1
|
Banker A, Bhatt N, Rao PS, Agrawal P, Shah M, Nayak M, Mohanka R. A Review of Machine Perfusion Strategies in Liver Transplantation. J Clin Exp Hepatol 2023; 13:335-349. [PMID: 36950485 PMCID: PMC10025749 DOI: 10.1016/j.jceh.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/17/2023] Open
Abstract
The acceptance of liver transplantation as the standard of care for end-stage liver diseases has led to a critical shortage of donor allografts. To expand the donor organ pool, many countries have liberalized the donor criteria including extended criteria donors and donation after circulatory death. These marginal livers are at a higher risk of injury when they are preserved using the standard static cold storage (SCS) preservation techniques. In recent years, research has focused on optimizing organ preservation techniques to protect these marginal livers. Machine perfusion (MP) of the expanded donor liver has witnessed considerable advancements in the last decade. Research has showed MP strategies to confer significant advantages over the SCS techniques, such as longer preservation times, viability assessment and the potential to recondition high risk allografts prior to implantation. In this review article, we address the topic of MP in liver allograft preservation, with emphasis on current trends in clinical application. We discuss the relevant clinical trials related to the techniques of hypothermic MP, normothermic MP, hypothermic oxygenated MP, and controlled oxygenated rewarming. We also discuss the potential applications of ex vivo therapeutics which may be relevant in the future to further optimize the allograft prior to transplantation.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ALT, Alanine transaminase
- ASO, Antisense oligonucleotides
- AST, Aspartate transaminase
- CIT, Cold ischemia times
- COPE, Consortium for Organ Preservation in Europe
- COR, Controlled oxygenated rewarming
- DBD, Donation after brain death
- DCD, Donation after circulatory death
- DHOPE, dual hypothermic oxygenated machine perfusion
- EAD, Early allograft dysfunction
- ECD, Extended criteria donors
- ETC, Electron transport chain
- GGT, Gamma glutamyl transferase
- HCV, Hepatitis C virus
- HMP, Hypothermic machine perfusion
- HOPE, Hypothermic oxygenated machine perfusion
- ICU, Intensive care unit
- IGL, Institute George Lopez-1
- INR, International normalized ratio
- IRI, ischemia reperfusion injury
- LDH, Lactate dehydrogenase
- MELD, Model for end-stage liver disease
- MP, Machine perfusion
- NAS, Non-anastomotic biliary strictures
- NMP, Normothermic machine perfusion
- NO, Nitric oxide
- PNF, Primary nonfunction
- ROS, Reactive oxygen species
- RT-PCR, Reverse transcription polymerase chain reaction
- SNMP, Sub-normothermic machine perfusion
- UW, University of Wisconsin
- WIT, Warm ischemia times
- hypothermic machine perfusion
- hypothermic oxygenated machine perfusion
- machine perfusion
- normothermic machine perfusion
- static cold storage
Collapse
Affiliation(s)
- Amay Banker
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Neha Bhatt
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Prashantha S. Rao
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Pravin Agrawal
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Mitul Shah
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Madhavi Nayak
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Ravi Mohanka
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| |
Collapse
|
2
|
Haam S. Ex Vivo Lung Perfusion in Lung Transplantation. J Chest Surg 2022; 55:288-292. [PMID: 35924535 PMCID: PMC9358162 DOI: 10.5090/jcs.22.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ex vivo lung perfusion (EVLP) is a technique that enables active metabolism of the lung by creating an environment similar to that inside the body, even though the explanted lungs are outside the body. The EVLP system enables the use of lung grafts that do not satisfy the acceptance criteria for lung transplantation (LTx) by making it possible to evaluate the function of the lung grafts and repair lungs in poor condition, thereby reducing the waiting time of patients requiring LTx and consequently mortality.
Collapse
Affiliation(s)
- Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
3
|
Fasullo M, Patel M, Khanna L, Shah T. Post-transplant biliary complications: advances in pathophysiology, diagnosis, and treatment. BMJ Open Gastroenterol 2022; 9:bmjgast-2021-000778. [PMID: 35552193 PMCID: PMC9109012 DOI: 10.1136/bmjgast-2021-000778] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 12/29/2022] Open
Abstract
Liver transplantation (LT) is the only curative therapy in patients with end-stage liver disease. Long-term survival is excellent, yet LT recipients are at risk of significant complications. Biliary complications are an important source of morbidity after LT, with an estimated incidence of 5%-32%. Post-LT biliary complications include strictures (anastomotic and non-anastomotic), bile leaks, stones, and sphincter of Oddi dysfunction. Prompt recognition and management is critical as these complications are associated with mortality rates up to 20% and retransplantation rates up to 13%. This review aims to summarise our current understanding of risk factors, natural history, diagnostic testing, and treatment options for post-transplant biliary complications.
Collapse
Affiliation(s)
- Matthew Fasullo
- Gastroenterology, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| | - Milan Patel
- Gastroenterology, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| | - Lauren Khanna
- Gastroenterology, New York University Medical Center, New York, New York, USA
| | - Tilak Shah
- Gastroenterology, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| |
Collapse
|
4
|
Mergental H, Laing RW, Hodson J, Boteon YL, Attard JA, Walace LL, Neil DAH, Barton D, Schlegel A, Muiesan P, Abradelo M, Isaac JR, Roberts K, Perera MTPR, Afford SC, Mirza DF. Introduction of the Concept of Diagnostic Sensitivity and Specificity of Normothermic Perfusion Protocols to Assess High-Risk Donor Livers. Liver Transpl 2022; 28:794-806. [PMID: 34619014 DOI: 10.1002/lt.26326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
Normothermic machine perfusion (NMP) allows objective assessment of donor liver transplantability. Several viability evaluation protocols have been established, consisting of parameters such as perfusate lactate clearance, pH, transaminase levels, and the production and composition of bile. The aims of this study were to assess 3 such protocols, namely, those introduced by the teams from Birmingham (BP), Cambridge (CP), and Groningen (GP), using a cohort of high-risk marginal livers that had initially been deemed unsuitable for transplantation and to introduce the concept of the viability assessment sensitivity and specificity. To demonstrate and quantify the diagnostic accuracy of these protocols, we used a composite outcome of organ use and 24-month graft survival as a surrogate endpoint. The effects of assessment modifications, including the removal of the most stringent components of the protocols, were also assessed. Of the 31 organs, 22 were transplanted after a period of NMP, of which 18 achieved the outcome of 24-month graft survival. The BP yielded 94% sensitivity and 50% specificity when predicting this outcome. The GP and CP both seemed overly conservative, with 1 and 0 organs, respectively, meeting these protocols. Modification of the GP and CP to exclude their most stringent components increased this to 11 and 8 organs, respectively, and resulted in moderate sensitivity (56% and 44%) but high specificity (92% and 100%, respectively) with respect to the composite outcome. This study shows that the normothermic assessment protocols can be useful in identifying potentially viable organs but that the balance of risk of underuse and overuse varies by protocol.
Collapse
Affiliation(s)
- Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Richard W Laing
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - James Hodson
- Department of Statistics, Institute for Translational Medicine, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Yuri L Boteon
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Joseph A Attard
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Laine L Walace
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Desley A H Neil
- Department of Cellular Pathology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Darren Barton
- D3B Team, Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Paolo Muiesan
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Manuel Abradelo
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - John R Isaac
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Keith Roberts
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - M Thamara P R Perera
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Simon C Afford
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Darius F Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Kirste G. Cold but not too cold: advances in hypothermic and normothermic organ perfusion. KOREAN JOURNAL OF TRANSPLANTATION 2022; 36:2-14. [PMID: 35769433 PMCID: PMC9235527 DOI: 10.4285/kjt.22.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Transplantation is the method of choice and, in many cases, the only method of treatment for patients with end-stage organ disease. Excellent results have been achieved, and the main focus today is to extend the number of available donors. The use of extended-criteria donors or donors after circulatory death is standard, but is accompanied by an increased risk of ischemia reperfusion injury. This review presents newly developed machine perfusion techniques using hypothermic, subnormothermic, or normothermic conditions, with or without oxygenation. Possibilities for treatment and quality assessment in decision-making about organ acceptability are also discussed.
Collapse
Affiliation(s)
- Guenter Kirste
- Department of Surgery, University Hospital of Freiburg, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
6
|
Machine perfusion of the liver: applications in transplantation and beyond. Nat Rev Gastroenterol Hepatol 2022; 19:199-209. [PMID: 34997204 DOI: 10.1038/s41575-021-00557-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
The shortage of donor livers considered suitable for transplantation has driven the development of novel methods for organ preservation and reconditioning. Machine perfusion techniques can improve the quality of marginal livers, extend the time for which they can be preserved and enable an objective assessment of their quality and viability. These benefits can help avoid the needless wastage of organs based on hypothetical concerns regarding quality. As machine perfusion techniques are gaining traction in clinical practice, attention has now shifted to their potential applications beyond transplantation. As well as providing an update on the current status of machine perfusion in clinical practice, this Perspective discusses how this technology is being used as a tool for therapeutic interventions including defatting of steatotic livers, immunomodulation and gene therapies.
Collapse
|
7
|
Riveros S, Marino C, Ochoa G, Morales E, Soto D, Alegría L, Zenteno MJ, Brañes A, Achurra P, Rebolledo RA. Implementation and design of customized ex vivo machine perfusion. Analysis of its first results. Artif Organs 2021; 46:210-218. [PMID: 34519358 DOI: 10.1111/aor.14060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
The lack of organs available for transplantation is a global problem. The high mortality rates on the waiting list and the high number of discarded livers are reasons to develop new tools in the preservation and transplantation process. New tools should also be available for low-income countries. This article reports the development of customized normothermic machine perfusion (NMP). An ex vivo dual perfusion machine was designed, composed of a common reservoir organ box (CRO), a centrifugal pump (portal system, low pressure), and a roller pump (arterial system, high pressure). Porcine livers (n = 5) were perfused with an oxygenated normothermic (37℃) strategy for 3 hours. Hemodynamic variables, metabolic parameters, and bile production during preservation were analyzed. Arterial and portal flow remain stable during perfusion. Total bilirubin production was 11.25 mL (4-14.5) at 180 minutes. The median pH value reached 7.32 (7.25-7.4) at 180 minutes. Lactate values decreased progressively to normalization at 120 minutes. This perfusion setup was stable and able to maintain the metabolic activity of a liver graft in a porcine animal model. Design and initial results from this customized NMP are promising for a future clinical application in low-income countries.
Collapse
Affiliation(s)
- Sergio Riveros
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlo Marino
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriela Ochoa
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emilio Morales
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dagoberto Soto
- Department of Intensive Care, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leyla Alegría
- Department of Intensive Care, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Alejandro Brañes
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río, Santiago, Chile
| | - Pablo Achurra
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rolando A Rebolledo
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río, Santiago, Chile
| |
Collapse
|
8
|
Boteon YL, Martins PN, Muiesan P, Schlegel A. Machine perfusion of the liver: Putting the puzzle pieces together. World J Gastroenterol 2021; 27:5727-5736. [PMID: 34629797 PMCID: PMC8473597 DOI: 10.3748/wjg.v27.i34.5727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
The realm of extended criteria liver transplantation created the 'adjacent possible' for dynamic organ preservation. Machine perfusion of the liver greatly expanded donor organ preservation possibilities, reaching before unattainable goals, including the mitigation of ischemia-reperfusion injury, viability assessment, and organ reconditioning prior to transplantation. However, current scientific evidence lacks uniformity between studies, perfusion protocols, and acceptance criteria. Construction of collaborative research networks for sharing knowledge should, therefore, enable the development of high-level evidence and guidelines for machine perfusion utilization, including donor acceptance criteria. Finally, this approach shall guarantee conditions for further progress to occur.
Collapse
Affiliation(s)
- Yuri L Boteon
- Liver Unit, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo 05652-900, Brazil
| | - Paulo N Martins
- Department of Surgery, Transplant Division, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Paolo Muiesan
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence 50134, Italy
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence 50134, Italy
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich 8091, Switzerland
| |
Collapse
|
9
|
Huang H, He X, Yarmush ML. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng 2021; 5:793-804. [PMID: 34426675 PMCID: PMC8765766 DOI: 10.1038/s41551-021-00784-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
The three classical core technologies for the preservation of live mammalian biospecimens-slow freezing, vitrification and hypothermic storage-limit the biomedical applications of biospecimens. In this Review, we summarize the principles and procedures of these three technologies, highlight how their limitations are being addressed via the combination of microfabrication and nanofabrication, materials science and thermal-fluid engineering and discuss the remaining challenges.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States.
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
10
|
Hemorheological and Microcirculatory Factors in Liver Ischemia-Reperfusion Injury-An Update on Pathophysiology, Molecular Mechanisms and Protective Strategies. Int J Mol Sci 2021; 22:ijms22041864. [PMID: 33668478 PMCID: PMC7918617 DOI: 10.3390/ijms22041864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a multifactorial phenomenon which has been associated with adverse clinical outcomes. IRI related tissue damage is characterized by various chronological events depending on the experimental model or clinical setting. Despite the fact that IRI research has been in the spotlight of scientific interest for over three decades with a significant and continuous increase in publication activity over the years and the large number of pharmacological and surgical therapeutic attempts introduced, not many of these strategies have made their way into everyday clinical practice. Furthermore, the pathomechanism of hepatic IRI has not been fully elucidated yet. In the complex process of the IRI, flow properties of blood are not neglectable. Hemorheological factors play an important role in determining tissue perfusion and orchestrating mechanical shear stress-dependent endothelial functions. Antioxidant and anti-inflammatory agents, ischemic conditioning protocols, dynamic organ preservation techniques may improve rheological properties of the post-reperfusion hepatic blood flow and target endothelial cells, exerting a potent protection against hepatic IRI. In this review paper we give a comprehensive overview of microcirculatory, rheological and molecular–pathophysiological aspects of hepatic circulation in the context of IRI and hepatoprotective approaches.
Collapse
|
11
|
Mergental H, Laing RW, Afford SC, Mirza DF. Reply to 'Hypothermic machine perfusion before viability testing of previously discarded human livers'. Nat Commun 2021; 12:1015. [PMID: 33579911 PMCID: PMC7881196 DOI: 10.1038/s41467-021-21183-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| | - Richard W Laing
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Simon C Afford
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Darius F Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Magro B, Tacelli M, Mazzola A, Conti F, Celsa C. Biliary complications after liver transplantation: current perspectives and future strategies. Hepatobiliary Surg Nutr 2021; 10:76-92. [PMID: 33575291 DOI: 10.21037/hbsn.2019.09.01] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022]
Abstract
Importance Liver transplantation (LT) is a life-saving therapy for patients with end-stage liver disease and with acute liver failure, and it is associated with excellent outcomes and survival rates at 1 and 5 years. The incidence of biliary complications (BCs) after LT is reported to range from 5% to 20%, most of them occurring in the first three months, although they can occur also several years after transplantation. Objective The aim of this review is to summarize the available evidences on pathophysiology, risk factors, diagnosis and therapeutic management of BCs after LT. Evidence Review a literature review was performed of papers on this topic focusing on risk factors, classifications, diagnosis and treatment. Findings Principal risk factors include surgical techniques and donor's characteristics for biliary leakage and anastomotic biliary strictures and vascular alterations for non- anastomotic biliary strictures. MRCP is the gold standard both for intra- and extrahepatic BCs, while invasive cholangiography should be restricted for therapeutic uses or when MRCP is equivocal. About treatment, endoscopic techniques are the first line of treatment with success rates of 70-100%. The combined success rate of ERCP and PTBD overcome 90% of cases. Biliary leaks often resolve spontaneously, or with the positioning of a stent in ERCP for major bile leaks. Conclusions and Relevance BCs influence morbidity and mortality after LT, therefore further evidences are needed to identify novel possible risk factors, to understand if an immunological status that could lead to their development exists and to compare the effectiveness of innovative surgical and machine perfusion techniques.
Collapse
Affiliation(s)
- Bianca Magro
- Section of Gastroenterology and Hepatology, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy.,Service d'Hépatologie et Transplantation Hépatique, Hôpital de la Pitié Salpétrière, AP-HP, Paris, France
| | - Matteo Tacelli
- Section of Gastroenterology and Hepatology, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Alessandra Mazzola
- Service d'Hépatologie et Transplantation Hépatique, Hôpital de la Pitié Salpétrière, AP-HP, Paris, France
| | - Filomena Conti
- Service d'Hépatologie et Transplantation Hépatique, Hôpital de la Pitié Salpétrière, AP-HP, Paris, France
| | - Ciro Celsa
- Section of Gastroenterology and Hepatology, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
Oxygen Transport during Ex Situ Machine Perfusion of Donor Livers Using Red Blood Cells or Artificial Oxygen Carriers. Int J Mol Sci 2020; 22:ijms22010235. [PMID: 33379394 PMCID: PMC7795786 DOI: 10.3390/ijms22010235] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Oxygenated ex situ machine perfusion of donor livers is an alternative for static cold preservation that can be performed at temperatures from 0 °C to 37 °C. Organ metabolism depends on oxygen to produce adenosine triphosphate and temperatures below 37 °C reduce the metabolic rate and oxygen requirements. The transport and delivery of oxygen in machine perfusion are key determinants in preserving organ viability and cellular function. Oxygen delivery is more challenging than carbon dioxide removal, and oxygenation of the perfusion fluid is temperature dependent. The maximal oxygen content of water-based solutions is inversely related to the temperature, while cellular oxygen demand correlates positively with temperature. Machine perfusion above 20 °C will therefore require an oxygen carrier to enable sufficient oxygen delivery to the liver. Human red blood cells are the most physiological oxygen carriers. Alternative artificial oxygen transporters are hemoglobin-based oxygen carriers, perfluorocarbons, and an extracellular oxygen carrier derived from a marine invertebrate. We describe the principles of oxygen transport, delivery, and consumption in machine perfusion for donor livers using different oxygen carrier-based perfusion solutions and we discuss the properties, advantages, and disadvantages of these carriers and their use.
Collapse
|
14
|
Zhang Z, Tang Y, Zhao Q, Wang L, Zhu C, Ju W, Wang D, Yang L, Wu L, Chen M, Huang S, Gao N, Zhu Z, Zhang Y, Sun C, Xiong W, Shen Y, Ma Y, Hu A, Zhu X, Rong J, Cai C, Guo Z, He X. Association of Perfusion Characteristics and Posttransplant Liver Function in Ischemia-Free Liver Transplantation. Liver Transpl 2020; 26:1441-1454. [PMID: 32542994 DOI: 10.1002/lt.25825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
It has been shown that normothermic machine perfusion (NMP), a novel preservation method, is able to assess and resuscitate liver grafts with risk factors. However, there is no consistent criteria for the assessment of liver grafts with NMP. Ischemia-free liver transplantation (IFLT) includes innovative surgical techniques and NMP, which can protect liver grafts from ischemia throughout organ procurement, preservation, and implantation. In our center, 28 human livers from donation after brain death donors were subjected to IFLT between July 2017 and October 2018. The correlation between posttransplant liver function tests with the perfusion parameters, blood gas analysis of perfusate, and bile biochemistry were analyzed. During the preservation phase, the vascular flow was stable, and the lactate level decreased rapidly. The transaminase release in the perfusate was low but stable, whereas the glucose level remained high. The perfusate lactate and aspartate aminotransferase (AST) levels at 1 hour of perfusion were correlated with the posttransplant peak AST level. There were negative correlations between the portal vein and hepatic artery flows at the end of perfusion and the peak transaminase levels within 7 days after transplantation. In conclusion, during IFLT, NMP is able to bridge the liver grafts from donors to recipients and can allow the assessment of liver function by perfusion characteristics.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Caihui Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Lu Yang
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Ningxin Gao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Wei Xiong
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
| | - Yuekun Shen
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Anbin Hu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jian Rong
- Cardiopulmonary Bypass, and Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Changjie Cai
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,6Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
15
|
Ito T, Botros M, Aziz A, Guorgui JG, Agopian VG, Farmer DG, Busuttil RW, Kaldas FM. Nonanastomotic Biliary Strictures After Liver Transplantation. Am Surg 2020; 86:1363-1367. [PMID: 33125271 DOI: 10.1177/0003134820964461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biliary strictures constitute a major source of morbidity and mortality following liver transplantation (LT). However, studies on the impact of nonanastomotic biliary strictures (NABS) on grafts after LT are limited. 649 patients who underwent LT between January 2013 and June 2017 at our center were retrospectively analyzed and 2.6% (n = 17) of the recipients developed NABS following LT. There were no differences between recipients with and without NABS in indication of LT, graft ischemia time, and type of biliary anastomosis. The incidence of post-LT hepatic artery thrombosis (HAT) (odds ratio [OR]: 15.75, P < .001) and the use of livers from donation after cardiac death (DCD) donors (OR: 8.292, P = .004) were identified as independent significant predictors of NABS by multivariate analysis. Graft survival in those with NABS was significantly worse than in patients without NABS (1-, 3-, and 5-years survival: 64.7%, 57.5%, 0%, vs. 89.8%, 84.0%, 76.4%, P < .001). In conclusion, while the incidence of NABS in our study was relatively low compared to previous reports, NABS was still found to be associated with poor graft survival. Special attention should be paid to NABS occurrence in grafts that develop HAT as well as those from DCD donors.
Collapse
Affiliation(s)
- Takahiro Ito
- Department of Surgery, The Dumont-UCLA Liver Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mina Botros
- Department of Surgery, The Dumont-UCLA Liver Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Antony Aziz
- Department of Surgery, The Dumont-UCLA Liver Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jacob G Guorgui
- Department of Surgery, The Dumont-UCLA Liver Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vatche G Agopian
- Department of Surgery, The Dumont-UCLA Liver Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Douglas G Farmer
- Department of Surgery, The Dumont-UCLA Liver Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ronald W Busuttil
- Department of Surgery, The Dumont-UCLA Liver Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Fady M Kaldas
- Department of Surgery, The Dumont-UCLA Liver Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
16
|
Ferrigno A, Palladini G, Di Pasqua LG, Berardo C, Richelmi P, Cadamuro M, Fabris L, Perlini S, Adorini L, Vairetti M. Obeticholic acid reduces biliary and hepatic matrix metalloproteinases activity in rat hepatic ischemia/reperfusion injury. PLoS One 2020; 15:e0238543. [PMID: 32911524 PMCID: PMC7482919 DOI: 10.1371/journal.pone.0238543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background We have previously shown that obeticholic acid (OCA) upregulates the biliary excretion of asymmetric dimethylarginine (ADMA), an inhibitor of iNOS regulating the activity of matrix metalloproteinases (MMPs). Here, the effects of OCA on MMP-2 and MMP-9 activity in liver, bile and serum were evaluated after hepatic ischemia/reperfusion (I/R) injury. Material and methods Male Wistar rats (n = 20) were orally administered 10 mg/kg/day of OCA (5 days) and subjected to a 60-min ischemia and 60-min reperfusion. Bile, serum and tissue were collected for MMP-2 and MMP-9 activity quantification. The MMP regulator tissue reversion-inducing cysteine rich protein with Kazal motifs (RECK), tissue inhibitor of metalloproteinases (TIMPs), iNOS and biliary levels of LDH, γGT, glucose and ADMA were quantified. Results In the I/R group, OCA administration reduced MMP-2 and MMP-9 in liver, bile and serum. A downregulation of tissue RECK and TIMPs, observed under I/R, were recovered by OCA. Immunohistochemical staining of hepatic tissue demonstrated that RECK expression is mainly localized in both cholangiocytes and hepatocytes. Hepatic iNOS positively correlated with tissue MMP-2 and MMP-9 activity. Biliary levels of LDH, γGT and glucose were lower in I/R rats treated with OCA; in bile, MMP levels positively correlated with LDH and γGT. Conclusion Thus, OCA administration confers protection to cholangiocytes via downregulation of biliary MMPs in livers submitted to I/R. This event is associated with hepatic RECK- and TIMP-mediated MMP decrease.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- * E-mail: (MV); (AF)
| | - Giuseppina Palladini
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Clarissa Berardo
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Plinio Richelmi
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Luca Fabris
- Dept. of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Department of Internal Medicine, Liver Center and Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| | - Stefano Perlini
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Emergency Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luciano Adorini
- Intecept Pharmaceuticals, San Diego, CA, United States of America
| | - Mariapia Vairetti
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- * E-mail: (MV); (AF)
| |
Collapse
|
17
|
Zhou J, Chen J, Wei Q, Saeb-Parsy K, Xu X. The Role of Ischemia/Reperfusion Injury in Early Hepatic Allograft Dysfunction. Liver Transpl 2020; 26:1034-1048. [PMID: 32294292 DOI: 10.1002/lt.25779] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Liver transplantation (LT) is the only available curative treatment for patients with end-stage liver disease. Early allograft dysfunction (EAD) is a life-threatening complication of LT and is thought to be mediated in large part through ischemia/reperfusion injury (IRI). However, the underlying mechanisms linking IRI and EAD after LT are poorly understood. Most previous studies focused on the clinical features of EAD, but basic research on the underlying mechanisms is insufficient, due, in part, to a lack of suitable animal models of EAD. There is still no consensus on definition of EAD, which hampers comparative analysis of data from different LT centers. IRI is considered as an important risk factor of EAD, which can induce both damage and adaptive responses in liver grafts. IRI and EAD are closely linked and share several common pathways. However, the underlying mechanisms remain largely unclear. Therapeutic interventions against EAD through the amelioration of IRI is a promising strategy, but most approaches are still in preclinical stages. To further study the mechanisms of EAD and promote collaborations between LT centers, optimized animal models and unified definitions of EAD are urgently needed. Because IRI and EAD are closely linked, more attention should be paid to the underlying mechanisms and the fundamental relationship between them. Ischemia/reperfusion-induced adaptive responses may play a crucial role in the prevention of EAD, and more preclinical studies and clinical trials are urgently needed to address the current limitation of available therapeutic interventions.
Collapse
Affiliation(s)
- Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Jian Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom.,Cambridge National Institute of Health Research Biomedical research Centre, Cambridge, United Kingdom
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| |
Collapse
|
18
|
Biliary Bicarbonate, pH, and Glucose Are Suitable Biomarkers of Biliary Viability During Ex Situ Normothermic Machine Perfusion of Human Donor Livers. Transplantation 2020; 103:1405-1413. [PMID: 30395120 PMCID: PMC6613725 DOI: 10.1097/tp.0000000000002500] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ex situ normothermic machine perfusion (NMP) can be used to assess viability of suboptimal donor livers before implantation. Our aim was to assess the diagnostic accuracy of bile biochemistry for the assessment of bile duct injury (BDI). METHODS In a preclinical study, 23 human donor livers underwent 6 hours of end-ischemic NMP to determine biomarkers of BDI. Livers were divided into groups with low or high BDI, based on a clinically relevant histological grading system. During NMP, bile was analyzed biochemically and potential biomarkers were correlated with the degree of BDI. Receiver operating characteristics curves were generated to determine optimal cutoff values. For clinical validation, identified biomarkers were subsequently included as viability criteria in a clinical trial (n = 6) to identify transplantable liver grafts with low BDI. RESULTS Biliary bicarbonate and pH were significantly higher and biliary glucose was significantly lower in livers with low BDI, compared with high BDI. The following cutoff values were associated with low BDI: biliary bicarbonate greater than 18 mmol/L (P = 0.002), biliary pH greater than 7.48 (P = 0.019), biliary glucose less than 16 mmol/L (P = 0.013), and bile/perfusate glucose ratio less than 0.67 (P = 0.013). In the clinical trial, 4 of 6 livers met these criteria and were transplanted, and none developed clinical evidence of posttransplant cholangiopathy. CONCLUSIONS Biliary bicarbonate, pH, and glucose during ex situ NMP of liver grafts are accurate biomarkers of BDI and can be easily determined point of care, making them suitable for the pretransplant assessment of bile duct viability. This may improve graft selection and decrease the risk of posttransplant cholangiopathy.
Collapse
|
19
|
Jia J, Nie Y, Li J, Xie H, Zhou L, Yu J, Zheng SS. A Systematic Review and Meta-Analysis of Machine Perfusion vs. Static Cold Storage of Liver Allografts on Liver Transplantation Outcomes: The Future Direction of Graft Preservation. Front Med (Lausanne) 2020; 7:135. [PMID: 32528963 PMCID: PMC7247831 DOI: 10.3389/fmed.2020.00135] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Machine perfusion (MP) and static cold storage (CS) are two prevalent methods for liver allograft preservation. However, the preferred method remains controversial. Aim: To conduct a meta-analysis on the impact of MP preservation on liver transplant outcome. Methods: PubMed, EMBASE, and Cochrane Library databases were systematically searched to identify relevant trials comparing the efficacy of MP vs. CS. Odds ratios (OR) and fixed-effects models were calculated to compare the pooled data. Results: Ten prospective cohort studies and two randomized controlled trials (RCTs) were included (MP livers vs. CS livers = 315:489). Machine perfusion demonstrated superior outcomes in posttransplantation aspartate aminotransferase levels compared to CS (P < 0.05). The overall incidence of early allograft dysfunction (EAD) was significantly reduced with MP preservation than CS [OR = 0.46; 95% confidence interval (CI) = 0.31–0.67; P < 0.0001]. The incidence of total biliary complications (OR = 0.53; 95% CI = 0.34–0.83; P = 0.006) and that of ischemic cholangiopathy (OR = 0.39; 95% CI = 0.18–0.85; P = 0.02) were significantly lower in recipients with MP preservation compared with CS preservation. Hypothermic machine perfusion (HMP) but not normothermic machine perfusion (NMP) was found to significantly protect grafts from total biliary complications and ischemic cholangiopathy (P < 0.05). However, no significant differences could be detected utilizing either HMP or NMP in primary nonfunction, hepatic artery thrombosis, postreperfusion syndrome, 1-year patient survival, or 1-year graft survival (P > 0.05). Conclusions: Machine perfusion is superior to CS on improving short-term outcomes for human liver transplantation, with a less clear effect in the longer term. Hypothermic machine perfusion but not NMP conducted significantly protective effects on EAD and biliary complications. Further RCTs are warranted to confirm MP's superiority and applications.
Collapse
Affiliation(s)
- Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Yu Nie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Jianhui Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Jun Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| |
Collapse
|
20
|
Abstract
Composite tissue (CT) preservation is important to outcomes after replant or transplant. Since the first limb replant, the mainstay of preservation has been static cold storage with the amputated part being placed in moistened gauze over ice. Historically, the gold-standard in solid organ preservation has been static cold storage with specialized solution, but this has recently evolved in the last few decades to develop technologies such as machine perfusion and even persufflation. This review explores the impact of cooling and oxygenation on CT, summarizes the work done in the area of CT preservation, discusses lessons learned from our experience in solid organ preservation, and proposes future directions.
Collapse
|
21
|
de Vries Y, Berendsen TA, Fujiyoshi M, van den Berg AP, Blokzijl H, de Boer MT, van der Heide F, de Kleine RHJ, van Leeuwen OB, Matton APM, Werner MJM, Lisman T, de Meijer VE, Porte R. Transplantation of high-risk donor livers after resuscitation and viability assessment using a combined protocol of oxygenated hypothermic, rewarming and normothermic machine perfusion: study protocol for a prospective, single-arm study (DHOPE-COR-NMP trial). BMJ Open 2019; 9:e028596. [PMID: 31420387 PMCID: PMC6701560 DOI: 10.1136/bmjopen-2018-028596] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Extended criteria donor (ECD) livers are increasingly accepted for transplantation in an attempt to reduce the gap between the number of patients on the waiting list and the available number of donor livers. ECD livers; however, carry an increased risk of developing primary non-function (PNF), early allograft dysfunction (EAD) or post-transplant cholangiopathy. Ischaemia-reperfusion injury (IRI) plays an important role in the development of these complications. Machine perfusion reduces IRI and allows for reconditioning and subsequent evaluation of liver grafts. Single or dual hypothermic oxygenated machine perfusion (DHOPE) (4°C-12°C) decreases IRI by resuscitation of mitochondria. Controlled oxygenated rewarming (COR) may further reduce IRI by preventing sudden temperature shifts. Subsequent normothermic machine perfusion (NMP) (37°C) allows for ex situ viability assessment to facilitate the selection of ECD livers with a low risk of PNF, EAD or post-transplant cholangiopathy. METHODS AND ANALYSIS This prospective, single-arm study is designed to resuscitate and evaluate initially nationwide declined ECD livers. End-ischaemic DHOPE will be performed for the initial mitochondrial and graft resuscitation, followed by COR of the donor liver to a normothermic temperature. Subsequently, NMP will be continued to assess viability of the liver. Transplantation into eligible recipients will proceed if all predetermined viability criteria are met within the first 150 min of NMP. To facilitate machine perfusion at different temperatures, a perfusion solution containing a haemoglobin-based oxygen carrier will be used. With this protocol, we aim to transplant extra livers. The primary endpoint is graft survival at 3 months after transplantation. ETHICS AND DISSEMINATION This protocol was approved by the medical ethical committee of Groningen, METc2016.281 in August 2016 and registered in the Dutch Trial registration number TRIAL REGISTRATION NUMBER: NTR5972, NCT02584283.
Collapse
Affiliation(s)
- Yvonne de Vries
- Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tim A Berendsen
- Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Masato Fujiyoshi
- Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Aad P van den Berg
- Gasteroenterology and Hepatology, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Hans Blokzijl
- Gasteroenterology and Hepatology, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Marieke T de Boer
- Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frans van der Heide
- Gasteroenterology and Hepatology, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Ruben H J de Kleine
- Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Otto B van Leeuwen
- Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alix P M Matton
- Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maureen J M Werner
- Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Robert Porte
- Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Patrono D, Surra A, Catalano G, Rizza G, Berchialla P, Martini S, Tandoi F, Lupo F, Mirabella S, Stratta C, Salizzoni M, Romagnoli R. Hypothermic Oxygenated Machine Perfusion of Liver Grafts from Brain-Dead Donors. Sci Rep 2019; 9:9337. [PMID: 31249370 PMCID: PMC6597580 DOI: 10.1038/s41598-019-45843-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023] Open
Abstract
Hypothermic oxygenated machine perfusion (HOPE) was introduced in liver transplantation (LT) to mitigate ischemia-reperfusion injury. Available clinical data mainly concern LT with donors after circulatory-determined death, whereas data on brain-dead donors (DBD) are scarce. To assess the impact of end-ischemic HOPE in DBD LT, data on primary adult LTs performed between March 2016 and June 2018 were analyzed. HOPE was used in selected cases of donor age >80 years, apparent severe graft steatosis, or ischemia time ≥10 hours. Outcomes of HOPE-treated cases were compared with those after static cold storage. Propensity score matching (1:2) and Bayesian model averaging were used to overcome selection bias. During the study period, 25 (8.5%) out of 294 grafts were treated with HOPE. After matching, HOPE was associated with a lower severe post-reperfusion syndrome (PRS) rate (4% versus 20%, p = 0.13) and stage 2–3 acute kidney injury (AKI) (16% versus 42%, p = 0.046). Furthermore, Bayesian model averaging showed lower transaminases peak and a lower early allograft dysfunction (EAD) rate after HOPE. A steeper decline in arterial graft resistance throughout perfusion was associated with lower EAD rate. HOPE determines a significant reduction of ischemia reperfusion injury in DBD LT.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U - Liver Transplant Unit, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Astrid Surra
- General Surgery 2U - Liver Transplant Unit, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U - Liver Transplant Unit, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U - Liver Transplant Unit, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Paola Berchialla
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Silvia Martini
- Gastrohepatology Unit, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Francesco Tandoi
- General Surgery 2U - Liver Transplant Unit, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Francesco Lupo
- General Surgery 2U - Liver Transplant Unit, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Stefano Mirabella
- General Surgery 2U - Liver Transplant Unit, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Chiara Stratta
- Anesthesia Department 2, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Mauro Salizzoni
- General Surgery 2U - Liver Transplant Unit, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U - Liver Transplant Unit, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy.
| |
Collapse
|
23
|
Dahlgren US, Bennet W. ABO-Incompatible Liver Transplantation - A Review of the Historical Background and Results. Int Rev Immunol 2019; 38:118-128. [PMID: 31012340 DOI: 10.1080/08830185.2019.1601720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ABO-incompatible liver transplantation (ABOi LT) using conventional immunosuppression has been considered a contraindication due to the high risk for antibody-mediated complications potentially resulting in graft loss. However, organ shortage has led to the development of anti-A/B antibody reducing immunosuppressive protocols which have made the outcome after living donor (LD) ABOi LT equivalent to that achieved with LD ABO-compatible (ABOc). The experience of deceased donor (DD) ABOi LT is however still limited. In this article, we discuss the historical background and the results after ABOi LT, in the setting of both LD and DD transplantation. We also discuss the remaining hurdles and future strategies in the breaching of the ABO barrier for LT.
Collapse
Affiliation(s)
| | - William Bennet
- a Transplant Institute, Sahlgrenska University Hospital, Sahlgrenska Academy , Gothenburg , Sweden
| |
Collapse
|
24
|
de Vries Y, Matton APM, Nijsten MWN, Werner MJM, van den Berg AP, de Boer MT, Buis CI, Fujiyoshi M, de Kleine RHJ, van Leeuwen OB, Meyer P, van den Heuvel MC, de Meijer VE, Porte RJ. Pretransplant sequential hypo- and normothermic machine perfusion of suboptimal livers donated after circulatory death using a hemoglobin-based oxygen carrier perfusion solution. Am J Transplant 2019; 19:1202-1211. [PMID: 30588774 PMCID: PMC6590255 DOI: 10.1111/ajt.15228] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 01/25/2023]
Abstract
Ex situ dual hypothermic oxygenated machine perfusion (DHOPE) and normothermic machine perfusion (NMP) of donor livers may have a complementary effect when applied sequentially. While DHOPE resuscitates the mitochondria and increases hepatic adenosine triphosphate (ATP) content, NMP enables hepatobiliary viability assessment prior to transplantation. In contrast to DHOPE, NMP requires a perfusion solution with an oxygen carrier, for which red blood cells (RBC) have been used in most series. RBC, however, have limitations and cannot be used cold. We, therefore, established a protocol of sequential DHOPE, controlled oxygenated rewarming (COR), and NMP using a new hemoglobin-based oxygen carrier (HBOC)-based perfusion fluid (DHOPE-COR-NMP trial, NTR5972). Seven livers from donation after circulatory death (DCD) donors, which were initially declined for transplantation nationwide, underwent DHOPE-COR-NMP. Livers were considered transplantable if perfusate pH and lactate normalized, bile production was ≥10 mL and biliary pH > 7.45 within 150 minutes of NMP. Based on these criteria five livers were transplanted. The primary endpoint, 3-month graft survival, was a 100%. In conclusion, sequential DHOPE-COR-NMP using an HBOC-based perfusion fluid offers a novel method of liver machine perfusion for combined resuscitation and viability testing of suboptimal livers prior to transplantation.
Collapse
Affiliation(s)
- Yvonne de Vries
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands,Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Alix P. M. Matton
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands,Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Maarten W. N. Nijsten
- Department of Critical CareUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Maureen J. M. Werner
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands,Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Aad P. van den Berg
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Marieke T. de Boer
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Carlijn I. Buis
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Masato Fujiyoshi
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands,Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Ruben H. J. de Kleine
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Otto B. van Leeuwen
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands,Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Peter Meyer
- Department of AnesthesiologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Marius C. van den Heuvel
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Vincent E. de Meijer
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
25
|
Czigany Z, Lurje I, Tolba RH, Neumann UP, Tacke F, Lurje G. Machine perfusion for liver transplantation in the era of marginal organs-New kids on the block. Liver Int 2019; 39:228-249. [PMID: 30129192 DOI: 10.1111/liv.13946] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
Abstract
In the face of a critical organ shortage in the Western world, various strategies are employed to expand the donor pool for orthotopic liver transplantation (OLT). Among them is the transplantation of organs from extended criteria donors, a valuable source of liver allografts, however, characterized by potential risks for post-OLT complications and inferior outcomes. In recent years, machine perfusion (MP) of the explanted donor liver as well as regional perfusion techniques has witnessed significant advancements. Here, we aim to discuss different modes of dynamic organ preservation in OLT. These include hypothermic and normothermic MP, hypothermic oxygenated machine perfusion (HOPE), controlled oxygenated rewarming as well as regional perfusion protocols. Over recent years, multiple feasibility trials have demonstrated the clinical prospects of MP. In the context of OLT using organs from extended criteria donors, MP has numerous advantages compared to conventional cold storage, some of which include the preservation and reconditioning of borderline transplantable organs and the viability assessment of high-risk donor allografts. This review aims to address the topic of liver allograft MP, highlighting particularly the current trends in clinical applications and future perspectives. Furthermore, different approaches of liver storage and reconditioning are reviewed in the context of ongoing research.
Collapse
Affiliation(s)
- Zoltan Czigany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Isabella Lurje
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Rene H Tolba
- Institute for Laboratory Animal Science, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulf P Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany.,Department of Surgery, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Frank Tacke
- Department of Gastroenterology, Metabolic Disorders and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Georg Lurje
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
26
|
van Leeuwen OB, de Meijer VE, Porte RJ. Viability Criteria for Functional Assessment of Donor Livers During Normothermic Machine Perfusion. Liver Transpl 2018; 24:1333-1335. [PMID: 30193403 DOI: 10.1002/lt.25330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Otto B van Leeuwen
- Department of Surgery, Section of HPB Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of HPB Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Department of Surgery, Section of HPB Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
27
|
Quintini C, Martins PN, Shah S, Killackey M, Reed A, Guarrera J, Axelrod DA. Implementing an innovated preservation technology: The American Society of Transplant Surgeons' (ASTS) Standards Committee White Paper on Ex Situ Liver Machine Perfusion. Am J Transplant 2018; 18:1865-1874. [PMID: 29791060 DOI: 10.1111/ajt.14945] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/15/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023]
Abstract
The pervasive shortage of deceased donor liver allografts contributes to significant waitlist mortality despite efforts to increase organ donation. Ex vivo liver perfusion appears to enhance preservation of donor organs, extending viability and potentially evaluating function in organs previously considered too high risk for transplant. These devices pose novel challenges for organ allocation, safety, training, and finances. This white paper describes the American Society of Transplant Surgeons' belief that organ preservation technology is a vital advance, but its use should not change fundamental aspects of organ allocation. Additional data elements need to be collected, made available for organ assessment by transplant professionals to allow determination of organ suitability in the case of reallocation and incorporated into risk adjustment methodology. Finally, further work is needed to determine the optimal strategy for management and oversight of perfused organs prior to transplantation.
Collapse
Affiliation(s)
| | | | - Shimul Shah
- University of Cincinnati, Cincinnati, OH, USA
| | - Mary Killackey
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Alan Reed
- University of Iowa, Iowa City, IA, USA
| | | | | | | |
Collapse
|
28
|
Jing L, Yao L, Zhao M, Peng LP, Liu M. Organ preservation: from the past to the future. Acta Pharmacol Sin 2018; 39:845-857. [PMID: 29565040 DOI: 10.1038/aps.2017.182] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/31/2017] [Indexed: 12/13/2022] Open
Abstract
Organ transplantation is the most effective therapy for patients with end-stage disease. Preservation solutions and techniques are crucial for donor organ quality, which is directly related to morbidity and survival after transplantation. Currently, static cold storage (SCS) is the standard method for organ preservation. However, preservation time with SCS is limited as prolonged cold storage increases the risk of early graft dysfunction that contributes to chronic complications. Furthermore, the growing demand for the use of marginal donor organs requires methods for organ assessment and repair. Machine perfusion has resurfaced and dominates current research on organ preservation. It is credited to its dynamic nature and physiological-like environment. The development of more sophisticated machine perfusion techniques and better perfusates may lead to organ repair/reconditioning. This review describes the history of organ preservation, summarizes the progresses that has been made to date, and discusses future directions for organ preservation.
Collapse
|
29
|
Abstract
PURPOSE OF THE REVIEW The purpose of the review is to report recent human application of hypothermic machine liver perfusion, and to discuss potential protective mechanisms. RECENT FINDINGS Human application of hypothermic machine liver perfusion is still very limited. Currently, three transplant centers apply this novel treatment in donation after cardiac death (DCD) or donation after brain death (DBD) liver grafts. In all cases, endischemic perfusion was performed after initial cold storage for organ transport. Perfusion conditions differ slightly in terms of oxygenation (pO2 15-60 kPa), perfusion route (dual vs. portal), perfusion time (2-4 h), and perfusate. SUMMARY The current data support the hypothesis that applying endischemic hypothermic machine liver perfusion protects extended criteria DBD and DCD livers from initial reperfusion injury, with better graft function and less biliary complications. Hypothermic machine perfusion may therefore offer revitalization of liver grafts before implantation by a simple and practical perfusion technique with a high impact on enlarging the donor pool. Multicentric phase III randomized control trials in DBD and DCD liver transplantation have been initiated to further test this strategy, which may establish machine liver perfusion in the clinical setting.
Collapse
|
30
|
An Oxygenated and Transportable Machine Perfusion System Fully Rescues Liver Grafts Exposed to Lethal Ischemic Damage in a Pig Model of DCD Liver Transplantation. Transplantation 2017; 101:e205-e213. [PMID: 28403128 DOI: 10.1097/tp.0000000000001764] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Control of warm ischemia (WI) lesions that occur with donation after circulatory death (DCD) would significantly increase the donor pool for liver transplantation. We aimed to determine whether a novel, oxygenated and hypothermic machine perfusion device (HMP Airdrive system) improves the quality of livers derived from DCDs using a large animal model. METHODS Cardiac arrest was induced in female large white pigs by intravenous injection of potassium chloride. After 60 minutes of WI, livers were flushed in situ with histidine-tryptophan-ketoglutarate and subsequently preserved either by simple cold storage (WI-SCS group) or HMP (WI-HMP group) using Belzer-MPS solution. Liver grafts procured from heart-beating donors and preserved by SCS served as controls. After 4 hours of preservation, all livers were transplanted. RESULTS All recipients in WI-SCS group died within 6 hours after transplantation. In contrast, the HMP device fully protected the liver against lethal ischemia/reperfusion injury, allowing 100% survival rate. A postreperfusion syndrome was observed in all animals of the WI-SCS group but none of the control or WI-HMP groups. After reperfusion, HMP-preserved livers functioned better and showed less hepatocellular and endothelial cell injury, in agreement with better-preserved liver histology relative to WI-SCS group. In addition to improved energy metabolism, this protective effect was associated with an attenuation of inflammatory response, oxidative load, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. CONCLUSIONS This study demonstrates for the first time the efficacy of the HMP Airdrive system to protect liver grafts from lethal ischemic damage before transplantation in a clinically relevant DCD model.
Collapse
|
31
|
de Vries Y, von Meijenfeldt FA, Porte RJ. Post-transplant cholangiopathy: Classification, pathogenesis, and preventive strategies. Biochim Biophys Acta Mol Basis Dis 2017. [PMID: 28645651 DOI: 10.1016/j.bbadis.2017.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biliary complications are the most frequent cause of morbidity, re-transplantation, and even mortality after liver transplantation. In general, biliary leakage and anastomotic and non-anastomotic biliary strictures (NAS) can be recognized. There is no consensus on the exact definition of NAS and different names and criteria have been used in literature. We propose to use the term post-transplant cholangiopathy for the spectrum of abnormalities of large donor bile ducts, that includes NAS, but also intraductal casts and intrahepatic biloma formation, in the presence of a patent hepatic artery. Combinations of these manifestations of cholangiopathy are not infrequently found in the same liver and ischemia-reperfusion injury is generally considered the common underlying mechanism. Other factors that contribute to post-transplant cholangiopathy are biliary injury due to bile salt toxicity and immune-mediated injury. This review provides an overview of the various types of post-transplant cholangiopathy, the presumed pathogenesis, clinical implications, and preventive strategies.
Collapse
Affiliation(s)
- Yvonne de Vries
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Fien A von Meijenfeldt
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
32
|
Practical Recommendations for Long-term Management of Modifiable Risks in Kidney and Liver Transplant Recipients: A Guidance Report and Clinical Checklist by the Consensus on Managing Modifiable Risk in Transplantation (COMMIT) Group. Transplantation 2017; 101:S1-S56. [PMID: 28328734 DOI: 10.1097/tp.0000000000001651] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Short-term patient and graft outcomes continue to improve after kidney and liver transplantation, with 1-year survival rates over 80%; however, improving longer-term outcomes remains a challenge. Improving the function of grafts and health of recipients would not only enhance quality and length of life, but would also reduce the need for retransplantation, and thus increase the number of organs available for transplant. The clinical transplant community needs to identify and manage those patient modifiable factors, to decrease the risk of graft failure, and improve longer-term outcomes.COMMIT was formed in 2015 and is composed of 20 leading kidney and liver transplant specialists from 9 countries across Europe. The group's remit is to provide expert guidance for the long-term management of kidney and liver transplant patients, with the aim of improving outcomes by minimizing modifiable risks associated with poor graft and patient survival posttransplant.The objective of this supplement is to provide specific, practical recommendations, through the discussion of current evidence and best practice, for the management of modifiable risks in those kidney and liver transplant patients who have survived the first postoperative year. In addition, the provision of a checklist increases the clinical utility and accessibility of these recommendations, by offering a systematic and efficient way to implement screening and monitoring of modifiable risks in the clinical setting.
Collapse
|
33
|
Toniutto P, Zanetto A, Ferrarese A, Burra P. Current challenges and future directions for liver transplantation. Liver Int 2017; 37:317-327. [PMID: 27634369 DOI: 10.1111/liv.13255] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
Liver transplantation is an effective and widely used therapy for several patients with acute and chronic liver diseases. The discrepancy between the number of patients on the waiting list and available donors remains the key issue and is responsible for the high rate of waiting list mortality. The recent news is that the majority of patients with hepatitis C virus related liver disease will be cured by new antivirals therefore we should expect soon a reduction in the need of liver transplantation for these recipients. This review aims to highlight, in two different sections, the main open issues of liver transplantation concerning the current and future strategies to the best use of limited number of organs. The first section cover the strategies to increase the donor pool, discussing the use of older donors, split grafts, living donation and donation after cardiac death and mechanical perfusion systems to improve the preservation of organs before liver transplantation. Challenges in immunosuppressive therapy and operational tolerance induction will be evaluated as potential tools to increase the survival in liver transplant recipients and to reducing the need of re-transplantation. The second section is devoted to the evaluation of possible new indications to liver transplantation, where the availability of organs by implementing the strategies mentioned in the first section and the reduction in the number of waiting transplants for HCV disease is realized. Among these new potential indications for transplantation, the expansion of the Milan criteria for hepatocellular cancer is certainly the most open to question.
Collapse
Affiliation(s)
- Pierluigi Toniutto
- Department of Clinical Sciences Experimental and Clinical, Medical Liver Transplant Section, University of Udine, Udine, Italy
| | - Alberto Zanetto
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padova, Italy
| | - Alberto Ferrarese
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padova, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padova, Italy
| |
Collapse
|
34
|
Ding F, Tang H, Xu C, Jiang ZB, Yi SH, Li H, Jiang N, Chen WJ, Yang Q, Yang Y, Chen GH. Cutting balloon treatment of anastomotic biliary stenosis after liver transplantation: Report of two cases. World J Gastroenterol 2017; 23:178-184. [PMID: 28104994 PMCID: PMC5221282 DOI: 10.3748/wjg.v23.i1.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/21/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Biliary stenosis is a common complication after liver transplantation, and has an incidence rate ranging from 4.7% to 12.5% based on our previous study. Three types of biliary stenosis (anastomotic stenosis, non-anastomotic peripheral stenosis and non-anastomotic central hilar stenosis) have been identified. We report the outcome of two patients with anastomotic stricture after liver transplantation who underwent successful cutting balloon treatment. Case 1 was a 40-year-old male transplanted due to subacute fulminant hepatitis C. Case 2 was a 57-year-old male transplanted due to hepatitis B virus-related end-stage cirrhosis associated with hepatocellular carcinoma. Both patients had similar clinical scenarios: refractory anastomotic stenosis after orthotopic liver transplantation and failure of balloon dilation of the common bile duct to alleviate biliary stricture.
Collapse
|
35
|
Abstract
Liver transplantation (LT) has been established as the most effective treatment modality for end-stage liver disease over the last few decades. Currently, patient and graft survival after LT are excellent, with 1- and 5-year survival of 90% and 80%, respectively. However, the timing of referral to LT is crucial for improving survival benefit and outcome. The current shortage of donors and the increasing demand for LT currently lengthen the waiting time. Thus, waiting list mortality is about 10–15%, according to the geographical area. For this reason, over the last several years, alternatives to deceased donor LT and new options for prioritizing patients on the waiting list have been proposed.
Collapse
Affiliation(s)
- Francesco Paolo Russo
- Gastroenterology/Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Alberto Ferrarese
- Gastroenterology/Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Alberto Zanetto
- Gastroenterology/Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| |
Collapse
|
36
|
Pais R, Barritt AS, Calmus Y, Scatton O, Runge T, Lebray P, Poynard T, Ratziu V, Conti F. NAFLD and liver transplantation: Current burden and expected challenges. J Hepatol 2016; 65:1245-1257. [PMID: 27486010 PMCID: PMC5326676 DOI: 10.1016/j.jhep.2016.07.033] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/17/2016] [Accepted: 07/22/2016] [Indexed: 12/26/2022]
Abstract
Because of global epidemics of obesity and type 2 diabetes, the prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing both in Europe and the United States, becoming one of the most frequent causes of chronic liver disease and predictably, one of the leading causes of liver transplantation both for end-stage liver disease and hepatocellular carcinoma. For most transplant teams around the world this will raise many challenges in terms of pre- and post-transplant management. Here we review the multifaceted impact of NAFLD on liver transplantation and will discuss: (1) NAFLD as a frequent cause of cryptogenic cirrhosis, end-stage chronic liver disease, and hepatocellular carcinoma; (2) prevalence of NAFLD as an indication for liver transplantation both in Europe and the United States; (3) the impact of NAFLD on the donor pool; (4) the access of NAFLD patients to liver transplantation and their management on the waiting list in regard to metabolic, renal and vascular comorbidities; (5) the prevalence and consequences of post-transplant metabolic syndrome, recurrent and de novo NAFLD; (6) the alternative management and therapeutic options to improve the long-term outcomes with particular emphasis on the correction and control of metabolic comorbidities.
Collapse
Affiliation(s)
- Raluca Pais
- Service Hépatogastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, Paris, France; UMR_S 938, INSERM - CDR Saint Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.
| | - A Sidney Barritt
- Division of Gastroenterology and Hepatology, UNC School of Medicine, University of North Carolina at Chapel Hill, 8004 Burnett Womack, CB #7584, Chapel Hill, NC 27599-7584, USA
| | - Yvon Calmus
- Service Hépatogastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, Paris, France; UMR_S 938, INSERM - CDR Saint Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Olivier Scatton
- Service de Chirurgie Hépato-biliaire et Transplantation Hépatique, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, Paris, France
| | - Thomas Runge
- Division of Gastroenterology and Hepatology, UNC School of Medicine, University of North Carolina at Chapel Hill, 8004 Burnett Womack, CB #7584, Chapel Hill, NC 27599-7584, USA
| | - Pascal Lebray
- Service Hépatogastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, Paris, France
| | - Thierry Poynard
- Service Hépatogastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, Paris, France; UMR_S 938, INSERM - CDR Saint Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Vlad Ratziu
- Service Hépatogastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, Paris, France; UMR_S 938, INSERM - CDR Saint Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Filomena Conti
- Service Hépatogastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpétrière - Université Pierre et Marie Curie, Paris, France; UMR_S 938, INSERM - CDR Saint Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
37
|
Jochmans I, Akhtar MZ, Nasralla D, Kocabayoglu P, Boffa C, Kaisar M, Brat A, O'Callaghan J, Pengel LHM, Knight S, Ploeg RJ. Past, Present, and Future of Dynamic Kidney and Liver Preservation and Resuscitation. Am J Transplant 2016; 16:2545-55. [PMID: 26946212 DOI: 10.1111/ajt.13778] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/03/2016] [Accepted: 02/23/2016] [Indexed: 01/25/2023]
Abstract
The increased demand for organs has led to the increased usage of "higher risk" kidney and liver grafts. These grafts from donation after circulatory death or expanded criteria donors are more susceptible to preservation injury and have a higher risk of unfavorable outcomes. Dynamic, instead of static, preservation could allow for organ optimization, offering a platform for viability assessment, active organ repair and resuscitation. Ex situ machine perfusion and in situ regional perfusion in the donor are emerging as potential tools to preserve and resuscitate vulnerable grafts. Preclinical findings have ignited clinical organ preservation research that investigates dynamic preservation, its various modes (continuous, preimplantation) and temperatures (hypo-, sub, or normothermic). This review outlines the current status of dynamic preservation of kidney and liver grafts and describes ongoing research and emerging clinical trials.
Collapse
Affiliation(s)
- I Jochmans
- Abdominal Transplant Surgery, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - M Z Akhtar
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - D Nasralla
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - P Kocabayoglu
- Department of General, Visceral and Transplant Surgery, University Hospital Essen, Essen, Germany
| | - C Boffa
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - M Kaisar
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - A Brat
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J O'Callaghan
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Clinical Effectiveness Unit, Centre for Evidence in Transplantation, Royal College of Surgeons of England, London, University of Oxford, Oxford, UK
| | - L H M Pengel
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Clinical Effectiveness Unit, Centre for Evidence in Transplantation, Royal College of Surgeons of England, London, University of Oxford, Oxford, UK
| | - S Knight
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Clinical Effectiveness Unit, Centre for Evidence in Transplantation, Royal College of Surgeons of England, London, University of Oxford, Oxford, UK
| | - R J Ploeg
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Hessheimer AJ, Cárdenas A, García-Valdecasas JC, Fondevila C. Can we prevent ischemic-type biliary lesions in donation after circulatory determination of death liver transplantation? Liver Transpl 2016; 22:1025-33. [PMID: 27082839 DOI: 10.1002/lt.24460] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/02/2016] [Indexed: 12/23/2022]
Abstract
The pool of livers for transplantation consists of an increasingly greater proportion of marginal grafts, in particular those arising through donation after circulatory determination of death (DCD). However, a primary factor limiting the use of marginal livers, and, thereby, the applicability of liver transplantation in general, is concern over the subsequent development of ischemic-type biliary lesion (ITBL). ITBL is a devastating complication of liver transplantation; in its most severe forms, recipients suffer frequent infectious complications that require repeated invasive biliary procedures and ultimately result in either retransplantation or death. In the present review article, we discuss our current understanding of ITBL pathogenesis as it pertains to DCD, in particular. We discuss the most relevant theories regarding its development and provide a comprehensive overview of the most promising strategies we have available today to prevent the appearance of ITBL, strategies that may, furthermore, allow us to transplant a greater proportion of marginal livers in the future. Liver Transplantation 22 1025-1033 2016 AASLD.
Collapse
Affiliation(s)
- Amelia J Hessheimer
- General and Digestive Surgery and, University of Barcelona, Barcelona, Spain
| | - Andrés Cárdenas
- Gastrointestinal/Liver Unit, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
39
|
Banan B, Watson R, Xu M, Lin Y, Chapman W. Development of a normothermic extracorporeal liver perfusion system toward improving viability and function of human extended criteria donor livers. Liver Transpl 2016; 22:979-93. [PMID: 27027254 DOI: 10.1002/lt.24451] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/08/2016] [Accepted: 03/21/2016] [Indexed: 12/23/2022]
Abstract
Donor organ shortages have led to an increased interest in finding new approaches to recover organs from extended criteria donors (ECD). Normothermic extracorporeal liver perfusion (NELP) has been proposed as a superior preservation method to reduce ischemia/reperfusion injury (IRI), precondition suboptimal grafts, and treat ECD livers so that they can be successfully used for transplantation. The aim of this study was to investigate the beneficial effects of a modified NELP circuit on discarded human livers. Seven human livers that were rejected for transplantation were placed on a modified NELP circuit for 8 hours. Perfusate samples and needle core biopsies were obtained at hourly intervals. A defatting solution that contained exendin-4 (50 nM) and L-carnitine (10 mM) was added to the perfusate for 2 steatotic livers. NELP provided normal temperature, electrolytes, and pH and glucose levels in the perfusate along with physiological vascular flows and pressures. Functional, biochemical, and microscopic evaluation revealed no additional injuries to the grafts during NELP with an improved oxygen extraction ratio (>0.5) and stabilized markers of hepatic injury. All livers synthesized adequate amounts of bile and coagulation factors. We also demonstrated a mild reduction (10%) of macroglobular steatosis with the use of the defatting solution. Histology demonstrated normal parenchymal architecture and a minimal to complete lack of IRI at the end of NELP. In conclusion, a modified NELP circuit preserved hepatocyte architecture, recovered synthetic functions, and hepatobiliary parameters of ECD livers without additional injuries to the grafts. This approach has the potential to increase the donor pool for clinical transplantation. Liver Transplantation 22 979-993 2016 AASLD.
Collapse
Affiliation(s)
- Babak Banan
- Departments of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Rao Watson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.,Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Min Xu
- Departments of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Yiing Lin
- Departments of Surgery, Washington University School of Medicine, St. Louis, MO
| | - William Chapman
- Departments of Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
40
|
Demetris AJ, Bellamy COC, Gandhi CR, Prost S, Nakanuma Y, Stolz DB. Functional Immune Anatomy of the Liver-As an Allograft. Am J Transplant 2016; 16:1653-80. [PMID: 26848550 DOI: 10.1111/ajt.13749] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 01/25/2023]
Abstract
The liver is an immunoregulatory organ in which a tolerogenic microenvironment mitigates the relative "strength" of local immune responses. Paradoxically, necro-inflammatory diseases create the need for most liver transplants. Treatment of hepatitis B virus, hepatitis C virus, and acute T cell-mediated rejection have redirected focus on long-term allograft structural integrity. Understanding of insults should enable decades of morbidity-free survival after liver replacement because of these tolerogenic properties. Studies of long-term survivors show low-grade chronic inflammatory, fibrotic, and microvascular lesions, likely related to some combination of environment insults (i.e. abnormal physiology), donor-specific antibodies, and T cell-mediated immunity. The resultant conundrum is familiar in transplantation: adequate immunosuppression produces chronic toxicities, while lightened immunosuppression leads to sensitization, immunological injury, and structural deterioration. The "balance" is more favorable for liver than other solid organ allografts. This occurs because of unique hepatic immune physiology and provides unintended benefits for allografts by modulating various afferent and efferent limbs of allogenic immune responses. This review is intended to provide a better understanding of liver immune microanatomy and physiology and thereby (a) the potential structural consequences of low-level, including allo-antibody-mediated injury; and (b) how liver allografts modulate immune reactions. Special attention is given to the microvasculature and hepatic mononuclear phagocytic system.
Collapse
Affiliation(s)
- A J Demetris
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - C O C Bellamy
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - C R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - S Prost
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Y Nakanuma
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - D B Stolz
- Center for Biologic Imaging, Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
41
|
Xie F, Zhang SH, Cheng J, Wang HW, Fei X, Jiao ZY, Tang J, Luo YK. Evaluation of hepatic vascular endothelial injury during liver storage by molecular detection and targeted contrast-enhanced ultrasound imaging. IUBMB Life 2015; 68:51-7. [PMID: 26662566 DOI: 10.1002/iub.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 11/12/2022]
Abstract
We hypothesized that lack of the high-energy phosphates during liver storage may potentially cause persistent injury to the vascular endothelium. Biopsies were obtained from livers obtained from beating heart human donors, stored either in the standard storage solution, that is, University of Wisconsin solution (UWS) or Celsior, and examined for various markers related to progressive endothelial injury. The expression of P2Y1 receptor, the major signal transduction machinery for adenosine triphosphate/adenosine diphosphate, decreased in hepatic vascular endothelial cells over time. Despite unaltered endothelial nitric oxide synthase (eNOS) levels, serine1177-phosphorylated eNOS, the active form of eNOS, progressively decreased with time. The production of nitric oxide enzyme decreased with time when liver tissues were examined in vitro. This also coincided with decreased interaction of eNOS with actin nucleating proteins like myristoylated alanine-rich C kinase substrate and Rac1, which plays a role in modulating the cytoskeleton and helps position eNOS in a favorable cytosolic position for active enzymatic activity. Conversely, the interaction of eNOS with caveolin1 was significantly increased 6 H after ex vivo storage. Finally, we demonstrated by targeted contrast-enhanced ultrasound that membrane-bound vascular cell adhesion molecule-1 in the hepatic vascular endothelial cell increased after 6 H of ex vivo storage. Overall, the results of this study provide evidence of a progressive hepatic vascular endothelial injury during the ex vivo storage. This may be a causative factor for ischemic cholangiopathy and delayed graft function post liver transplantation. © 2015 IUBMB Life, 68(1):51-57, 2015.
Collapse
Affiliation(s)
- Fang Xie
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China.,Department of Ultrasound, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Shu-Hua Zhang
- Department of Ultrasound, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Jia Cheng
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Hong-Wei Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Xiang Fei
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Zi-Yu Jiao
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jie Tang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yu-Kun Luo
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
42
|
Utilization of Machine Perfusion and Nanotechnology for Liver Transplantation. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0076-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Neuberger J. An update on liver transplantation: A critical review. J Autoimmun 2015; 66:51-9. [PMID: 26350881 DOI: 10.1016/j.jaut.2015.08.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 02/08/2023]
Abstract
Liver transplantation, although now a routine procedure, with defined indications and usually excellent outcomes, still has challenges. Donor shortage remains a key issue. Transplanted organs are not free of risk and may transmit cancer, infection, metabolic or autoimmune disease. Approaches to the donor shortage include use of organs from donors after circulatory death, from living donors and from those previously infected with Hepatitis B and C and even HIV for selected recipients. Normothermic regional and/or machine perfusion, whether static or pulsatile, normo- or hypothermic, are being explored and will be likely to have a major place in improving donation rates and outcomes. The main indications for liver replacement are alcoholic liver disease, HCV, non-alcoholic liver disease and liver cancer. Recent studies have shown that selected patients with severe alcoholic hepatitis may also benefit from liver transplant. The advent of new and highly effective treatments for HCV, whether given before or after transplant will have a major impact on outcomes. The role of transplantation for those with liver cell cancer continues to evolve as other interventions become more effective. Immunosuppression is usually required life-long and adherence remains a challenge, especially in adolescents. Immunosuppression with calcineurin inhibitors (primarily tacrolimus), antimetabolites (azathioprine or mycophenolate) and corticosteroids remains standard. Outcomes after transplantation are good but not normal in quality or quantity. Premature death may be due to increased risk of cardiovascular disease, de novo cancer, recurrent disease or late technical problems.
Collapse
Affiliation(s)
- James Neuberger
- Liver Unit, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK; Organ Donation and Transplantation, NHS Blood and Transplant, Fox Den Road, Bristol, BS34 8RR, UK.
| |
Collapse
|