 + 3.8% H2 and N2 as the base gas to verify the response of primary hepatocytes in a high concentration of hydrogen gas in vitro. Mice in the CSAA + HRW group had lower serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and milder histological damage. The inflammatory cytokines were expressed at lower levels in the HRW group than in the CSAA group. Importantly, HRW reversed hepatocyte fatty acid oxidation and lipogenesis as well as hepatic inflammation and fibrosis in preexisting hepatic fibrosis specimens. Molecular hydrogen inhibits the lipopolysaccharide-induced production of inflammation cytokines through increasing heme oxygenase-1 (HO-1) expression. Furthermore, HRW improved hepatic steatosis in the CSAA + HRW group. Sirtuin 1 (Sirt1) induction by molecular hydrogen via the HO-1/adenosine monophosphate activated protein kinase (AMPK)/peroxisome proliferator-activated receptor α (PPARα)/peroxisome proliferator-activated receptor γ (PPAR-γ) pathway suppresses palmitate-mediated abnormal fat metabolism. Orally administered HRW suppressed steatosis induced by CSAA and attenuated fibrosis induced by CDAA, possibly by reducing oxidative stress and the inflammation response.NEW & NOTEWORTHY The mRNA expression of inflammatory cytokines in the HRW group was lower than in the CSAA group. HRW reversed hepatocyte apoptosis as well as hepatic inflammation and fibrosis in NASH specimens. Molecular hydrogen inhibits LPS-induced inflammation via an HO-1/interleukin 10 (IL-10)-independent pathway. HRW improved hepatic steatosis in the CSAA + HRW group. Sirt1 induction by molecular hydrogen via the HO-1/AMPK/PPARα/PPARγ pathway suppresses palmitate-mediated abnormal fat metabolism.
Collapse
Affiliation(s)
- Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Terumi Takahara
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Li-Ping Ye
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Inhibiting ATP6V0D2 Aggravates Liver Ischemia-Reperfusion Injury by Promoting NLRP3 Activation via Impairing Autophagic Flux Independent of Notch1/Hes1. J Immunol Res 2021; 2021:6670495. [PMID: 33860063 PMCID: PMC8024071 DOI: 10.1155/2021/6670495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
At present, liver ischemia-reperfusion (IR) injury is still a great challenge for clinical liver partial resection and liver transplantation. The innate immunity regulated by liver macrophages orchestrates the cascade of IR inflammation and acts as a bridge. As a specific macrophage subunit of vacuolar ATPase, ATP6V0D2 (V-ATPase D2 subunit) has been shown to promote the formation of autophagolysosome in vitro. Our research fills a gap which has existed in the study of inflammatory stress about the V-ATPase subunit ATP6V0D2 in liver macrophages. We first found that the expression of specific ATP6V0D2 in liver macrophages was upregulated with the induction of inflammatory cascade after liver IR surgery, and knockdown of ATP6V0D2 resulted in increased secretion of proinflammatory factors and chemokines, which enhanced activation of NLRP3 and aggravation of liver injury. Further studies found that the exacerbated activation of NLRP3 was related to the autophagic flux regulated by ATP6V0D2. Knocking down ATP6V0D2 impaired the formation of autophagolysosome and aggravated liver IR injury through nonspecific V-ATPase activation independent of V-ATPase-Notchl-Hesl signal axis. In general, we illustrated that the expression of ATP6V0D2 in liver macrophages was upregulated after liver IR, and by gradually promoting the formation of autophagolysosomes to increase autophagy flux to limit the activation of liver inflammation, this regulation is independent of the Notch1-Hes1 signal axis.
Collapse
|
28
|
Xiao X, Liu D, Chen S, Li X, Ge M, Huang W. Sevoflurane preconditioning activates HGF/Met-mediated autophagy to attenuate hepatic ischemia-reperfusion injury in mice. Cell Signal 2021; 82:109966. [PMID: 33639217 DOI: 10.1016/j.cellsig.2021.109966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/26/2022]
Abstract
Sevoflurane (SEV) preconditioning plays a protective effect against liver ischemia reperfusion (IR) injury, while the role of autophagy in SEV-mediated hepatoprotection and the precise mechanism is unclear. In the current study, mice were pretreated with SEV or autophagy inhibitor before liver IR injury. In vitro, primary rat hepatocytes were pretreated with SEV and then exposed to hypoxia/reoxygenation (H/R). Liver function was measured by biochemical and histopathological examinations, and markers associated with inflammation, oxidation, apoptosis and autophagy were subsequently measured. We found that SEV preconditioning dramatically reduced hepatic damage, alleviated cell inflammatory response, oxidative stress and apoptosis in mice suffering hepatic IR injury, whereas these protective effects were abolished by the autophagy inhibitor 3-MA. In addition, pretreatment with SEV markedly activated HGF/Met signaling pathway regulation. Besides, pretreatment with an hepatocyte growth factor (HGF) inhibitor or knocking down HGF expression significantly downregulated phosphorylated met (p-met) and autophagy levels, and abolished the protective effects of SEV against hepatic IR or hepatocyte H/R injury. Conversely, HGF overexpression efficiently increased the p-met and autophagy levels and strengthened the protective effects of SEV. These results indicated that sevoflurane preconditioning ameliorates hepatic IR injury by activating HGF/Met-mediated autophagy.
Collapse
Affiliation(s)
- Xiaoyu Xiao
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Department of Anesthesiology, Fifth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 519000, Guangdong, China
| | - Dezhao Liu
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Sufang Chen
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Xiang Li
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Mian Ge
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Wenqi Huang
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
29
|
Eva1a inhibits NLRP3 activation to reduce liver ischemia-reperfusion injury via inducing autophagy in kupffer cells. Mol Immunol 2021; 132:82-92. [PMID: 33556710 DOI: 10.1016/j.molimm.2021.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/03/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Ischemia-reperfusion(IR) injury is one of the main complications of liver transplantation and partial hepatectomy. Innate immunity mediated by kupffer cells plays an important role in it. In this study, we focused on evaluating the intrinsic relationship between the autophagy induction of kupffer cells and the activation of NLRP3 inflammasomes caused by liver ischemia-reperfusion. Pre-depletion of kupffer cells can aggravate inflammation and tissue damage within 24 h after IR.Enhancing the autophagy of kupffer cells can inhibit the activation of NLRP3 caused by IR, and inhibiting autophagy can induce the secretion of IL1β dependent on NLRP3 activation.Eva1a is up-regulated by the inflammatory cascade activated by IR.Knockdown of Eva1a in vivo on the one hand will aggravate IR inflammation, increase the production of TNF-α, IL-1β and inhibit the secretion of IL-10.On the other hand, it will aggravate the liver histological damage. Knockout of Eva1a induces ASC activation and cleavage of caspase1 and IL1β in an NLRP3-dependent manner, which is closely related to the function of blocking Eva1a to promote autophagosome formation.We further found that knockdown of ATG16L1 will reverse the more formation of autophagosomes induced by overexpression of Eva1a, whereas knockdown of ATG16L1 did not further reduce the formation of autophagosomes inhibited by siEva1a. We also found that the addition of siATG7, siATG5 and siATG12 would reverse the IR autophagy of liver induced by overexpression of Eva1a, but inhibition of the Beclin1-Vps34 pathway did not significantly reverse the effect of overexpression of Eva1a.These prove that Eva1a and ATG16L1 may work together in the liver IR model to actively induce the formation of autophagosomes and be independent from the beclin1-vps34-induced autophagy pathway to limit the excessive activation of IR inflammation. Our study provides brand new insights into the mechanism of liver macrophages in the progression of inflammation in the context of liver ischemia-reperfusion injury.
Collapse
|
30
|
Wang Z, Guo W, Yi F, Zhou T, Li X, Feng Y, Guo Q, Xu H, Song X, Cao L. The Regulatory Effect of SIRT1 on Extracellular Microenvironment Remodeling. Int J Biol Sci 2021; 17:89-96. [PMID: 33390835 PMCID: PMC7757024 DOI: 10.7150/ijbs.52619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The sirtuins family is well known by its unique nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase function. The most-investigated member of the family, Sirtuin 1 (SIRT1), accounts for deacetylating a broad range of transcription factors and coregulators, such as p53, the Forkhead box O (FOXO), and so on. It serves as a pivotal regulator in various intracellular biological processes, including energy metabolism, DNA damage response, genome stability maintenance and tumorigenesis. Although the most attention has been focused on its intracellular functions, the regulatory effect on extracellular microenvironment remodeling of SIRT1 has been recognized by researchers recently. SIRT1 can regulate cell secretion process and participate in glucose metabolism, neuroendocrine function, inflammation and tumorigenesis. Here, we review the advances in the understanding of SIRT1 on remodeling the extracellular microenvironment, which may provide new ideas for pathogenesis investigation and guidance for clinical treatment.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Wendong Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Fei Yi
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Tingting Zhou
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoman Li
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Yanling Feng
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Qiqiang Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Hongde Xu
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoyu Song
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| |
Collapse
|
31
|
Micó-Carnero M, Rojano-Alfonso C, Álvarez-Mercado AI, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery. Int J Mol Sci 2020; 22:E44. [PMID: 33375200 PMCID: PMC7793124 DOI: 10.3390/ijms22010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut-liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Escuela de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Institut of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 03036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
32
|
Zhang Y, Zhu X, Wang G, Chen L, Yang H, He F, Lin J. Melatonin Rescues the Ti Particle-Impaired Osteogenic Potential of Bone Marrow Mesenchymal Stem Cells via the SIRT1/SOD2 Signaling Pathway. Calcif Tissue Int 2020; 107:474-488. [PMID: 32767062 DOI: 10.1007/s00223-020-00741-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Wear particles released by joint implants are a major cause of osteolysis around the prosthesis by negatively affecting bone reconstruction. Bone marrow mesenchymal stem cells (BMMSCs) stimulated by wear particles showed an impaired osteogenic potential. Melatonin has been shown beneficial effects on intracellular antioxidant functions and bone formation; however, whether it could restore the osteogenic potential of BMMSCs inhibited by wear particles was unknown. This study aimed to evaluate the protective effect of melatonin on the osteogenic capacity of BMMSCs exposed to titanium (Ti) wear particles and to investigated the underlying mechanisms involving intracellular antioxidant properties. When BMMSCs were exposed to Ti particles in vitro, melatonin treatment successfully improved the matrix mineralization and expression of osteogenic markers in BMMSCs, while decreasing the levels of intracellular reactive oxygen species (ROS) and mitochondrial superoxide. The protective effect of melatonin on osteolysis was validated in a Ti particle-exposed murine calvarial model. Meanwhile, silent information regulator type 1 (SIRT1) and intracellular antioxidant enzymes were significantly up-regulated, particularly superoxide dismutase 2 (SOD2), in melatonin-treated BMMSCs. Furthermore, inhibition of SIRT1 by EX527 completely counteracted the protective effect of melatonin on Ti particle-treated BMMSCs, evidenced by the reduced expression of SOD2, increased ROS and superoxide, and decreased osteogenic differentiation. These results demonstrated that melatonin restored the osteogenic potential and improved the antioxidant properties of BMMSCs through the SIRT1 signaling pathway. Our findings suggest that melatonin is a promising candidate for treating osteolysis induced by wear particles.
Collapse
Affiliation(s)
- Yazhong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China
- Medical College, Orthopaedic Institute, Soochow University, No. 708 Renmin Road, 215007, Suzhou, Jiangsu, China
| | - Xu Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China
- Medical College, Orthopaedic Institute, Soochow University, No. 708 Renmin Road, 215007, Suzhou, Jiangsu, China
| | - Genlin Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China
| | - Liang Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China
- Medical College, Orthopaedic Institute, Soochow University, No. 708 Renmin Road, 215007, Suzhou, Jiangsu, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China.
- Medical College, Orthopaedic Institute, Soochow University, No. 708 Renmin Road, 215007, Suzhou, Jiangsu, China.
| | - Jun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China.
| |
Collapse
|
33
|
Hannan MA, Rahman MA, Rahman MS, Sohag AAM, Dash R, Hossain KS, Farjana M, Uddin MJ. Intermittent fasting, a possible priming tool for host defense against SARS-CoV-2 infection: Crosstalk among calorie restriction, autophagy and immune response. Immunol Lett 2020; 226:38-45. [PMID: 32659267 PMCID: PMC7351063 DOI: 10.1016/j.imlet.2020.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of deadly Coronavirus disease-19 (COVID-19) pandemic, which emerged as a major threat to public health across the world. Although there is no clear gender or socioeconomic discrimination in the incidence of COVID-19, individuals who are older adults and/or with comorbidities and compromised immunity have a relatively higher risk of contracting this disease. Since no specific drug has yet been discovered, strengthening immunity along with maintaining a healthy living is the best way to survive this disease. As a healthy practice, calorie restriction in the form of intermittent fasting (IF) in several clinical settings has been reported to promote several health benefits, including priming of the immune response. This dietary restriction also activates autophagy, a cell surveillance system that boosts up immunity. With these prevailing significance in priming host defense, IF could be a potential strategy amid this outbreak to fighting off SARS-CoV-2 infection. Currently, no review so far available proposing IF as an encouraging strategy in the prevention of COVID-19. A comprehensive review has therefore been planned to highlight the beneficial role of fasting in immunity and autophagy, that underlie the possible defense against SARS-CoV-2 infection. The COVID-19 pathogenesis and its impact on host immune response have also been briefly outlined. This review aimed at revisiting the immunomodulatory potential of IF that may constitute a promising preventive approach against COVID-19.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh,ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh,Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Md. Ataur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh,Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea,Global Biotechnology & Biomedical Research Network (GBBRN), Dept. of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Saidur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh,Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Khandkar Shaharina Hossain
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh,Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Mithila Farjana
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh,Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
34
|
Inhibition of miR-450b-5p ameliorates hepatic ischemia/reperfusion injury via targeting CRYAB. Cell Death Dis 2020; 11:455. [PMID: 32532961 PMCID: PMC7293338 DOI: 10.1038/s41419-020-2648-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Hepatic ischemia/reperfusion injury (IRI) is an unavoidable course in liver transplantation, during which the immune response of inflammation plays a leading part. MicroRNA-450b-5p (miR-450b-5p), which has been reported to participate in several inflammatory diseases, was investigated in this study. The purpose of this study is to identify the potential function of miR-450b-5p toward remission of hepatic IRI and elucidate the specific mechanism. Herein we found that expression of miR-450b-5p, interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and IL-6 was stimulated in hepatic IRI. Inhibition of miR-450b-5p could remarkably alleviate mouse hepatic IRI and improve liver function measured by hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA). We further assessed protein expression undergoing Western blot and immunofluorescence, and discovered that miR-450b-5p suppressed alpha B-crystallin (CRYAB), thus restraining the inhibitory κB kinase (IKK) β-mediated canonical nuclear factor-κB (NF-κB) signaling, instead of the noncanonical path guided by IKKα in hepatic IRI. In addition, we demonstrated CRYAB as an activator of M2 polarization through protein kinase B (Akt) 1/mammalian target of rapamycin (mTOR), thus resulting in relief of liver IRI. Combination treatment containing both paths revealed a better antidamage efficacy than adjusting either path alone, suggesting that the joint therapy might be a promising solution in hepatic IRI.
Collapse
|
35
|
Sirtuin 1: A Dilemma in Transplantation. J Transplant 2020; 2020:9012980. [PMID: 32373350 PMCID: PMC7196964 DOI: 10.1155/2020/9012980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/30/2022] Open
Abstract
Sirtuin 1, a member of sirtuin family of histone deacetylase enzymes, has been implicated in a variety of physiologic and pathologic events, including energy metabolism, cell survival, and age-related alterations. In view of the anti-inflammatory properties of sirtuin 1 along with its protective role in ischemia reperfusion injury, it might be considered as contributing to the promotion of transplantation outcome. However, the potential ability of sirtuin 1 to induce malignancies raises some concerns about its overexpression in clinic. Moreover, despite the findings of sirtuin 1 implication in thymic tolerance induction and T regulatory (Treg) cells survival, there is also evidence for its involvement in Treg suppression and in T helper 17 cells differentiation. The identification of sirtuin 1 natural and synthetic activators leads to the proposal of sirtuin 1 as an eligible target for clinical interventions in transplantation. All positive and negative consequences of sirtuin 1 overactivation/overexpression in the allograft should therefore be studied thoroughly. Herein, we summarize previous findings concerning direct and indirect influences of sirtuin 1 manipulation on transplantation.
Collapse
|
36
|
Wang J, Deng M, Wu H, Wang M, Gong J, Bai H, Wu Y, Pan J, Chen Y, Li S. Suberoylanilide hydroxamic acid alleviates orthotopic liver transplantation‑induced hepatic ischemia‑reperfusion injury by regulating the AKT/GSK3β/NF‑κB and AKT/mTOR pathways in rat Kupffer cells. Int J Mol Med 2020; 45:1875-1887. [PMID: 32236599 PMCID: PMC7169828 DOI: 10.3892/ijmm.2020.4551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/06/2020] [Indexed: 12/26/2022] Open
Abstract
Multiple mechanisms are involved in regulating hepatic ischemia-reperfusion injury (IRI), in which Kupffer cells (KCs), which are liver-resident macrophages, play critical roles by regulating inflammation and the immune response. Suberoylanilide hydroxamic acid (SAHA), a pan-histone deacetylase inhibitor, has anti-inflammatory effects and induces autophagy. To investigate whether SAHA ameliorates IRI and the mechanisms by which SAHA exerts its effects, an orthotopic liver transplantation (OLT) rat model was established after treatment with SAHA. The results showed that SAHA effectively ameliorated OLT-induced IRI by reducing M1 polarization of KCs through inhibition of the AKT/glycogen synthase kinase (GSK)3β/NF-κB signaling pathway. Furthermore, the present study found that SAHA upregulates autophagy 5 protein (ATG5)/LC3B in KCs through the AKT/mTOR signaling pathway and inhibition of autophagy by knockdown of ATG5 in KCs partly impaired the protective effect of SAHA on IR-injured liver. Therefore, the current study demonstrated that SAHA reduces M1 polarization of KCs by inhibiting the AKT/GSK3β/NF-κB pathway and upregulates autophagy in KCs through the AKT/mTOR signaling pathway, which both alleviate OLT-induced IRI. The present study revealed that SAHA may be a novel treatment for the amelioration of OLT-induced IRI.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Minghua Deng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hao Wu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Menghao Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - He Bai
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yakun Wu
- Department of Hepatobiliary Surgery, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Junjiang Pan
- Department of General Surgery, Second People's Hospital of Yibin City, Yibin, Sichuan 644000, P.R. China
| | - Yong Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Shengwei Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
37
|
Cornide-Petronio ME, Álvarez-Mercado AI, Jiménez-Castro MB, Peralta C. Current Knowledge about the Effect of Nutritional Status, Supplemented Nutrition Diet, and Gut Microbiota on Hepatic Ischemia-Reperfusion and Regeneration in Liver Surgery. Nutrients 2020; 12:E284. [PMID: 31973190 PMCID: PMC7071361 DOI: 10.3390/nu12020284] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is an unresolved problem in liver resection and transplantation. The preexisting nutritional status related to the gut microbial profile might contribute to primary non-function after surgery. Clinical studies evaluating artificial nutrition in liver resection are limited. The optimal nutritional regimen to support regeneration has not yet been exactly defined. However, overnutrition and specific diet factors are crucial for the nonalcoholic or nonalcoholic steatohepatitis liver diseases. Gut-derived microbial products and the activation of innate immunity system and inflammatory response, leading to exacerbation of I/R injury or impaired regeneration after resection. This review summarizes the role of starvation, supplemented nutrition diet, nutritional status, and alterations in microbiota on hepatic I/R and regeneration. We discuss the most updated effects of nutritional interventions, their ability to alter microbiota, some of the controversies, and the suitability of these interventions as potential therapeutic strategies in hepatic resection and transplantation, overall highlighting the relevance of considering the extended criteria liver grafts in the translational liver surgery.
Collapse
Affiliation(s)
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix,” Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
38
|
Zhao Y, Zhang Y, Zhang J, Zhang X, Yang G. Molecular Mechanism of Autophagy: Its Role in the Therapy of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:720-739. [PMID: 31934838 PMCID: PMC7536828 DOI: 10.2174/1570159x18666200114163636] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of progressive dementia that is characterized by the accumulation of beta-amyloid (Aβ)-containing neuritic plaques and intracellular Tau protein tangles. This distinctive pathology indicates that the protein quality control is compromised in AD. Autophagy functions as a "neuronal housekeeper" that eliminates aberrant protein aggregates by wrapping then into autophagosomes and delivering them to lysosomes for degradation. Several studies have suggested that autophagy deficits in autophagy participate in the accumulation and propagation of misfolded proteins (including Aβ and Tau). In this review, we summarize current knowledge of autophagy in the pathogenesis of AD, as well as some pathways targeting the restoration of autophagy. Moreover, we discuss how these aspects can contribute to the development of disease-modifying therapies in AD.
Collapse
Affiliation(s)
| | | | | | | | - Guofeng Yang
- Address correspondence to this author at the Department of Geriatrics, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, China; Tel: +86-311-66636243; E-mail:
| |
Collapse
|
39
|
Signaling Network of Forkhead Family of Transcription Factors (FOXO) in Dietary Restriction. Cells 2019; 9:cells9010100. [PMID: 31906091 PMCID: PMC7016766 DOI: 10.3390/cells9010100] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
Dietary restriction (DR), which is defined as a reduction of particular or total nutrient intake without causing malnutrition, has been proved to be a robust way to extend both lifespan and health-span in various species from yeast to mammal. However, the molecular mechanisms by which DR confers benefits on longevity were not yet fully elucidated. The forkhead box O transcription factors (FOXOs), identified as downstream regulators of the insulin/IGF-1 signaling pathway, control the expression of many genes regulating crucial biological processes such as metabolic homeostasis, redox balance, stress response and cell viability and proliferation. The activity of FOXOs is also mediated by AMP-activated protein kinase (AMPK), sirtuins and the mammalian target of rapamycin (mTOR). Therefore, the FOXO-related pathways form a complex network critical for coordinating a response to environmental fluctuations in order to maintain cellular homeostasis and to support physiological aging. In this review, we will focus on the role of FOXOs in different DR interventions. As different DR regimens or calorie (energy) restriction mimetics (CRMs) can elicit both distinct and overlapped DR-related signaling pathways, the benefits of DR may be maximized by combining diverse forms of interventions. In addition, a better understanding of the precise role of FOXOs in different mechanistic aspects of DR response would provide clear cellular and molecular insights on DR-induced increase of lifespan and health-span.
Collapse
|
40
|
Xu C, Liu CH, Zhang DL. MicroRNA-22 inhibition prevents doxorubicin-induced cardiotoxicity via upregulating SIRT1. Biochem Biophys Res Commun 2019; 521:485-491. [PMID: 31677784 DOI: 10.1016/j.bbrc.2019.10.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/19/2019] [Indexed: 01/09/2023]
Abstract
Oxidative stress and cardiomyocyte apoptosis contributed to the progression of doxorubicin (Dox)-induced cardiotoxicity. Recent studies identified microRNA-22 (miR-22) as a cardiac- and skeletal muscle-enriched microRNA that functioned as a key regulator in stress-induced cardiac injury. The present study aimed to investigate the role and possible mechanism of miR-22 on Dox-induced oxidative stress and cardiomyocyte apoptosis. Mice were exposed to reduplicative injections of Dox (i.p., 4 mg/kg) weekly for consecutive 4 weeks to generate Dox-induced cardiotoxicity. Herein, we found that miR-22 level was significantly increased in murine hearts subjected to chronic Dox treatment. MiR-22 inhibition attenuated oxidative stress and cardiomyocyte apoptosis in vivo and in vitro, thereby preventing Dox-induced cardiac dysfunction. Mechanistically, we observed that miR-22 directly bound to the 3'-UTR of Sirt1 and caused SIRT1 downregulation. Conversely, miR-22 antagomir upregulated SIRT1 expression and SIRT1 inhibitor abolished the beneficial effects of miR-22 antagomir. In conclusion, miR-22 inhibition prevented oxidative stress and cardiomyocyte apoptosis via upregulating SIRT1 and miR-22 might be a new target for treating Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Can Xu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China
| | - Chang-Hui Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China
| | - Da-Li Zhang
- Department of Emergency, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
41
|
Inflammasome-Mediated Inflammation in Liver Ischemia-Reperfusion Injury. Cells 2019; 8:cells8101131. [PMID: 31547621 PMCID: PMC6829519 DOI: 10.3390/cells8101131] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Ischemia-reperfusion injury is an important cause of liver damage occurring during surgical procedures including hepatic resection and liver transplantation, and represents the main underlying cause of graft dysfunction and liver failure post-transplantation. To date, ischemia-reperfusion injury is an unsolved problem in clinical practice. In this context, inflammasome activation, recently described during ischemia-reperfusion injury, might be a potential therapeutic target to mitigate the clinical problems associated with liver transplantation and hepatic resections. The present review aims to summarize the current knowledge in inflammasome-mediated inflammation, describing the experimental models used to understand the molecular mechanisms of inflammasome in liver ischemia-reperfusion injury. In addition, a clear distinction between steatotic and non-steatotic livers and between warm and cold ischemia-reperfusion injury will be discussed. Finally, the most updated therapeutic strategies, as well as some of the scientific controversies in the field will be described. Such information may be useful to guide the design of better experimental models, as well as the effective therapeutic strategies in liver surgery and transplantation that can succeed in achieving its clinical application.
Collapse
|
42
|
Wang C, Sun X, Qiu Z, Chen A. MiR-138-5p exacerbates hypoxia/reperfusion-induced heart injury through the inactivation of SIRT1-PGC-1α. Inflamm Res 2019; 68:867-876. [PMID: 31312857 DOI: 10.1007/s00011-019-01268-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES A drastic reduction in myocardial cell apoptosis plays a crucial role in the treatment/management of myocardial infarction, a major cardiovascular health challenge confronting the world, especially the Western world. Accumulating evidence indicates that the cardiotoxicity caused by the apoptotic machinery is partly regulated by miRNAs. The aim of this research is to investigate the role of miR-138-5p on hypoxia/reperfusion-induced heart injury. METHODS The expression of miR-138-5p was determined in heart tissue from myocardial infarction patients and rats. Rats were transfection with a miR-138-5p inhibitor to silence miR-138-5p. The cardiac function of rats was detected via echocardiography. SIRT1 and PGC-1α expression in cardiac infarction was detected via quantitative Real-time PCR (qPCR) and Western blot analysis, while the TUNEL assay was used to determine myocardial apoptosis. RESULTS Our observations showed that miR-138-5p expression was upregulated after the induction of myocardial infarction. The miR-138-5p inhibitor significantly improved cardiac function, increased the expression of SIRT1 and PGC-1α, and decreased the rate of myocardial apoptosis, whereas siRNA-SIRT1 reversed these protective effects. CONCLUSIONS In conclusion, our study demonstrated that miR-138-5p could promote cardiac ischemia injury via inhibition of the silent information regulator 1 and peroxisome proliferator-initiated receptor gamma and coactivator 1 alpha (SIRT1-PGC-1α) axis.
Collapse
Affiliation(s)
- Cuiping Wang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, People's Republic of China
| | - Xia Sun
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, People's Republic of China
| | - Zhi Qiu
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, People's Republic of China
| | - Anyong Chen
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, People's Republic of China. .,Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong, People's Republic of China.
| |
Collapse
|
43
|
Xu S, Zeng Z, Zhao M, Huang Q, Gao Y, Dai X, Lu J, Huang W, Zhao K. Evidence for SIRT1 Mediated HMGB1 Release From Kidney Cells in the Early Stages of Hemorrhagic Shock. Front Physiol 2019; 10:854. [PMID: 31333497 PMCID: PMC6625367 DOI: 10.3389/fphys.2019.00854] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
Background This study is to explore the effect of SIRT1 deacetylating inactivation on organ-derived high mobility group box 1 (HMGB1) during the development of severe hemorrhagic shock (HS). Methods Hemorrhagic shock model was reproduced in rats by blood shedding and mimicked in HK-2 cells by hypoxia-reoxygenation (H/R) treatment. The level and acetylation of HMGB1 and the expression and activity of SIRT1 were detected in tissue, serum and cultured cells and supernatant. The deacetylated sites of HMGB1 was determined by Co-IP. Results Serum HMGB1 in HS rats was increased but were reduced in multiple organs, especially in kidney tissue, with enhanced HMGB1 acetylation, and reduced deacetylase SIRT1 activity in isolated RTECs. HMGB1 in suspension of H/R-treated HK-2 cells was increased, accompanying with enhanced HMGB1 acetylation, and nuclear-plasma translocation. SIRT1 down-regulated by siRNA aggravated acetylation of HMGB1 and nucleus-to-cytoplasm translocation and resulted in increased HMGB1 in cultured HK-2 suspension. Immunoprecipitation data suggested that SIRT1-indcuced deacetylated sites of HMGB1 were K90 and K177 following H/R. SIRT1 overexpression inhibited the acetylation of HMGB1 and reduced the content of extracellular HMGB1 in H/R-treated HK-2 cells. Inhibiting mutation of SIRT1 restored the acetylation of HMGB1 and HMGB1 content in extracellular suspension. In HS rat model, the neutralization of HMGB1 with antibody could reduce serum HMGB1 and pro-inflammatory cytokine contents, but had no effect on SIRT1 protein expression and activity. Polydatin (PD), a potential SIRT1 agonist, up-regulated SIRT1 activity and inhibited nucleus-to-cytoplasm translocation of HMGB1 in RTECs. Moreover, PD also attenuated RTEC apoptosis, protected renal function, and prolonged survival in HS rats. These beneficial effect of PD is largely blocked by specific inhibition of SIRT1 with Ex527. Conclusion The acetylation of HMGB1 in K99 and K177 is enhanced during HS due to the downregulation of SIRT1. The nucleus-to-cytoplasm translocation and the release of acetylated HMGB1 from RTECs of kidney might exacerbate the pro-inflammatory effects of HMGB1 during the development of HS.
Collapse
Affiliation(s)
- Siqi Xu
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Qingdao Municipal Hospital (Group), Qingdao, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Zhao
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Youguang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xingui Dai
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Institute of Translational Medicine, Chenzhou, China
| | - Jiayin Lu
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiqing Huang
- Department of Pathology, Qingdao Municipal Hospital (Group), Qingdao, China
| | - Keseng Zhao
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
Mohammad G, Abdelaziz GM, Siddiquei MM, Ahmad A, De Hertogh G, Abu El-Asrar AM. Cross-Talk between Sirtuin 1 and the Proinflammatory Mediator High-Mobility Group Box-1 in the Regulation of Blood-Retinal Barrier Breakdown in Diabetic Retinopathy. Curr Eye Res 2019; 44:1133-1143. [PMID: 31136205 DOI: 10.1080/02713683.2019.1625406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Purpose: High-mobility group box-1 (HMGB1) mediates inflammation and breakdown of blood-retinal barrier (BRB) in diabetic retina. Sirtuin-1 (SIRT1) has protective effects against inflammation and oxidative stress. The aim of this study was to investigate the interaction between HMGB1 and SIRT1 in regulating BRB breakdown in diabetic retina. Methods: BRB breakdown was assessed in vivo with fluorescein isothiocyanate-conjugated dextran. Vitreous samples from 47 proliferative diabetic retinopathy (PDR) and 19 nondiabetic patients, and epiretinal membranes from 13 patients with PDR were studied by enzyme-linked immunosorbent assay and immunohistochemistry. Retinas from 4-week diabetic rats and from normal rats intravitreally injected with HMGB1 were studied by spectrophotometric assay, Western blot analysis, and RT-PCR. We also studied the effect of the HMGB1 inhibitor glycyrrhizin and the SIRT1 activator resveratrol on diabetes-induced biochemical changes in the retina. Results: HMGB1 levels in vitreous samples from PDR patients were significantly higher than in nondiabetic controls, whereas SIRT1 levels were significantly lower in vitreous samples from patients with inactive PDR than those in patients with active PDR and nondiabetic controls. In epiretinal membranes, SIRT1 was expressed in vascular endothelial cells and stromal cells. Diabetes and intravitreal injection of HMGB1 in normal rats downregulated SIRT1expression, whereas glycyrrhizin and resveratrol normalized diabetes-induced downregulation of SIRT1. Resveratrol significantly attenuated diabetes-induced downregulation of occludin and upregulation of HMGB1 and receptor for advanced glycation end products in the retina and breakdown of BRB. Conclusions: Our findings suggest that a functional link between SIRT1 and HMGB1 is involved in regulating of BRB breakdown in diabetic retina.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Department of Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology , Riyadh , Saudi Arabia
| | - Ghada Maher Abdelaziz
- Department of Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Mohammad Mairaj Siddiquei
- Department of Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology , Riyadh , Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology , Riyadh , Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven , KU Leuven , Leuven , Belgium
| | - Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology , Riyadh , Saudi Arabia
| |
Collapse
|
45
|
Up-regulation of FOXO1 and reduced inflammation by β-hydroxybutyric acid are essential diet restriction benefits against liver injury. Proc Natl Acad Sci U S A 2019; 116:13533-13542. [PMID: 31196960 PMCID: PMC6613133 DOI: 10.1073/pnas.1820282116] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Liver ischemia and reperfusion injury (IRI) is a major challenge in liver surgery. Diet restriction reduces liver damage by increasing stress resistance; however, the underlying molecular mechanisms remain unclear. We investigated the preventive effect of 12-h fasting on mouse liver IRI. Partial warm hepatic IRI model in wild-type male C57BL/6 mice was used. The control ischemia and reperfusion (IR) group of mice was given food and water ad libitum, while the fasting IR group was given water but not food for 12 h before ischemic insult. In 12-h fasting mice, serum liver-derived enzyme level and tissue damages due to IR were strongly suppressed. Serum β-hydroxybutyric acid (BHB) was significantly raised before ischemia and during reperfusion. Up-regulated BHB induced an increment in the expression of FOXO1 transcription factor by raising the level of acetylated histone. Antioxidative enzyme heme oxigenase 1 (HO-1), a target gene of FOXO1, then increased. Autophagy activity was also enhanced. Serum high-mobility group box 1 was remarkably lowered by the 12-h fasting, and activation of NF-κB and NLRP3 inflammasome was suppressed. Consequently, inflammatory cytokine production and liver injury were reduced. Exogenous BHB administration or histone deacetylase inhibitor administration into the control fed mice ameliorated liver IRI, while FOXO1 inhibitor administration to the 12-h fasting group exacerbated liver IRI. The 12-h fasting exerted beneficial effects on the prevention of liver IRI by increasing BHB, thus up-regulating FOXO1 and HO-1, and by reducing the inflammatory responses and apoptotic cell death via the down-regulation of NF-κB and NLRP3 inflammasome.
Collapse
|
46
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
47
|
Ren J, Hu D, Mao Y, Yang H, Liao W, Xu W, Ge P, Zhang H, Sang X, Lu X, Zhong S. Alteration in gut microbiota caused by time-restricted feeding alleviate hepatic ischaemia reperfusion injury in mice. J Cell Mol Med 2019; 23:1714-1722. [PMID: 30588757 PMCID: PMC6378231 DOI: 10.1111/jcmm.14069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/12/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023] Open
Abstract
Time-restricted feeding (TRF), that is, no caloric intake for 14-16 hours each day leads to favourable nutritional outcomes. This study is the first to investigate TRF through a surgical perspective verifying its efficacy against liver ischaemia reperfusion (I/R) injury. We randomly assigned 100 10-week-old wild-type male C57BL/6 mice into two feeding regimens: TRF and ad libitum access to food. Main outcomes were evaluated at 6, 12 and 24 hours post-I/R surgery after 12 weeks of intervention. TRF group demonstrated minor liver injury via histological study; lower serum levels of liver enzymes, glucose and lipids; higher concentrations of free fatty acid and β-hydroxybutyrate; decreased oxidative stress and inflammatory biomarkers; as well as less severe cell apoptosis and proliferation. Further exploration indicated better gut microenvironment and intestinal epithelial tight junction function. TRF employed its positive influence on a wide spectrum of biochemical pathways and ultimately revealed protective effect against hepatic I/R injury possibly through adjusting the gut microbiota. The results referred to a strong indication of adopting better feeding pattern for surgical patients.
Collapse
Affiliation(s)
- Jinjun Ren
- Peking Union Medical College Hospital, Beijing, China
| | - Dandan Hu
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yilei Mao
- Peking Union Medical College Hospital, Beijing, China
| | - Huayu Yang
- Peking Union Medical College Hospital, Beijing, China
| | - Wenjun Liao
- Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Xu
- Peking Union Medical College Hospital, Beijing, China
| | - Penglei Ge
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbing Zhang
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinting Sang
- Peking Union Medical College Hospital, Beijing, China
| | - Xin Lu
- Peking Union Medical College Hospital, Beijing, China
| | | |
Collapse
|
48
|
Ke PY. Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. Int J Mol Sci 2019; 20:E300. [PMID: 30642133 PMCID: PMC6358975 DOI: 10.3390/ijms20020300] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a catabolic process by which eukaryotic cells eliminate cytosolic materials through vacuole-mediated sequestration and subsequent delivery to lysosomes for degradation, thus maintaining cellular homeostasis and the integrity of organelles. Autophagy has emerged as playing a critical role in the regulation of liver physiology and the balancing of liver metabolism. Conversely, numerous recent studies have indicated that autophagy may disease-dependently participate in the pathogenesis of liver diseases, such as liver hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma. This review summarizes the current knowledge on the functions of autophagy in hepatic metabolism and the contribution of autophagy to the pathophysiology of liver-related diseases. Moreover, the impacts of autophagy modulation on the amelioration of the development and progression of liver diseases are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
49
|
Abstract
High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration. Due to this pleiotropy, the role of HMGB1 has been vastly investigated in various pathological diseases and a large number of studies have explored its function in cardiovascular pathologies. However, in this contest, the precise mechanism of action of HMGB1 and its therapeutic potential are still very controversial since is debated whether HMGB1 is involved in tissue damage or plays a role in tissue repair and regeneration. The main focus of this review is to provide an overview of the effects of HMGB1 in different ischemic heart diseases and to discuss its functions in these pathological conditions.
Collapse
|
50
|
Zhan C, Dai X, Shen G, Lu X, Wang X, Lu L, Qian X, Rao J. Preoperative short-term fasting protects liver injury in patients undergoing hepatectomy. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:449. [PMID: 30603637 DOI: 10.21037/atm.2018.10.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Our previous study demonstrated that preoperative short-term fasting attenuates mice hepatic ischemia/reperfusion injury (IRI), which greatly piqued our interest in verifying if fasting produces similar protective effects in patients undergoing hepatectomy. Methods Eighty patients with liver tumors were randomized into control (Ctrl, n=40, preoperative fasting for 6 h) or fasting group (Fasting, n=40, preoperative fasting for 24 h). Serum was collected at pre-operation (Pre-Op), post-operation 1 day (POD-1), post-operation 3 days (POD-3), and post-operation 7 days (POD-7). Liver tissue was removed from the resected specimen. Results Sixty-three patients were eventually enrolled, with 33 in Ctrl and 30 in Fasting group. Our data showed that 24 h fasting effectively attenuated elevated sALT and sAST levels after operation (P<0.05), but serum total bilirubin was significantly lower at only POD-3 (P<0.05); and serum albumin was not markedly different in either of the groups. Interestingly, 24 h fasting partially attenuates expression of pro-inflammatory cytokine (TNF-α) and improves oxidative stress (MDA and SOD). Our data further showed short-term fasting triggered Nrf2 signaling pathway. Conclusions This study demonstrates preoperative short-term fasting effectively improves clinical outcomes and markedly attenuates inflammatory responses and oxidative stress in patients undergoing hepatectomy, and Nrf2 signaling pathway may play a key role in fasting against inflammatory responses and oxidant stress.
Collapse
Affiliation(s)
- Chuanfei Zhan
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xinzheng Dai
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Gefengqiang Shen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xu Lu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Ling Lu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiaofeng Qian
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jianhua Rao
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|