1
|
Balitzer DJ, Greenland NY. The utility of next-generation sequencing in challenging liver FNA biopsies. Cancer Cytopathol 2024; 132:714-722. [PMID: 39097802 DOI: 10.1002/cncy.22893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Fine-needle aspiration (FNA) biopsy is increasingly used for the diagnosis of hepatocellular masses. Because distinguishing well differentiated hepatocellular carcinoma (HCC) from other well differentiated hepatocellular lesions (e.g., large regenerative nodules or focal nodular hyperplasia) requires an assessment of architectural features, this may be challenging on FNA when intact tissue fragments are not sampled. Poorly differentiated HCC and intrahepatic cholangiocarcinoma (ICC) may exhibit overlapping pathologic features. Molecular testing can be helpful, because mutations in TERT promoter and CTNNB1 (β-catenin) are characteristic of HCC, whereas mutations in BAP1, IDH1/IDH2, and PBRM1 may favor ICC. The goal of this study was to assess the role of next-generation sequencing (NGS) in further subclassifying indeterminate liver lesions sampled by FNA. METHODS A retrospective review of liver cytology cases with NGS on cell block material was performed. Age, radiologic features, background hepatic disease and treatment, outcome, and NGS data were obtained from the electronic medical record. RESULTS Twelve FNA biopsies that had cell blocks from clinically suspected primary hepatic masses were identified. The presence of a TERT promoter mutation supported a diagnosis of HCC for one well differentiated neoplasm. For three patients, the presence of mutations, such as IDH1, CDKN2A/CDKN2B, and BRAF, supported a diagnosis of ICC. Of the eight poorly differentiated carcinomas, NGS helped refine the diagnosis in six of eight cases, with one HCC, three ICCs, and two that had combined HCC-ICC, with two cases remaining unclassified. CONCLUSIONS Molecular diagnostics can be helpful to distinguish HCC and ICC on FNA specimens, although a subset of primary hepatic tumors may remain unclassifiable.
Collapse
Affiliation(s)
- Dana J Balitzer
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Nancy Y Greenland
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Shirani M, Levin S, Shebl B, Requena D, Finkelstein TM, Johnson DS, Ng D, Lalazar G, Heissel S, Hojrup P, Molina H, de Jong YP, Rice CM, Singhi AD, Torbenson MS, Coffino P, Lyons B, Simon SM. Increased Protein Kinase A Activity Induces Fibrolamellar Hepatocellular Carcinoma Features Independent of DNAJB1. Cancer Res 2024; 84:2626-2644. [PMID: 38888469 PMCID: PMC11325150 DOI: 10.1158/0008-5472.can-23-4110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a rare liver cancer that is driven by the fusion of DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). PKA activity is controlled through regulatory proteins that both inhibit catalytic activity and control localization, and an excess of regulatory subunits ensures PRKACA activity is inhibited. Here, we found an increase in the ratio of catalytic to regulatory units in FLC patient tumors driven by DNAJB1::PRKACA using mass spectrometry, biochemistry, and immunofluorescence, with increased nuclear localization of the kinase. Overexpression of DNAJB1::PRKACA, ATP1B1::PRKACA, or PRKACA, but not catalytically inactive kinase, caused similar transcriptomic changes in primary human hepatocytes, recapitulating the changes observed in FLC. Consistently, tumors in patients missing a regulatory subunit or harboring an ATP1B1::PRKACA fusion were indistinguishable from FLC based on the histopathological, transcriptomic, and drug-response profiles. Together, these findings indicate that the DNAJB1 domain of DNAJB1::PRKACA is not required for FLC. Instead, changes in PKA activity and localization determine the FLC phenotype. Significance: Alterations leading to unconstrained protein kinase A signaling, regardless of the presence or absence of PRKACA fusions, drive the phenotypes of fibrolamellar hepatocellular carcinoma, reshaping understanding of the pathogenesis of this rare liver cancer.
Collapse
Affiliation(s)
- Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Solomon Levin
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Tova M. Finkelstein
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Daniel S. Johnson
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
- Department of Physics and Astronomy, Hofstra University, Hempstead, New York.
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, New York.
| | - Peter Hojrup
- Department of Biochemistry and Molecular Biology. University of Southern Denmark, Odense, Denmark.
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York.
| | - Ype P. de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York.
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York.
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York.
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | | | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Barbara Lyons
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico.
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| |
Collapse
|
3
|
Matull J, Placke JM, Lodde G, Zaremba A, Utikal J, Terheyden P, Pföhler C, Herbst R, Kreuter A, Welzel J, Kretz J, Möller I, Sucker A, Paschen A, Livingstone E, Zimmer L, Hadaschik E, Ugurel S, Schadendorf D, Thielmann CM, Griewank KG. Clinical and genetic characteristics of BAP1-mutated non-uveal and uveal melanoma. Front Immunol 2024; 15:1383125. [PMID: 38903495 PMCID: PMC11188379 DOI: 10.3389/fimmu.2024.1383125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
Background Screening for gene mutations has become routine clinical practice across numerous tumor entities, including melanoma. BAP1 gene mutations have been identified in various tumor types and acknowledged as a critical event in metastatic uveal melanoma, but their role in non-uveal melanoma remains inadequately characterized. Methods A retrospective analysis of all melanomas sequenced in our department from 2014-2022 (n=2650) was conducted to identify BAP1 mutated samples. Assessment of clinical and genetic characteristics was performed as well as correlations with treatment outcome. Results BAP1 mutations were identified in 129 cases and distributed across the entire gene without any apparent hot spots. Inactivating BAP1 mutations were more prevalent in uveal (55%) compared to non-uveal (17%) melanomas. Non-uveal BAP1 mutated melanomas frequently exhibited UV-signature mutations and had a significantly higher mutation load than uveal melanomas. GNAQ and GNA11 mutations were common in uveal melanomas, while MAP-Kinase mutations were frequent in non-uveal melanomas with NF1, BRAF V600 and NRAS Q61 mutations occurring in decreasing frequency, consistent with a strong UV association. Survival outcomes did not differ among non-uveal melanoma patients based on whether they received targeted or immune checkpoint therapy, or if their tumors harbored inactivating BAP1 mutations. Conclusion In contrast to uveal melanomas, where BAP1 mutations serve as a significant prognostic indicator of an unfavorable outcome, BAP1 mutations in non-uveal melanomas are primarily considered passenger mutations and do not appear to be relevant from a prognostic or therapeutic perspective.
Collapse
Affiliation(s)
- Johanna Matull
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
- Department of Dermatology, Venereology and Allergology, Helios St. Elisabeth Hospital Oberhausen, University Witten/Herdecke, Oberhausen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Georg Lodde
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Anne Zaremba
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
- German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Patrick Terheyden
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Claudia Pföhler
- Department of Dermatology, Saarland University Medical School, Homburg, Germany
| | - Rudolf Herbst
- Skin Cancer Unit, Helios Klinikum Erfurt, Erfurt, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, Helios St. Elisabeth Hospital Oberhausen, University Witten/Herdecke, Oberhausen, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Julia Kretz
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Inga Möller
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Eva Hadaschik
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
- Comprehensive Cancer Center (Westdeutsches Tumorzentrum), University Hospital Essen, Essen & National Center for Tumor Diseases (NCT) West, Essen, Germany
- Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Carl Maximilian Thielmann
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Klaus Georg Griewank
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| |
Collapse
|
4
|
Sanceau J, Poupel L, Joubel C, Lagoutte I, Caruso S, Pinto S, Desbois-Mouthon C, Godard C, Hamimi A, Montmory E, Dulary C, Chantalat S, Roehrig A, Muret K, Saint-Pierre B, Deleuze JF, Mouillet-Richard S, Forné T, Grosset CF, Zucman-Rossi J, Colnot S, Gougelet A. DLK1/DIO3 locus upregulation by a β-catenin-dependent enhancer drives cell proliferation and liver tumorigenesis. Mol Ther 2024; 32:1125-1143. [PMID: 38311851 PMCID: PMC11163201 DOI: 10.1016/j.ymthe.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
The CTNNB1 gene, encoding β-catenin, is frequently mutated in hepatocellular carcinoma (HCC, ∼30%) and in hepatoblastoma (HB, >80%), in which DLK1/DIO3 locus induction is correlated with CTNNB1 mutations. Here, we aim to decipher how sustained β-catenin activation regulates DLK1/DIO3 locus expression and the role this locus plays in HB and HCC development in mouse models deleted for Apc (ApcΔhep) or Ctnnb1-exon 3 (β-cateninΔExon3) and in human CTNNB1-mutated hepatic cancer cells. We identified an enhancer site bound by TCF-4/β-catenin complexes in an open conformation upon sustained β-catenin activation (DLK1-Wnt responsive element [WRE]) and increasing DLK1/DIO3 locus transcription in β-catenin-mutated human HB and mouse models. DLK1-WRE editing by CRISPR-Cas9 approach impaired DLK1/DIO3 locus expression and slowed tumor growth in subcutaneous CTNNB1-mutated tumor cell grafts, ApcΔhep HB and β-cateninΔExon3 HCC. Tumor growth inhibition resulted either from increased FADD expression and subsequent caspase-3 cleavage in the first case or from decreased expression of cell cycle actors regulated by FoxM1 in the others. Therefore, the DLK1/DIO3 locus is an essential determinant of FoxM1-dependent cell proliferation during β-catenin-driven liver tumorigenesis. Targeting the DLK1-WRE enhancer to silence the DLK1/DIO3 locus might thus represent an interesting therapeutic strategy to restrict tumor growth in primary liver cancers with CTNNB1 mutations.
Collapse
Affiliation(s)
- Julie Sanceau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Lucie Poupel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France; Inovarion, F-75005 Paris, France
| | - Camille Joubel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Isabelle Lagoutte
- University Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Sandra Pinto
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France
| | - Christèle Desbois-Mouthon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Cécile Godard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Akila Hamimi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Enzo Montmory
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Cécile Dulary
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | - Sophie Chantalat
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | - Amélie Roehrig
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Kevin Muret
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | | | | | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Thierry Forné
- IGMM, University Montpellier, CNRS, F-34293 Montpellier, France
| | - Christophe F Grosset
- University Bordeaux, INSERM, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancer, BMGIC, U1035, MIRCADE team, F-33076 Bordeaux, France; University Bordeaux, INSERM, Bordeaux Institute in Oncology, BRIC, U1312, MIRCADE team, F-33076 Bordeaux, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Sabine Colnot
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France.
| |
Collapse
|
5
|
Ma RK, Tsai PY, Farghli AR, Shumway A, Kanke M, Gordan JD, Gujral TS, Vakili K, Nukaya M, Noetzli L, Ronnekleiv-Kelly S, Broom W, Barrow J, Sethupathy P. DNAJB1-PRKACA fusion protein-regulated LINC00473 promotes tumor growth and alters mitochondrial fitness in fibrolamellar carcinoma. PLoS Genet 2024; 20:e1011216. [PMID: 38512964 PMCID: PMC11020935 DOI: 10.1371/journal.pgen.1011216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/16/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare liver cancer that disproportionately affects adolescents and young adults. Currently, no standard of care is available and there remains a dire need for new therapeutics. Most patients harbor the fusion oncogene DNAJB1-PRKACA (DP fusion), but clinical inhibitors are not yet developed and it is critical to identify downstream mediators of FLC pathogenesis. Here, we identify long noncoding RNA LINC00473 among the most highly upregulated genes in FLC tumors and determine that it is strongly suppressed by RNAi-mediated inhibition of the DP fusion in FLC tumor epithelial cells. We show by loss- and gain-of-function studies that LINC00473 suppresses apoptosis, increases the expression of FLC marker genes, and promotes FLC growth in cell-based and in vivo disease models. Mechanistically, LINC00473 plays an important role in promoting glycolysis and altering mitochondrial activity. Specifically, LINC00473 knockdown leads to increased spare respiratory capacity, which indicates mitochondrial fitness. Overall, we propose that LINC00473 could be a viable target for this devastating disease.
Collapse
Affiliation(s)
- Rosanna K. Ma
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Pei-Yin Tsai
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Alaa R. Farghli
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexandria Shumway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - John D. Gordan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, United States of America
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Khashayar Vakili
- Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Manabu Nukaya
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Leila Noetzli
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Sean Ronnekleiv-Kelly
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Wendy Broom
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Joeva Barrow
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
6
|
Dong H, Zhou S, Chen X, Deng X, Fang A. Pan-cancer analysis of the prognostic significance of ACKR2 expression and the related genetic/epigenetic dysregulations. Expert Rev Clin Immunol 2024; 20:225-236. [PMID: 37882761 DOI: 10.1080/1744666x.2023.2274361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVE ACKR2 is a scavenger for most inflammation-related CC chemokines. This study aimed to assess the pan-cancer prognostic significance of ACKR2 and the genetic and epigenetic mechanisms underlying its dysregulation. METHODS Pan-cancer data from The Cancer Genome Atlas (TCGA), Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and The Genotype-Tissue Expression (GTEx) were integrated and analyzed. RESULTS ACKR2 is consistently associated with favorable progression-free interval (PFI) and overall survival (OS) in TCGA-uveal melanoma (UVM) and TCGA-liver hepatocellular carcinoma (LIHC). ACKR2 is negatively correlated with the expression of CCL1, CCL4, CCL5, CXCL8, CCL17, and CCL20 in TCGA-UVM and TCGA-LIHC. The group with gene copy gain had significantly higher ACKR2 expression than those with loss. The lower ACKR2 expression groups were associated with a significantly higher ratio of BAP1 mutations. In addition, ACKR2 was negatively corrected with DNMT1 expression but was positively corrected with ZC3H13, an m6A writer gene and NSUN3, an RNA m5C writer gene. CONCLUSIONS ACKR2 expression was associated with favorable prognosis in patients with uveal melanoma and hepatocellular carcinoma. ACKR2 dysregulation might be an accumulated result of gene copy number alterations, transcriptional disruption, and RNA modifications.
Collapse
Affiliation(s)
- Hongxiu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuxi Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuejie Deng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Aiping Fang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Kikuchi AT, Umetsu S, Joseph N, Kakar S. Genomic Analysis in the Categorization of Poorly Differentiated Primary Liver Carcinomas. Am J Surg Pathol 2023; 47:1207-1218. [PMID: 37661782 DOI: 10.1097/pas.0000000000002116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
A subset of primary liver carcinomas (PLCs) cannot be classified as hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (iCCA) based on morphology and immunohistochemistry (IHC). This includes tumors with morphology suggestive of HCC but lacking hepatocellular marker expression, tumors with ambiguous morphology characterized by co-expression of hepatocellular and cholangiocytic markers, and undifferentiated pleomorphic carcinomas with no discernible line of differentiation on morphology or IHC. This study examines the role of genomic analysis in the categorization of these tumors. Genomic analysis was performed on 16 PLCs that could not be definitely classified as HCC or iCCA based on morphology and IHC using a capture-based next-generation sequencing assay (n=15) or single gene mutational analysis (n=1). Genomic alterations in TERT promoter were seen in 9/16 cases (56%) and strongly favored HCC. Genomic alterations favoring iCCA were seen in 5/16 cases (31%) and included mutations in IDH1 , PBRM1 , BAP1 , and ERBB2 , as well as FGFR2 fusion. Genomic changes were helpful in classifying 14/16 (87%) PLCs. Though not specific, these genomic alterations can provide valuable diagnostic clues in selected morphologically and immunohistochemically unclassifiable cases. Given the important differences in management between HCC and iCCA, routine use of genomic analysis in diagnostically challenging settings should be considered.
Collapse
Affiliation(s)
- Alexander T Kikuchi
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | | | | | | |
Collapse
|
9
|
Choi JH, Thung SN. Advances in Histological and Molecular Classification of Hepatocellular Carcinoma. Biomedicines 2023; 11:2582. [PMID: 37761023 PMCID: PMC10526317 DOI: 10.3390/biomedicines11092582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer characterized by hepatocellular differentiation. HCC is molecularly heterogeneous with a wide spectrum of histopathology. The prognosis of patients with HCC is generally poor, especially in those with advanced stages. HCC remains a diagnostic challenge for pathologists because of its morphological and phenotypic diversity. However, recent advances have enhanced our understanding of the molecular genetics and histological subtypes of HCC. Accurate diagnosis of HCC is important for patient management and prognosis. This review provides an update on HCC pathology, focusing on molecular genetics, histological subtypes, and diagnostic approaches.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA;
| |
Collapse
|
10
|
Luo S, Gong J, Zhao S, Li M, Li R. Deubiquitinase BAP1 regulates stability of BRCA1 protein and inactivates the NF-κB signaling to protect mice from sepsis-induced acute kidney injury. Chem Biol Interact 2023; 382:110621. [PMID: 37414201 DOI: 10.1016/j.cbi.2023.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Sepsis and its associated organ dysfunction syndrome is a leading cause of death in critically ill patients. Breast cancer susceptibility protein 1 (BRCA1)-associated protein 1 (BAP1) is a potential regulator in immune regulation and inflammatory responses. This study aims to investigate the function of BAP1 in sepsis-induced acute kidney injury (AKI). A mouse model with sepsis-induced AKI was induced by cecal ligation and puncture, and renal tubular epithelial cells (RTECs) were treated with lipopolysaccharide (LPS) to mimic an AKI condition in vitro. BAP1 was significantly poorly expressed in the kidney tissues of model mice and the LPS-treated RTECs. Artificial upregulation of BAP1 ameliorated the pathological changes, tissue injury and inflammatory responses in kidney tissues of the mice, and it reduced the LPS-induced injury and apoptosis of the RTECs. BAP1 was found to interact with BRCA1 and enhance stability of BRCA1 protein through deubiquitination modification. Further downregulation of BRCA1 activated the nuclear factor-kappa B (NF-κB) signaling pathway and blocked the protective roles of BAP1 in sepsis-induced AKI. In conclusion, this study demonstrates that BAP1 protects mice from sepsis-induced AKI through enhancing stability of BRCA1 protein and inactivating the NF-κB signaling.
Collapse
Affiliation(s)
- Shu Luo
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China.
| | - Junzuo Gong
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| | - Shiqiao Zhao
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| | - Menqin Li
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| | - Ruixiu Li
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| |
Collapse
|
11
|
Li J, Zhang Y, Dong PY, Yang GM, Gurunathan S. A comprehensive review on the composition, biogenesis, purification, and multifunctional role of exosome as delivery vehicles for cancer therapy. Biomed Pharmacother 2023; 165:115087. [PMID: 37392659 DOI: 10.1016/j.biopha.2023.115087] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
All forms of life produce nanosized extracellular vesicles called exosomes, which are enclosed in lipid bilayer membranes. Exosomes engage in cell-to-cell communication and participate in a variety of physiological and pathological processes. Exosomes function via their bioactive components, which are delivered to target cells in the form of proteins, nucleic acids, and lipids. Exosomes function as drug delivery vehicles due to their unique properties of innate stability, low immunogenicity, biocompatibility, biodistribution, accumulation in desired tissues, low toxicity in normal tissues, and the stimulation of anti-cancer immune responses, and penetration capacity into distance organs. Exosomes mediate cellular communications by delivering various bioactive molecules including oncogenes, oncomiRs, proteins, specific DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), and circular RNA (circRNA). These bioactive substances can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. After considering all of the available literature, in this review we discuss the biogenesis, composition, production, and purification of exosomes. We briefly review exosome isolation and purification techniques. We explore great-length exosomes as a mechanism for delivering a variety of substances, including proteins, nucleic acids, small chemicals, and chemotherapeutic drugs. We also talk about the benefits and drawbacks of exosomes. This review concludes with a discussion future perspective and challenges. We hope that this review will provide us a better understanding of the current state of nanomedicine and exosome applications in biomedicine.
Collapse
Affiliation(s)
- Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Ming Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Pollachi Road, Eachanari, Coimbatore, Tamil Nadu 641021, India.
| |
Collapse
|
12
|
Zhang W, Xu Y, Wang X, Oikawa T, Su G, Wauthier E, Wu G, Sethupathy P, He Z, Liu J, Reid LM. Fibrolamellar carcinomas-growth arrested by paracrine signals complexed with synthesized 3-O sulfated heparan sulfate oligosaccharides. Matrix Biol 2023; 121:194-216. [PMID: 37402431 DOI: 10.1016/j.matbio.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Tsunekazu Oikawa
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guowei Su
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Praveen Sethupathy
- Division of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Lola M Reid
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Program in Molecular Biology and Biotechnology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
13
|
Rüland L, Andreatta F, Massalini S, Chuva de Sousa Lopes S, Clevers H, Hendriks D, Artegiani B. Organoid models of fibrolamellar carcinoma mutations reveal hepatocyte transdifferentiation through cooperative BAP1 and PRKAR2A loss. Nat Commun 2023; 14:2377. [PMID: 37137901 PMCID: PMC10156813 DOI: 10.1038/s41467-023-37951-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Fibrolamellar carcinoma (FLC) is a lethal primary liver cancer, affecting young patients in absence of chronic liver disease. Molecular understanding of FLC tumorigenesis is limited, partly due to the scarcity of experimental models. Here, we CRISPR-engineer human hepatocyte organoids to recreate different FLC backgrounds, including the predominant genetic alteration, the DNAJB1-PRKACA fusion, as well as a recently reported background of FLC-like tumors, encompassing inactivating mutations of BAP1 and PRKAR2A. Phenotypic characterizations and comparisons with primary FLC tumor samples revealed mutant organoid-tumor similarities. All FLC mutations caused hepatocyte dedifferentiation, yet only combined loss of BAP1 and PRKAR2A resulted in hepatocyte transdifferentiation into liver ductal/progenitor-like cells that could exclusively grow in a ductal cell environment. BAP1-mutant hepatocytes represent primed cells attempting to proliferate in this cAMP-stimulating environment, but require concomitant PRKAR2A loss to overcome cell cycle arrest. In all analyses, DNAJB1-PRKACAfus organoids presented with milder phenotypes, suggesting differences between FLC genetic backgrounds, or for example the need for additional mutations, interactions with niche cells, or a different cell-of-origin. These engineered human organoid models facilitate the study of FLC.
Collapse
Affiliation(s)
- Laura Rüland
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Simone Massalini
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Zack T, Losert KP, Maisel SM, Wild J, Yaqubie A, Herman M, Knox JJ, Mayer RJ, Venook AP, Butte A, O'Neill AF, Abou-Alfa GK, Gordan JD. Defining incidence and complications of fibrolamellar liver cancer through tiered computational analysis of clinical data. NPJ Precis Oncol 2023; 7:29. [PMID: 36959495 PMCID: PMC10034241 DOI: 10.1038/s41698-023-00371-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/03/2023] [Indexed: 03/25/2023] Open
Abstract
The incidence and biochemical consequences of rare tumor subtypes are often hard to study. Fibrolamellar liver cancer (FLC) is a rare malignancy affecting adolescents and young adults. To better characterize the incidence and biochemical consequences of this disease, we combined a comprehensive analysis of the electronic medical record and national payer data and found that FLC incidence is likely five to eight times higher than previous estimates. By employing unsupervised learning on clinical laboratory data from patients with hyperammonemia, we find that FLC-associated hyperammonemia mirrors metabolic dysregulation in urea cycle disorders. Our findings demonstrate that advanced computational analysis of rich clinical datasets can provide key clinical and biochemical insights into rare cancers.
Collapse
Affiliation(s)
- Travis Zack
- Helen Diller Family Comprehensive Cancer Center (HDFCCC), University of California, San Francisco (UCSF), San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | | | | | - Jennifer Wild
- Helen Diller Family Comprehensive Cancer Center (HDFCCC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Amin Yaqubie
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Herman
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Jennifer J Knox
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Robert J Mayer
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan P Venook
- Helen Diller Family Comprehensive Cancer Center (HDFCCC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Atul Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Allison F O'Neill
- Dana-Farber Cancer Institute/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Department of Pediatric Oncology, Boston, MA, USA
| | - Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Medical College at Cornell University, New York, NY, USA.
| | - John D Gordan
- Helen Diller Family Comprehensive Cancer Center (HDFCCC), University of California, San Francisco (UCSF), San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
15
|
Franca RA, Della Monica R, Corvino S, Chiariotti L, Del Basso De Caro M. WHO grade and pathological markers of meningiomas: Clinical and prognostic role. Pathol Res Pract 2023; 243:154340. [PMID: 36738518 DOI: 10.1016/j.prp.2023.154340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
In recent years, WHO grading criteria have emerged as an inaccurate tool to correctly predict the risk of progression/recurrence for meningioma patients. Therefore, great efforts were made to find further prognostic factors that could predict the clinical course of meningiomas. Why morphological criteria are not able alone to correctly predict outcome in all patients? What are the biological parameters underlying a more aggressive behavior? Are there any molecular markers can be integrated in the risk assessment? Could new technologies, such as methylome profiling, contribute to provide additional tools in patients prognostic evaluation? We performed a literature review to find answers to these questions. Meningiomas have been demonstrated to be extremely heterogeneous neoplasms, also from the genetic and epigenetic standpoints. However, WHO Classification of Tumours of the central Nervous System 5th edition introduced only CDKN2A/B deletion and TERT promoter mutations as poor prognostic, grade 3 defining parameters. The different proposals of integrated grading, taking into account cytogenetic alterations and study of methylation profile, have not yet been incorporated in WHO grading criteria. Work in progress: this is the summary of current knowledge. Further studies are needed to expand the diagnostic and prognostic equipment to be integrated into clinical practice.
Collapse
Affiliation(s)
- Raduan Ahmed Franca
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", Naples, Italy.
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, via Gaetano Salvatore, 486, Naples, Italy.
| | - Sergio Corvino
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, Università di Napoli Federico II, Naples 80131, Italy.
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, via Gaetano Salvatore, 486, Naples, Italy.
| | - Marialaura Del Basso De Caro
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
16
|
Paradis V, Zucman-Rossi J. Pathogenesis of primary liver carcinomas. J Hepatol 2023; 78:448-449. [PMID: 36064762 DOI: 10.1016/j.jhep.2022.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Affiliation(s)
- Valérie Paradis
- Centre de recherche sur l'inflammation, INSERM1149, Université Paris Cité, Paris, France; Pathology Department, Beaujon Hospital, APHP.Nord, Clichy, France.
| | - Jessica Zucman-Rossi
- Centre de recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France; APHP, Institut du Cancer Paris CARPEM, APHP.centre, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
17
|
Campani C, Zucman-Rossi J, Nault JC. Genetics of Hepatocellular Carcinoma: From Tumor to Circulating DNA. Cancers (Basel) 2023; 15:cancers15030817. [PMID: 36765775 PMCID: PMC9913369 DOI: 10.3390/cancers15030817] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary hepatic malignancies and is one of the major causes of cancer-related death. Over the last 15 years, the molecular landscape of HCC has been deciphered, with the identification of the main driver genes of liver carcinogenesis that belong to six major biological pathways, such as telomere maintenance, Wnt/b-catenin, P53/cell cycle regulation, oxidative stress, epigenetic modifiers, AKT/mTOR and MAP kinase. The combination of genetic and transcriptomic data composed various HCC subclasses strongly related to risk factors, pathological features and prognosis. However, translation into clinical practice is not achieved, mainly because the most frequently mutated genes are undruggable. Moreover, the results derived from the analysis of a single tissue sample may not adequately catch the intra- and intertumor heterogeneity. The analysis of circulating tumor DNA (ctDNA) is broadly developed in other types of cancer for early diagnosis, prognosis and monitoring under systemic treatment in order to identify primary and secondary mechanisms of resistance. The aim of this review is to describe recent data about the HCC molecular landscape and to discuss how ctDNA could be used in the future for HCC detection and management.
Collapse
Affiliation(s)
- Claudia Campani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Internal Medicine and Hepatology Unit, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Hôpital Européen Georges Pompidou, APHP, 75015 Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Liver Unit, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, 93000 Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris Nord, 93000 Bobigny, France
- Correspondence: ; Tel.: +33-6-1067-9461
| |
Collapse
|
18
|
Molina L, Zhu J, Trépo E, Bayard Q, Amaddeo G, Blanc JF, Calderaro J, Ma X, Zucman-Rossi J, Letouzé E, Chiche L, Bioulac-Sage P, Balabaud C, Possenti L, Decraecker M, Paradis V, Laurent A. Bi-allelic hydroxymethylbilane synthase inactivation defines a homogenous clinico-molecular subtype of hepatocellular carcinoma. J Hepatol 2022; 77:1038-1046. [PMID: 35636578 PMCID: PMC10061578 DOI: 10.1016/j.jhep.2022.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Acute intermittent porphyria (AIP), caused by heterozygous germline mutations of the heme synthesis pathway enzyme HMBS (hydroxymethylbilane synthase), confers a high risk of hepatocellular carcinoma (HCC) development. Yet, the role of HMBS in liver tumorigenesis remains unclear. METHODS Herein, we explore HMBS alterations in a large series of 758 HCC cases, including 4 patients with AIP. We quantify the impact of HMBS mutations on heme biosynthesis pathway intermediates and we investigate the molecular and clinical features of HMBS-mutated tumors. RESULTS We identify recurrent bi-allelic HMBS inactivation, both in patients with AIP acquiring a second somatic HMBS mutation and in sporadic HCC with 2 somatic hits. HMBS alterations are enriched in truncating mutations, in particular in splice regions, leading to abnormal transcript structures. Bi-allelic HMBS inactivation results in a massive accumulation of its toxic substrate porphobilinogen and synergizes with CTNNB1-activating mutations, leading to the development of well-differentiated tumors with a transcriptomic signature of Wnt/β-catenin pathway activation and a DNA methylation signature related to ageing. HMBS-inactivated HCC mostly affects females, in the absence of fibrosis and classical HCC risk factors. CONCLUSIONS These data identify HMBS as a tumor suppressor gene whose bi-allelic inactivation defines a homogenous clinical and molecular HCC subtype. LAY SUMMARY Heme (the precursor to hemoglobin, which plays a key role in oxygen transport around the body) synthesis occurs in the liver and involves several enzymes including hydroxymethylbilane synthase (HMBS). HMBS mutations cause acute intermittent porphyria, a disease caused by the accumulation of toxic porphyrin precursors. Herein, we show that HMBS inactivation is also involved in the development of liver cancers with distinct clinical and molecular characteristics.
Collapse
Affiliation(s)
- Laura Molina
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Eric Trépo
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Giuliana Amaddeo
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France; INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France; Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service d'Hépatologie, Créteil, France
| | | | - Jean-Frédéric Blanc
- Department of Hepato-Gastroenterology and Digestive Oncology, CHU de Bordeaux, Haut-Lévêque Hospital, Bordeaux, Aquitaine, France; Department of Pathology, CHU de Bordeaux, Pellegrin Hospital, Bordeaux, Aquitaine, France; Bordeaux Research in Translational Oncology, Université Bordeaux, Bordeaux, Aquitaine, France
| | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France; INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France; Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Département de Pathologie, Créteil, France
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Na SK. Fibrolamellar hepatocellular carcinoma that was successfully treated with surgical resection: a case report. JOURNAL OF LIVER CANCER 2022; 22:178-182. [PMID: 37383417 PMCID: PMC10035731 DOI: 10.17998/jlc.2022.06.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 06/30/2023]
Abstract
Fibrolamellar hepatocellular carcinoma (FLHCC) is a rare malignant hepatic cancer with characteristics that differ from those of typical hepatocellular carcinoma (HCC). Unlike conventional HCC, FLHCC is common in young patients without any underlying liver disease and is known to be associated with a unique gene mutation. This cancer type is rare in Asia, with only a few cases being reported in Korea. We report a case of FLHCC in a young woman that successfully underwent surgical resection. The efficacy of alternative treatments, such as transarterial chemoembolization or systemic chemotherapies, has not yet been established. To conclude, early diagnosis and appropriate surgical resection are important for the treatment of FLHCC.
Collapse
Affiliation(s)
- Seong Kyun Na
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju, Korea
| |
Collapse
|
20
|
Dinh TA, Utria AF, Barry KC, Ma R, Abou-Alfa GK, Gordan JD, Jaffee EM, Scott JD, Zucman-Rossi J, O’Neill AF, Furth ME, Sethupathy P. A framework for fibrolamellar carcinoma research and clinical trials. Nat Rev Gastroenterol Hepatol 2022; 19:328-342. [PMID: 35190728 PMCID: PMC9516439 DOI: 10.1038/s41575-022-00580-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Fibrolamellar carcinoma (FLC), a rare, lethal hepatic cancer, occurs primarily in adolescents and young adults. Unlike hepatocellular carcinoma, FLC has no known association with viral, metabolic or chemical agents that cause cirrhosis. Currently, surgical resection is the only treatment demonstrated to achieve cure, and no standard of care exists for systemic therapy. Progress in FLC research illuminates a transition from an obscure cancer to one for which an interactive community seems poised to uncover fundamental mechanisms and initiate translation towards novel therapies. In this Roadmap, we review advances since the seminal discovery in 2014 that nearly all FLC tumours express a signature oncogene (DNAJB1-PRKACA) encoding a fusion protein (DNAJ-PKAc) in which the J-domain of a heat shock protein 40 (HSP40) co-chaperone replaces an amino-terminal segment of the catalytic subunit of the cyclic AMP-dependent protein kinase (PKA). Important gains include increased understanding of oncogenic pathways driven by DNAJ-PKAc; identification of potential therapeutic targets; development of research models; elucidation of immune mechanisms with potential for the development of immunotherapies; and completion of the first multicentre clinical trials of targeted therapy for FLC. In each of these key areas we propose a Roadmap for future progress.
Collapse
Affiliation(s)
- Timothy A. Dinh
- Medical Scientist Training Program, University of North Carolina, Chapel Hill, NC, USA.,Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Alan F. Utria
- Department of Surgery, University of Washington, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Kevin C. Barry
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Rosanna Ma
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Ghassan K. Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - John D. Gordan
- Gastrointestinal oncology, University of California at San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Elizabeth M. Jaffee
- Department of oncology, Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne université, Inserm, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Allison F. O’Neill
- Department of Paediatric Hematology/oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Mark E. Furth
- Fibrolamellar Cancer Foundation, Greenwich, CT, USA.,;
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,;
| |
Collapse
|
21
|
Péneau C, Imbeaud S, La Bella T, Hirsch TZ, Caruso S, Calderaro J, Paradis V, Blanc JF, Letouzé E, Nault JC, Amaddeo G, Zucman-Rossi J. Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut 2022; 71:616-626. [PMID: 33563643 PMCID: PMC8862055 DOI: 10.1136/gutjnl-2020-323153] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Infection by HBV is the main risk factor for hepatocellular carcinoma (HCC) worldwide. HBV directly drives carcinogenesis through integrations in the human genome. This study aimed to precisely characterise HBV integrations, in relation with viral and host genomics and clinical features. DESIGN A novel pipeline was set up to perform viral capture on tumours and non-tumour liver tissues from a French cohort of 177 patients mainly of European and African origins. Clonality of each integration event was determined with the localisation, orientation and content of the integrated sequence. In three selected tumours, complex integrations were reconstructed using long-read sequencing or Bionano whole genome mapping. RESULTS Replicating HBV DNA was more frequently detected in non-tumour tissues and associated with a higher number of non-clonal integrations. In HCC, clonal selection of HBV integrations was related to two different mechanisms involved in carcinogenesis. First, integration of viral enhancer nearby a cancer-driver gene may lead to a strong overexpression of oncogenes. Second, we identified frequent chromosome rearrangements at HBV integration sites leading to cancer-driver genes (TERT, TP53, MYC) alterations at distance. Moreover, HBV integrations have direct clinical implications as HCC with a high number of insertions develop in young patients and have a poor prognosis. CONCLUSION Deep characterisation of HBV integrations in liver tissues highlights new HBV-associated driver mechanisms involved in hepatocarcinogenesis. HBV integrations have multiple direct oncogenic consequences that remain an important challenge for the follow-up of HBV-infected patients.
Collapse
Affiliation(s)
- Camille Péneau
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Tiziana La Bella
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Julien Calderaro
- Service d’Anatomopathologie, Hôpital Henri Mondor, APHP, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Valerie Paradis
- Service de Pathologie, Hôpital Beaujon, APHP, Clichy, France,Université Paris Diderot, CNRS, Centre de Recherche 27 sur l'Inflammation (CRI), Paris, France
| | - Jean-Frederic Blanc
- Service Hépato-Gastroentérologie et Oncologie Digestive, Hôpital Haut-Lévêque, CHU de Bordeaux, Bordeaux, France,Service de Pathologie, CHU Bordeaux GH Pellegrin, Bordeaux, France,Université Bordeaux, Inserm, Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France,Service d’Hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, APHP, Bobigny, France
| | - Giuliana Amaddeo
- Service d’Hépato-Gastro-Entérologie, Hôpital Henri Mondor, APHP, Université Paris Est Créteil, Inserm U955, Institut Mondor de recherche biomedicale, Creteil, Île-de-France, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France .,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
22
|
Common genetic variation in alcohol-related hepatocellular carcinoma: a case-control genome-wide association study. Lancet Oncol 2021; 23:161-171. [PMID: 34902334 DOI: 10.1016/s1470-2045(21)00603-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatocellular carcinoma is a frequent consequence of alcohol-related liver disease, with variable incidence among heavy drinkers. We did a genome-wide association study (GWAS) to identify common genetic variants for alcohol-related hepatocellular carcinoma. METHODS We conducted a two-stage case-control GWAS in a discovery cohort of 2107 unrelated European patients with alcohol-related liver disease aged 20-92 years recruited between Oct 22, 1993, and March 12, 2017. Cases were patients with alcohol-related hepatocellular carcinoma diagnosed by imaging or histology. Controls were patients with alcohol-related liver disease without hepatocellular carcinoma. We used an additive logistic regression model adjusted for the first ten principal components to assess genetic variants associated with alcohol-related hepatocellular carcinoma. We did another analysis with adjustment for age, sex, and liver fibrosis. New candidate associations (p<1 × 10-6) and variants previously associated with alcohol-related hepatocellular carcinoma were evaluated in a validation cohort of 1933 patients with alcohol-related liver disease aged 29-92 years recruited between July 21, 1995, and May 2, 2019. We did a meta-analysis of the two case-control cohorts. FINDINGS The discovery cohort included 775 cases and 1332 controls. Of 7 962 325 variants assessed, we identified WNT3A-WNT9A (rs708113; p=1·11 × 10-8) and found support for previously reported regions associated with alcohol-related hepatocellular carcinoma risk at TM6SF2 (rs58542926; p=6·02 × 10-10), PNPLA3 (rs738409; p=9·29 × 10-7), and HSD17B13 (rs72613567; p=2·49 × 10-4). The validation cohort included 874 cases and 1059 controls and three variants were replicated: WNT3A-WNT9A (rs708113; p=1·17 × 10-3), TM6SF2 (rs58542926; p=4·06 × 10-5), and PNPLA3 (rs738409; p=1·17 × 10-4). All three variants reached GWAS significance in the meta-analysis: WNT3A-WNT9A (odds ratio 0·73, 95% CI 0·66-0·81; p=3·93 × 10-10), TM6SF2 (1·77, 1·52-2·07; p=3·84×10-13), PNPLA3 (1·34, 1·22-1·47; p=7·30 × 10-10). Adjustment for clinical covariates yielded similar results. We observed an additive effect of at-risk alleles on alcohol-related hepatocellular carcinoma. WNT3A-WNT9A rs708113 was not associated with liver fibrosis. INTERPRETATION WNT3A-WNT9A is a susceptibility locus for alcohol-related hepatocellular carcinoma, suggesting an early role of the Wnt-β-catenin pathway in alcohol-related hepatocellular carcinoma carcinogenesis. FUNDING Ligue Nationale contre le Cancer, Bpifrance, INSERM, AFEF, CARPEM, Labex OncoImmunology, and Agence Nationale de la Recherche.
Collapse
|
23
|
Genomic characterization of rare molecular subclasses of hepatocellular carcinoma. Commun Biol 2021; 4:1150. [PMID: 34608257 PMCID: PMC8490450 DOI: 10.1038/s42003-021-02674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer, consisting of both cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC), is the second leading cause of cancer deaths worldwide. Our goal is to genomically characterize rare HCC subclasses to provide insight into disease biology. Leveraging The Cancer Genome Atlas (TCGA) to perform a combined analysis of CCA (n = 36) and HCC (n = 275), we integrated multiple genomic platforms, to assess transcriptional profiles, mutational signatures, and copy number patterns to uncover underlying etiology and linage specific patterns. We identified two molecular classes distinct from prototypical HCC tumors. The first, CCA-Like, although histologically indistinguishable from HCC, had enrichment of CCA mutations (IDH1, BAP1), mutational signatures, and transcriptional patterns (SOX9, KRT19). CCA-Like, however, retained a copy number landscape similar to HCC, suggesting a hepatocellular linage. The second, Blast-Like, is enriched in TP53 mutations, HBV infection, exposure related mutational signatures and transcriptionally similar to hepatoblasts. Although these subclasses are molecularly distinct, they both have a worse progression-free survival compared to classical HCC tumors, yet are clinically treated the same. The identification of and characterization of CCA-Like and Blast-Like subclasses advance our knowledge of HCC as well as represents an urgent need for the identification of class specific biomarkers and targeted therapy. Jeffrey Damrauer, Markia Smith et al. used existing datasets from cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) to characterize two subsets of HCC distinct from prototypical HCC tumors, based on comprehensive analysis of molecular data. The two classes differed from HCC by their copy number, gene expression and mutational signature and exhibited worse progression free survival, highlighting the need to identify class-specific biomarkers and develop targeted therapies for these forms of cancer.
Collapse
|
24
|
Unfried JP, Marín-Baquero M, Rivera-Calzada Á, Razquin N, Martín-Cuevas EM, de Bragança S, Aicart-Ramos C, McCoy C, Prats-Mari L, Arribas-Bosacoma R, Lee L, Caruso S, Zucman-Rossi J, Sangro B, Williams G, Moreno-Herrero F, Llorca O, Lees-Miller SP, Fortes P. Long Noncoding RNA NIHCOLE Promotes Ligation Efficiency of DNA Double-Strand Breaks in Hepatocellular Carcinoma. Cancer Res 2021; 81:4910-4925. [PMID: 34321241 PMCID: PMC8488005 DOI: 10.1158/0008-5472.can-21-0463] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNA) are emerging as key players in cancer as parts of poorly understood molecular mechanisms. Here, we investigated lncRNAs that play a role in hepatocellular carcinoma (HCC) and identified NIHCOLE, a novel lncRNA induced in HCC with oncogenic potential and a role in the ligation efficiency of DNA double-stranded breaks (DSB). NIHCOLE expression was associated with poor prognosis and survival of HCC patients. Depletion of NIHCOLE from HCC cells led to impaired proliferation and increased apoptosis. NIHCOLE deficiency led to accumulation of DNA damage due to a specific decrease in the activity of the nonhomologous end-joining (NHEJ) pathway of DSB repair. DNA damage induction in NIHCOLE-depleted cells further decreased HCC cell growth. NIHCOLE was associated with DSB markers and recruited several molecules of the Ku70/Ku80 heterodimer. Further, NIHCOLE putative structural domains supported stable multimeric complexes formed by several NHEJ factors including Ku70/80, APLF, XRCC4, and DNA ligase IV. NHEJ reconstitution assays showed that NIHCOLE promoted the ligation efficiency of blunt-ended DSBs. Collectively, these data show that NIHCOLE serves as a scaffold and facilitator of NHEJ machinery and confers an advantage to HCC cells, which could be exploited as a targetable vulnerability. SIGNIFICANCE: This study characterizes the role of lncRNA NIHCOLE in DNA repair and cellular fitness in HCC, thus implicating it as a therapeutic target.See related commentary by Barcena-Varela and Lujambio, p. 4899.
Collapse
MESH Headings
- Biomarkers, Tumor
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Cell Line, Tumor
- DNA Breaks, Double-Stranded
- DNA End-Joining Repair
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- High-Throughput Nucleotide Sequencing
- Humans
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Models, Biological
- Nucleic Acid Conformation
- Nucleotide Motifs
- Prognosis
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
Collapse
Affiliation(s)
- Juan P Unfried
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.
| | - Mikel Marín-Baquero
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Ángel Rivera-Calzada
- Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Nerea Razquin
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Eva M Martín-Cuevas
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Sara de Bragança
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Christopher McCoy
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Laura Prats-Mari
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Raquel Arribas-Bosacoma
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors laboratory, Équipe Labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors laboratory, Équipe Labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France
| | - Bruno Sangro
- University of Navarra Clinic (CUN), Liver Unit, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Gareth Williams
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Oscar Llorca
- Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Puri Fortes
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| |
Collapse
|
25
|
Zhang Y, Liu Z, Li X, Liu L, Wang L, Han X, Li Z. Comprehensive Molecular Analyses of a Six-Gene Signature for Predicting Late Recurrence of Hepatocellular Carcinoma. Front Oncol 2021; 11:732447. [PMID: 34568069 PMCID: PMC8459683 DOI: 10.3389/fonc.2021.732447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 01/12/2023] Open
Abstract
A larger number of patients with stages I-III hepatocellular carcinoma (HCC) experience late recurrence (LR) after surgery. We sought to develop a novel tool to stratify patients with different LR risk for tailoring decision-making for postoperative recurrence surveillance and therapy modalities. We retrospectively enrolled two independent public cohorts and 103 HCC tissues. Using LASSO logical analysis, a six-gene model was developed in the The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA-LIHC) and independently validated in GSE76427. Further experimental validation using qRT-PCR assays was performed to ensure the robustness and clinical feasible of this signature. We developed a novel LR-related signature consisting of six genes. This signature was validated to be significantly associated with dismal recurrence-free survival in three cohorts TCGA-LIHC, GSE76427, and qPCR assays [HR: 2.007 (1.200-3.357), p = 0.008; HR: 2.171 (1.068, 4.412), p-value = 0.032; HR: 3.383 (2.100, 5.450), p-value <0.001]. More importantly, this signature displayed robust discrimination in predicting the LR risk, with AUCs being 0.73 (TCGA-LIHC), 0.93 (GSE76427), and 0.85 (in-house cohort). Furthermore, we deciphered the specific landscape of molecular alterations among patients in nonrecurrence (NR) and LR group to analyze the mechanism contributing to LR. For high-risk group, we also identified several potential drugs with specific sensitivity to high- and low-risk groups, which is vital to improve prognosis of LR-HCC after surgery. We discovered and experimentally validated a novel gene signature with powerful performance for identifying patients at high LR risk in stages I-III HCC.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
26
|
Meunier L, Hirsch TZ, Caruso S, Imbeaud S, Bayard Q, Roehrig A, Couchy G, Nault JC, Llovet JM, Blanc JF, Calderaro J, Zucman-Rossi J, Letouzé E. DNA Methylation Signatures Reveal the Diversity of Processes Remodeling Hepatocellular Carcinoma Methylomes. Hepatology 2021; 74:816-834. [PMID: 33713365 DOI: 10.1002/hep.31796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/15/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS DNA methylation patterns are highly rearranged in HCCs. However, diverse sources of variation are intermingled in cancer methylomes, precluding the precise characterization of underlying molecular mechanisms. We developed a computational framework (methylation signature analysis with independent component analysis [MethICA]) leveraging independent component analysis to disentangle the diverse processes contributing to DNA methylation changes in tumors. APPROACH AND RESULTS Applied to a collection of 738 HCCs, MethICA unraveled 13 stable methylation components preferentially active in specific chromatin states, sequence contexts, and replication timings. These included signatures of general processes associated with sex and age but also signatures related to specific driver events and molecular subgroups. Catenin beta 1 mutations were major modulators of methylation patterns in HCC, characterized by a targeted hypomethylation of transcription factor 7-bound enhancers in the vicinity of Wnt target genes as well as a widespread hypomethylation of late-replicated partially methylated domains. By contrast, demethylation of early replicated highly methylated domains was a signature of replication stress, leading to an extensive hypomethylator phenotype in cyclin-activated HCC. Inactivating mutations of the chromatin remodeler AT-rich interactive domain-containing protein 1A were associated with epigenetic silencing of differentiation-promoting transcriptional networks, also detectable in cirrhotic liver. Finally, a hypermethylation signature targeting polycomb-repressed chromatin domains was identified in the G1 molecular subgroup with progenitor features. CONCLUSIONS This study elucidates the diversity of processes remodeling HCC methylomes and reveals the epigenetic and transcriptional impact of driver alterations.
Collapse
Affiliation(s)
- Léa Meunier
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Théo Z Hirsch
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Stefano Caruso
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Sandrine Imbeaud
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Quentin Bayard
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Amélie Roehrig
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Gabrielle Couchy
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Jean-Charles Nault
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance.,Service d'HépatologieHôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique-Hôpitaux de ParisBondyFrance.,Unité de Formation et de Recherche Santé Médecine et Biologie HumaineUniversité Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris CitéParisFrance
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver DiseasesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNY.,Translational Research in Hepatic Oncology, Liver UnitIDIBAPS, Hospital ClinicUniversity of BarcelonaBarcelonaCataloniaSpain.,Institució Catalana d'Estudis Avançats (ICREA)BarcelonaSpain
| | - Jean-Frédéric Blanc
- Department of Hepato-Gastroenterology and Digestive OncologyCHU de BordeauxHaut-Lévêque HospitalBordeaux, AquitaineFrance.,Department of PathologyCHU de BordeauxPellegrin HospitalBordeaux, AquitaineFrance.,Bordeaux Research in Translational OncologyUniversité BordeauxBordeaux, AquitaineFrance
| | - Julien Calderaro
- Service d'AnatomopathologieHôpital Henri Mondor; Université Paris Est, INSERM U955, Team 18, Institut Mondor de Recherche BiomédicaleCréteilFrance
| | - Jessica Zucman-Rossi
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance.,Hôpital Européen Georges PompidouAssistance Publique-Hôpitaux de ParisParisFrance
| | - Eric Letouzé
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| |
Collapse
|
27
|
Treatment for liver cancer: From sorafenib to natural products. Eur J Med Chem 2021; 224:113690. [PMID: 34256124 DOI: 10.1016/j.ejmech.2021.113690] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
Liver cancer most commonly develops in patients with chronic liver disease, the etiology of which includes viral hepatitis (B and C), alcohol, obesity, dietary carcinogens, and so forth. The current treatment modalities, including surgical resection and liver transplantation, have been found far from effective. Hence, there is an obvious critical need to develop alternative strategies for the treatment of it. In this review, we discuss the formation process and therapeutic targets of liver cancer. Currently, targeted therapy is limited to sorafenib, lenvatinib, regorafenib, ramucirumab and cabozantinib which leads to a survival benefit in patients, but on the other hand is hampered by the occurrence of drug resistance. Pleasingly and importantly, there are multiple natural products undergoing clinical evaluation in liver cancer, such as polyphenols like icaritin, resveratrol, and silybin, saponins including ginsenoside Rg3 and glycyrrhizinate, alkaloid containing irinotecan and berberine and inorganic compound arsenic trioxide at present. Preclinical and clinical studies have shown that these compounds inhibit liver cancer formation owing to the influence on the anti-viral, anti-inflammation, anti-oxidant, anti-angiogenesis and anti-metastasis activity. Furthermore, a series of small molecule derivatives inspired by the aforementioned compounds are designed and synthesized according to structure-activity relationship studies. Drug combination and novel type of drug-targeted delivery system thereof have been well developed. This article is ended by a perspective remark of futuristic development of natural product-based therapeutic regimen for liver cancer treatment. We expect that this review is an account for current status of natural products as promising anti-liver cancer treatments and should contribute to its understanding.
Collapse
|
28
|
Patil PA, Taddei T, Jain D, Zhang X. HNF-1β is a More Sensitive and Specific Marker Than C-Reactive Protein for Identifying Biliary Differentiation in Primary Hepatic Carcinomas. Arch Pathol Lab Med 2021; 146:220-226. [PMID: 34086854 DOI: 10.5858/arpa.2020-0725-oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 02/05/2023]
Abstract
CONTEXT.— Intrahepatic cholangiocarcinoma (iCCA) needs to be distinguished from hepatocellular carcinoma (HCC) and metastasis, and in the absence of any specific biliary markers, is often a diagnosis of exclusion. Hepatocyte nuclear factor (HNF)-1β is a transcription factor that plays a critical role in bile duct system morphogenesis. OBJECTIVE.— To investigate the diagnostic value of HNF-1β to differentiate iCCA from HCC by immunohistochemistry and compare HNF-1β with C-reactive protein (CRP), a previously identified marker for iCCA. DESIGN.— Cases of iCCA (n = 75), combined hepatocellular-cholangiocarcinoma (cHCC-CCA) (n = 13) and HCC (n = 65) were included in the study. RESULTS.— All cases of iCCA (74 of 74, 100%) expressed HNF-1β compared with CRP expressed in 72.60% (53 of 73). The sensitivity and specificity of HNF-1β to differentiate iCCA from HCC was 100% and 92.31%, whereas the sensitivity and specificity for CRP was 75.58% and 7.79%. The expression of HNF-1β was greater in iCCA and the CCA component of cHCC-CCA compared with CRP (87 of 87, 100% versus 65 of 86, 75.58%, P < .001). On the contrary, CRP was more frequently expressed compared with HNF-1β in HCC and HCC component of cHCC-CCA (71 of 77, 92.21% versus 6 of 78, 7.69%; P < .001). CONCLUSIONS.— Our data indicate that HNF-1β is a more sensitive and specific marker than CRP for the diagnosis of iCCA and to identify the CCA component in cHCC-CCA. Lack of HNF-1β expression may be used to exclude iCCA from consideration in cases of adenocarcinomas of unknown primary.
Collapse
Affiliation(s)
- Pallavi A Patil
- From the Department of Pathology (Patil, Jain, Zhang), Yale University School of Medicine, New Haven, Connecticut.,Patil is currently located in the Department of Pathology at the University of South Alabama, in Mobile, Alabama
| | - Tamar Taddei
- Section of Digestive Diseases (Taddei), Yale University School of Medicine, New Haven, Connecticut
| | - Dhanpat Jain
- From the Department of Pathology (Patil, Jain, Zhang), Yale University School of Medicine, New Haven, Connecticut
| | - Xuchen Zhang
- From the Department of Pathology (Patil, Jain, Zhang), Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
29
|
Paradis V. Hepatocellular Carcinomas: Towards a pathomolecular approach. Liver Int 2021; 41 Suppl 1:83-88. [PMID: 34155797 DOI: 10.1111/liv.14867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022]
Abstract
Molecular analysis of primary liver malignancies has provided a refinement of the pathological diagnosis of this entity and the identification of an increasing number of tumor subtypes of hepatocellular proliferation, either malignant (hepatocellular carcinomas) or benign (hepatocellular adenomas). Besides the diagnosis, a combined pathomolecular approach can also provide further insights into patient prognosis, and help select patients who can benefit from targeted therapies. Hepatocellular carcinomas define a heterogeneous group of malignant hepatocellular proliferation at various levels: macroscopic, histological and molecular. While most carcinomas occur in patients with chronic liver diseases and advanced fibrosis in the background liver, some arise from the malignant transformation of a pre-existing hepatocellular adenoma. TERT promoter mutations are the most frequent genomic alterations observed in the process of malignancy, and they occur early in the process of liver carcinogenesis. Overall, a more active biopsy strategy should be considered a key step in the management of patients with HCC.
Collapse
Affiliation(s)
- Valérie Paradis
- Department of Pathology, Université de Paris, Hôpital Beaujon, Paris, France
| |
Collapse
|
30
|
Cadoux M, Caruso S, Pham S, Gougelet A, Pophillat C, Riou R, Loesch R, Colnot S, Nguyen CT, Calderaro J, Celton-Morizur S, Guerra N, Zucman-Rossi J, Desdouets C, Couty JP. Expression of NKG2D ligands is downregulated by β-catenin signalling and associates with HCC aggressiveness. J Hepatol 2021; 74:1386-1397. [PMID: 33484773 DOI: 10.1016/j.jhep.2021.01.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The NKG2D system is a potent immunosurveillance mechanism in cancer, wherein the activating NK cell receptor (NKG2D) on immune cells recognises its cognate ligands on tumour cells. Herein, we evaluated the expression of NKG2D ligands in hepatocellular carcinoma (HCC), in both humans and mice, taking the genomic features of HCC tumours into account. METHODS The expression of NKG2D ligands (MICA, MICB, ULBP1 and ULBP2) was analysed in large human HCC datasets by Fluidigm TaqMan and RNA-seq methods, and in 2 mouse models (mRNA and protein levels) reproducing the features of both major groups of human tumours. RESULTS We provide compelling evidence that expression of the MICA and MICB ligands in human HCC is associated with tumour aggressiveness and poor patient outcome. We also found that the expression of ULBP1 and ULBP2 was associated with poor patient outcome, and was downregulated in CTNNB1-mutated HCCs displaying low levels of inflammation and associated with a better prognosis. We also found an inverse correlation between ULBP1/2 expression levels and the expression of β-catenin target genes in patients with HCC, suggesting a role for β-catenin signalling in inhibiting expression. We showed in HCC mouse models that β-catenin signalling downregulated the expression of Rae-1 NKG2D ligands, orthologs of ULBPs, through TCF4 binding. CONCLUSIONS We demonstrate that the expression of NKG2D ligands is associated with aggressive liver tumorigenesis and that the downregulation of these ligands by β-catenin signalling may account for the less aggressive phenotype of CTNNB1-mutated HCC tumours. LAY SUMMARY The NKG2D system is a potent immunosurveillance mechanism in cancer. However, its role in hepatocellular carcinoma development has not been widely investigated. Herein, we should that the expression of NKG2D ligands by tumour cells is associated with a more aggressive tumour subtype.
Collapse
Affiliation(s)
- Mathilde Cadoux
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional genomics of solid tumors Team, Labex Immuno-Oncology, Paris, France
| | - Sandrine Pham
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Oncogenic functions of β-catenin signalling in the liver team F-75006 Paris, France
| | - Céline Pophillat
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France
| | - Rozenn Riou
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Oncogenic functions of β-catenin signalling in the liver team F-75006 Paris, France
| | - Robin Loesch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Oncogenic functions of β-catenin signalling in the liver team F-75006 Paris, France
| | - Sabine Colnot
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Oncogenic functions of β-catenin signalling in the liver team F-75006 Paris, France
| | - Công Trung Nguyen
- Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Julien Calderaro
- Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Séverine Celton-Morizur
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional genomics of solid tumors Team, Labex Immuno-Oncology, Paris, France
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France
| | - Jean-Pierre Couty
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France.
| |
Collapse
|
31
|
Péneau C, Zucman-Rossi J, Nault JC. Genomics of Viral Hepatitis-Associated Liver Tumors. J Clin Med 2021; 10:1827. [PMID: 33922394 PMCID: PMC8122827 DOI: 10.3390/jcm10091827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/25/2022] Open
Abstract
Virus-related liver carcinogenesis is one of the main contributors of cancer-related death worldwide mainly due to the impact of chronic hepatitis B and C infections. Three mechanisms have been proposed to explain the oncogenic properties of hepatitis B virus (HBV) infection: induction of chronic inflammation and cirrhosis, expression of HBV oncogenic proteins, and insertional mutagenesis into the genome of infected hepatocytes. Hepatitis B insertional mutagenesis modifies the function of cancer driver genes and could promote chromosomal instability. In contrast, hepatitis C virus promotes hepatocellular carcinoma (HCC) occurrence mainly through cirrhosis development whereas the direct oncogenic role of the virus in human remains debated. Finally, adeno associated virus type 2 (AAV2), a defective DNA virus, has been associated with occurrence of HCC harboring insertional mutagenesis of the virus. Since these tumors developed in a non-cirrhotic context and in the absence of a known etiological factor, AAV2 appears to be the direct cause of tumor development in these patients via a mechanism of insertional mutagenesis altering similar oncogenes and tumor suppressor genes targeted by HBV. A better understanding of virus-related oncogenesis will be helpful to develop new preventive strategies and therapies directed against specific alterations observed in virus-related HCC.
Collapse
Affiliation(s)
- Camille Péneau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.P.); (J.Z.-R.)
- Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, F-75006 Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.P.); (J.Z.-R.)
- Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, F-75006 Paris, France
- Hôpital Européen Georges Pompidou, APHP, F-75015 Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.P.); (J.Z.-R.)
- Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, F-75006 Paris, France
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, F-93000 Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris Nord, F-93000 Bobigny, France
| |
Collapse
|
32
|
Böttcher K, Longato L, Marrone G, Mazza G, Ghemtio L, Hall A, Luong TV, Caruso S, Viollet B, Zucman-Rossi J, Pinzani M, Rombouts K. AICAR and compound C negatively modulate HCC-induced primary human hepatic stellate cell activation in vitro. Am J Physiol Gastrointest Liver Physiol 2021; 320:G543-G556. [PMID: 33406006 DOI: 10.1152/ajpgi.00262.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor stroma and microenvironment have been shown to affect hepatocellular carcinoma (HCC) growth, with activated hepatic stellate cells (HSC) as a major contributor in this process. Recent evidence suggests that the energy sensor adenosine monophosphate-activated kinase (AMPK) may mediate a series of essential processes during carcinogenesis and HCC progression. Here, we investigated the effect of different HCC cell lines with known TP53 or CTNBB1 mutations on primary human HSC activation, proliferation, and AMPK activation. We show that conditioned media obtained from multiple HCC cell lines differently modulate human hepatic stellate cell (hHSC) proliferation and hHSC AMPK activity in a paracrine manner. Pharmacological treatment of hHSC with AICAR and Compound C inhibited the HCC-induced proliferation/activation of hHSC through AMPK-dependent and AMPK-independent mechanisms, which was further confirmed using mouse embryonic fibroblasts (MEFs) deficient of both catalytic AMPKα isoforms (AMPKα1/α2-/-) and wild type (wt) MEF. Both compounds induced S-phase cell-cycle arrest and, in addition, AICAR inhibited the mTORC1 pathway by inhibiting phosphorylation of 4E-BP1 and S6 in hHSC and wt MEF. Data mining of the Cancer Genome Atlas (TCGA) and the Liver Cancer (LICA-FR) showed that AMPKα1 (PRKAA1) and AMPKα2 (PRKAA2) expression differed depending on the mutation (TP53 or CTNNB1), tumor grading, and G1-G6 classification, reflecting the heterogeneity in human HCC. Overall, we provide evidence that AMPK modulating pharmacological agents negatively modulate HCC-induced hHSC activation and may therefore provide a novel approach to target the mutual, tumor-promoting interactions between hHSC and HCC.NEW & NOTEWORTHY HCC is marked by genetic heterogeneity and activated hepatic stellate cells (HSC) are considered key players during HCC development. The paracrine effect of different HCC cell lines on the activation of primary hHSC was accompanied by differential AMPK activation depending on the HCC line used. Pharmacological treatment inhibited the HCC-induced hHSC activation through AMPK-dependent and AMPK-independent mechanisms. This heterogenic effect on HCC-induced AMPK activation was confirmed by data mining TCGA and LICA-FR databases.
Collapse
Affiliation(s)
- Katrin Böttcher
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Lisa Longato
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Giusi Marrone
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Giuseppe Mazza
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Leo Ghemtio
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Andrew Hall
- Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom.,Department of Cellular Pathology, Royal Free Hospital, London, United Kingdom
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free Hospital, London, United Kingdom
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors Laboratory, Sorbonne Université, Université de Paris, Paris, France
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors Laboratory, Sorbonne Université, Université de Paris, Paris, France.,Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| |
Collapse
|
33
|
Lim HC, Gordan JD. Tumor hepatitis B virus RNA identifies a clinically and molecularly distinct subset of hepatocellular carcinoma. PLoS Comput Biol 2021; 17:e1008699. [PMID: 33561166 PMCID: PMC7909678 DOI: 10.1371/journal.pcbi.1008699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/26/2021] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis B virus (HBV) infection contributes to hepatocellular carcinoma (HCC) initiation and is associated with worse outcomes. Many prior studies of HBV-related HCC have not accounted for potential heterogeneity among HBV-related tumors by assessing whether HBV activity is present in tumor tissue. Here, we measured tumor HBV RNA, a proxy for viral activity, and investigated the association between HBV RNA status and several clinicogenomic characteristics. We obtained clinical, mutation, RNA-Seq and survival data for 439 HCC tumors from The Cancer Genome Atlas and International Cancer Genome Consortium. Tumors were classified as HBV RNA positive if they harbored >1 HBV RNA read per million human reads. We investigated the association between HBV RNA status and nonsynonymous somatic mutations, gene set expression, homologous recombination deficiency (HRD) score and mutation-specific survival. HBV RNA positive status was associated with higher nonsynonymous mutation rates of multiple genes, including TP53 and CDKN2A, while HBV RNA negative status was associated with higher nonsynonymous BAP1 mutation rate. HBV RNA positive status was also associated with increased transcription of genes involved in multiple DNA damage repair pathways, genes upregulated by MYC and mTORC1, and genes overexpressed in several HCC subclasses associated with a proliferative phenotype. Further, HBV RNA positive status was associated with increased three-biomarker HRD score (22.2 for HBV RNA+ vs. 16.0 for HBV RNA-). Finally, HBV RNA status was associated with multiple mutation-specific survival differences, including decreased survival for HBV RNA positive patients with nonsynonymous KEAP1 mutations compared to those without (hazard ratio 4.26). HCC tumors harboring genomic evidence of HBV activity therefore constitute a distinct HCC subset characterized by specific differences in nonsynonymous mutations, gene set expression, three-biomarker HRD score and mutation-specific survival. Hepatocellular carcinoma, the most common type of liver cancer, is the second leading cause of cancer death worldwide and is most commonly caused by hepatitis B virus infection. Currently, scientists have an incomplete understanding of the genomic basis of hepatocellular carcinoma associated with hepatitis B virus infection, because prior studies have been limited by imprecision in assessing hepatitis B virus infection status and heterogeneity in hepatitis B virus activity levels in liver tumors. This has limited scientists’ ability to devise new diagnostic and therapeutic options for hepatocellular carcinoma. In this study, we used computational genomics to directly measure hepatitis B virus RNA levels in a large dataset of hepatocellular carcinoma tumors, and found that tumors with measurable hepatitis B virus RNA levels are associated with a specific set of clinical and genomic characteristics. These characteristics have not previously been reported and harbor implications for future clinical and genomics research in hepatocellular carcinoma, as well as computational genomics efforts in other cancer types.
Collapse
Affiliation(s)
- Huat Chye Lim
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (HCL); (JDG)
| | - John D. Gordan
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (HCL); (JDG)
| |
Collapse
|
34
|
Gigante E, Paradis V, Ronot M, Cauchy F, Soubrane O, Ganne-Carrié N, Nault JC. New insights into the pathophysiology and clinical care of rare primary liver cancers. JHEP Rep 2021; 3:100174. [PMID: 33205035 PMCID: PMC7653076 DOI: 10.1016/j.jhepr.2020.100174] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocholangiocarcinoma, fibrolamellar carcinoma, hepatic haemangioendothelioma and hepatic angiosarcoma represent less than 5% of primary liver cancers. Fibrolamellar carcinoma and hepatic haemangioendothelioma are driven by unique somatic genetic alterations (DNAJB1-PRKCA and CAMTA1-WWTR1 fusions, respectively), while the pathogenesis of hepatocholangiocarcinoma remains more complex, as suggested by its histological diversity. Histology is the gold standard for diagnosis, which remains challenging even in an expert centre because of the low incidences of these liver cancers. Resection, when feasible, is the cornerstone of treatment, together with liver transplantation for hepatic haemangioendothelioma. The role of locoregional therapies and systemic treatments remains poorly studied. In this review, we aim to describe the recent advances in terms of diagnosis and clinical management of these rare primary liver cancers.
Collapse
Key Words
- 5-FU, 5-Fluorouracil
- AFP, alpha-fetoprotein
- APHE, arterial phase hyperenhancement
- CA19-9, carbohydrate antigen 19-9
- CCA, cholangiocarcinoma
- CEUS, contrast-enhanced ultrasound
- CK, cytokeratin
- CLC, cholangiolocellular carcinoma
- EpCAM, epithelial cell adhesion molecule
- FISH, fluorescence in situ hybridisation
- FLC, fibrolamellar carcinoma
- Fibrolamellar carcinoma
- HAS, hepatic angiosarcoma
- HCC, hepatocellular carcinoma
- HEH, hepatic epithelioid haemangioendothelioma
- HepPar1, hepatocyte specific antigen antibody
- Hepatic angiosarcoma
- Hepatic hemangioendothelioma
- Hepatocellular carcinoma
- Hepatocholangiocarcinoma
- IHC, immunohistochemistry
- LI-RADS, liver imaging reporting and data system
- LT, liver transplantation
- Mixed tumor
- RT-PCR, reverse transcription PCR
- SIRT, selective internal radiation therapy
- TACE, transarterial chemoembolisation
- WHO, World Health Organization
- cHCC-CCA, combined hepatocholangiocarcinoma
- iCCA, intrahepatic cholangiocarcinoma
Collapse
Affiliation(s)
- Elia Gigante
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
| | - Valérie Paradis
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service d'anatomie pathologique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Maxime Ronot
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de radiologie, Hôpital Beaujon, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - François Cauchy
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de chirurgie hépato-bilio-pancréatique et transplantation hépatique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Olivier Soubrane
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de chirurgie hépato-bilio-pancréatique et transplantation hépatique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Nathalie Ganne-Carrié
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris, INSERM UMR 1138, Functional Genomics of Solid Tumors, F-75006, Paris, France
| | - Jean-Charles Nault
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris, INSERM UMR 1138, Functional Genomics of Solid Tumors, F-75006, Paris, France
| |
Collapse
|
35
|
Rong C, Zhou R, Wan S, Su D, Wang SL, Hess J. Ubiquitin Carboxyl-Terminal Hydrolases and Human Malignancies: The Novel Prognostic and Therapeutic Implications for Head and Neck Cancer. Front Oncol 2021; 10:592501. [PMID: 33585209 PMCID: PMC7878561 DOI: 10.3389/fonc.2020.592501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), have been found in a variety of tumor entities and play distinct roles in the pathogenesis and development of various cancers including head and neck cancer (HNC). HNC is a heterogeneous disease arising from the mucosal epithelia of the upper aerodigestive tract, including different anatomic sites, distinct histopathologic types, as well as human papillomavirus (HPV)-positive and negative subgroups. Despite advances in multi-disciplinary treatment for HNC, the long-term survival rate of patients with HNC remains low. Emerging evidence has revealed the members of UCHs are associated with the pathogenesis and clinical prognosis of HNC, which highlights the prognostic and therapeutic implications of UCHs for patients with HNC. In this review, we summarize the physiological and pathological functions of the UCHs family, which provides enlightenment of potential mechanisms of UCHs family in HNC pathogenesis and highlights the potential consideration of UCHs as attractive drug targets.
Collapse
Affiliation(s)
- Chao Rong
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ran Zhou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Dan Su
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Torbenson MS. Hepatocellular carcinoma: making sense of morphological heterogeneity, growth patterns, and subtypes. Hum Pathol 2020; 112:86-101. [PMID: 33387587 DOI: 10.1016/j.humpath.2020.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinomas are not a homogenous group of tumors but have multiple layers of heterogeneity. This heterogeneity has been studied for many years with the goal to individualize care for patients and has led to the identification of numerous hepatocellular carcinoma subtypes, defined by morphology and or molecular methods. This article reviews both gross and histological levels of heterogeneity within hepatocellular carcinoma, with a focus on histological findings, reviewing how different levels of histological heterogeneity are used as building blocks to construct morphological hepatocellular carcinoma subtypes. The current best practice for defining a morphological subtype is outlined. Then, the definition for thirteen distinct hepatocellular carcinoma subtypes is reviewed. For each of these subtypes, unresolved issues regarding their definitions are highlighted, including recommendations for these problematic areas. Finally, three methods for improving the research on hepatocellular carcinoma subtypes are proposed: (1) Use a systemic, rigorous approach for defining hepatocellular carcinoma subtypes (four-point model); (2) Once definitions for a subtype are established, it should be followed in research studies, as this common denominator enhances the ability to compare results between studies; and (3) Studies of subtypes will be more effective when morphological and molecular results are used in synergistic and iterative study designs where the results of one approach are used to refine and sharpen the results of the other. These and related efforts to better understand heterogeneity within hepatocellular carcinoma are the most promising avenue for improving patient care by individualizing patient care.
Collapse
Affiliation(s)
- Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
37
|
Abstract
Hepatocellular carcinoma (HCC) belongs to the most prevalent and deadliest cancers worldwide. It can be attributed to well-defined risk factors (mainly chronic viral hepatitis and alcoholic/nonalcoholic steatohepatitis) leading to liver cirrhosis, a premalignant condition for the development of preneoplastic hepatocellular lesions and finally liver cancer. By applying strict morphological criteria and a panel of immunohistological markers, early HCC can be differentiated from its precursor lesions and other highly differentiated hepatocellular lesions even in most biopsy specimens. Integrative characterization led to the association of histological features and molecular subgroups of human HCC. This potentially relevant clinical development was recognized by the recently updated WHO classification of liver cancer resulting in the introduction of several HCC subtypes. These are characterized by a distinct combination of histological and molecular features, biological behavior, and clinical characteristics, allowing for a distinction from other HCC without specified features. Whether this development sets the corner stone for precision oncology of human HCC patients must be monitored.
Collapse
Affiliation(s)
- Thomas Longerich
- Pathologisches Institut, Uniklinikum Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Deutschland.
| |
Collapse
|
38
|
Zhang H, Kong Q, Wang J, Jiang Y, Hua H. Complex roles of cAMP-PKA-CREB signaling in cancer. Exp Hematol Oncol 2020; 9:32. [PMID: 33292604 PMCID: PMC7684908 DOI: 10.1186/s40164-020-00191-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is the first discovered second messenger, which plays pivotal roles in cell signaling, and regulates many physiological and pathological processes. cAMP can regulate the transcription of various target genes, mainly through protein kinase A (PKA) and its downstream effectors such as cAMP-responsive element binding protein (CREB). In addition, PKA can phosphorylate many kinases such as Raf, GSK3 and FAK. Aberrant cAMP-PKA signaling is involved in various types of human tumors. Especially, cAMP signaling may have both tumor-suppressive and tumor-promoting roles depending on the tumor types and context. cAMP-PKA signaling can regulate cancer cell growth, migration, invasion and metabolism. This review highlights the important roles of cAMP-PKA-CREB signaling in tumorigenesis. The potential strategies to target this pathway for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Hongying Zhang
- Laboratory of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- Laboratory of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangfu Jiang
- Laboratory of Oncogene, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|