1
|
Singh P, Singh R, Pasricha C, Kumari P. Navigating liver health with metabolomics: A comprehensive review. Clin Chim Acta 2025; 566:120038. [PMID: 39536895 DOI: 10.1016/j.cca.2024.120038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease worldwide, affecting one-fourth of the world's population. With more than half of the world's population, the Asia-Pacific region contributed 62.6 % of liver-related fatal incidents in 2015. Currently, liver imaging techniques such as computed tomography (CT), nuclear magnetic resonance (NMR) spectroscopy, and ultrasound are non-invasive imaging methods to diagnose the disease. A liver biopsy is the gold standard test for establishing the definite diagnosis of non-alcoholic steatohepatitis (NASH). However, there are still significant problems with sample variability and the procedure's invasiveness. Numerous studies have indicated various non-invasive biomarkers for both fibrosis and steatosis to counter the invasiveness of diagnostic procedures. Metabolomics could be a promising method for detecting early liver diseases, investigating pathophysiology, and developing drugs. Metabolomics, when utilized with other omics technologies, can result in a deeper understanding of biological systems. Metabolomics has emerged as a prominent research topic, offering extensive opportunities to investigate biomarkers for liver diseases that are both sensitive and specific. In this review, we have described the recent studies involving the use of a metabolomics approach in the diagnosis of liver diseases, which would be beneficial for the early detection and treatment of liver diseases.
Collapse
Affiliation(s)
- Preetpal Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Chirag Pasricha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
2
|
Durazzo M, Ferro A, Navarro-Tableros VM, Gaido A, Fornengo P, Altruda F, Romagnoli R, Moestrup SK, Calvo PL, Fagoonee S. Current Treatment Regimens and Promising Molecular Therapies for Chronic Hepatobiliary Diseases. Biomolecules 2025; 15:121. [PMID: 39858515 PMCID: PMC11763965 DOI: 10.3390/biom15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic hepatobiliary damage progressively leads to fibrosis, which may evolve into cirrhosis and/or hepatocellular carcinoma. The fight against the increasing incidence of liver-related morbidity and mortality is challenged by a lack of clinically validated early-stage biomarkers and the limited availability of effective anti-fibrotic therapies. Current research is focused on uncovering the pathogenetic mechanisms that drive liver fibrosis. Drugs targeting molecular pathways involved in chronic hepatobiliary diseases, such as inflammation, hepatic stellate cell activation and proliferation, and extracellular matrix production, are being developed. Etiology-specific treatments, such as those for hepatitis B and C viruses, are already in clinical use, and efforts to develop new, targeted therapies for other chronic hepatobiliary diseases are ongoing. In this review, we highlight the major molecular changes occurring in patients affected by metabolic dysfunction-associated steatotic liver disease, viral hepatitis (Delta virus), and autoimmune chronic liver diseases (autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis). Further, we describe how this knowledge is linked to current molecular therapies as well as ongoing preclinical and clinical research on novel targeting strategies, including nucleic acid-, mesenchymal stromal/stem cell-, and extracellular vesicle-based options. Much clinical development is obviously still missing, but the plethora of promising potential treatment strategies in chronic hepatobiliary diseases holds promise for a future reversal of the current increase in morbidity and mortality in this group of patients.
Collapse
Affiliation(s)
- Marilena Durazzo
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Arianna Ferro
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Victor Manuel Navarro-Tableros
- 2i3T, Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico, University of Turin, 10126 Turin, Italy;
| | - Andrea Gaido
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Paolo Fornengo
- Department of Medical Sciences, University of Turin, C.so A.M. Dogliotti 14, 10126 Turin, Italy; (M.D.); (A.F.); (A.G.); (P.F.)
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre “Guido Tarone”, University of Turin, 10126 Turin, Italy;
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy;
| | - Søren K. Moestrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Città della Salute e della Scienza, 10126 Turin, Italy;
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
3
|
Chen K, Yang H, Cai R. Microfluidics for Nanomedicine Delivery. ACS Biomater Sci Eng 2025. [PMID: 39772433 DOI: 10.1021/acsbiomaterials.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nanomedicine is revolutionizing precision medicine, providing targeted, personalized treatment options. Lipid-based nanomedicines offer distinct benefits including high potency, targeted delivery, extended retention in the body, reduced toxicity, and lower required doses. These characteristics make lipid-based nanoparticles ideal for drug delivery in areas such as gene therapy, cancer treatment, and mRNA vaccines. However, traditional bulk synthesis methods for LNPs often produce larger particle sizes, significant polydispersity, and low encapsulation efficiency, which can reduce the therapeutic effectiveness. These issues primarily result from uneven mixing and limited control over particle formation during the synthesis. Microfluidic technology has emerged as a solution, providing precise control over particle size, uniformity, and encapsulation efficiency. In this mini review, we introduce the state-of-the-art microfluidic systems for lipid-based nanoparticle synthesis and functionalization. We include the working principles of different types of microfluidic systems, the use of microfluidic systems for LNP synthesis, cargo encapsulation, and nanomedicine delivery. In the end, we briefly discuss the clinical use of LNPs enabled by microfluidic devices.
Collapse
Affiliation(s)
- Kangfu Chen
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois 60611, United States
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Spivak I, Guldiken N, Usachov V, Schaap F, Damink SWO, Bouchecareilh M, Lehmann A, Fu L, Mo F, Ensari GK, Hufnagel F, Fromme M, Preisinger C, Strnad P. Alpha-1 Antitrypsin Inclusions Sequester GRP78 in a Bile Acid-Inducible Manner. Liver Int 2025; 45:e16207. [PMID: 39665869 PMCID: PMC11636636 DOI: 10.1111/liv.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND AND AIMS The homozygous PiZ mutation (PIZZ genotype) constitutes the predominant cause of severe alpha-1 antitrypsin (AAT) deficiency and leads to liver disease via hepatocellular AAT aggregation. We systematically analysed the composition of AAT aggregates and studied the impact of bile acids. METHODS AAT inclusions were isolated from livers of PiZ overexpressing mice and PIZZ humans via fluorescence-activated and immunomagnetic sorting (FACS/MACS), while insoluble proteins were obtained via Triton-X extraction. Inclusion composition was evaluated through mass-spectrometry (MS), immunoblotting and immunostaining. Hepatocytes with versus without AAT aggregates were obtained via microdissection. Serum bile acids were assessed in 57 PIZZ subjects and 19 controls. Mice were administered 2% cholic acid (CA)-supplemented chow for 7 days. RESULTS MS identified the key endoplasmic reticulum chaperone 78 kDa glucose-regulated protein (GRP78) in FACS/MACS pulldowns. GRP78 was also enriched in insoluble fractions from PiZ mice versus wild types and detected in insoluble fractions/MACS isolates from PIZZ liver explants. In cultured cells/primary hepatocytes, PiZ overexpression was associated with increased GRP78 mRNA/protein levels. In human livers, hepatocytes with AAT aggregates had higher GRP78 levels than hepatocytes without. PIZZ subjects displayed higher serum bile acid levels than controls and the highest levels were seen in individuals with liver injury/fibrosis. In PiZ mice, CA-mediated bile acid challenge resulted in increased liver injury and translocation of GRP78 into the aggregates. CONCLUSIONS Our results demonstrate that GRP78 is sequestered within AAT inclusions. Bile acid accumulation, as seen in PIZZ subjects with liver disease, may promote GRP78 segregation and thereby augment liver damage. TRIAL REGISTRATION NCT02929940.
Collapse
Affiliation(s)
- Igor Spivak
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Nurdan Guldiken
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Valentyn Usachov
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Frank Schaap
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtNetherlands
- Department of General, Visceral and Transplant SurgeryUniversity Hospital RWTH AachenAachenGermany
| | - Steven W.M. Olde Damink
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtNetherlands
- Department of General, Visceral and Transplant SurgeryUniversity Hospital RWTH AachenAachenGermany
| | | | | | - Lei Fu
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
- Department of Science and TechnologyRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Fa‐Rong Mo
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Gökce Kobazi Ensari
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Franziska Hufnagel
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Malin Fromme
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Christian Preisinger
- Interdisciplinary Center for Clinical Research (IZKF)University Hospital RWTH AachenAachenGermany
| | - Pavel Strnad
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| |
Collapse
|
5
|
Sookoian S, Rotman Y, Valenti L. Genetics of Metabolic Dysfunction-associated Steatotic Liver Disease: The State of the Art Update. Clin Gastroenterol Hepatol 2024; 22:2177-2187.e3. [PMID: 39094912 PMCID: PMC11512675 DOI: 10.1016/j.cgh.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
Recent advances in the genetics of metabolic dysfunction-associated steatotic liver disease (MASLD) are gradually revealing the mechanisms underlying the heterogeneity of the disease and have shown promising results in patient stratification. Genetic characterization of the disease has been rapidly developed using genome-wide association studies, exome-wide association studies, phenome-wide association studies, and whole exome sequencing. These advances have been powered by the increase in computational power, the development of new analytical algorithms, including some based on artificial intelligence, and the recruitment of large and well-phenotyped cohorts. This review presents an update on genetic studies that emphasize new biological insights from next-generation sequencing approaches. Additionally, we discuss innovative methods for discovering new genetic loci for MASLD, including rare variants. To comprehensively manage MASLD, it is important to stratify risks. Therefore, we present an update on phenome-wide association study associations, including extreme phenotypes. Additionally, we discuss whether polygenic risk scores and targeted sequencing are ready for clinical use. With particular focus on precision medicine, we introduce concepts such as the interplay between genetics and the environment in modulating genetic risk with lifestyle or standard therapies. A special chapter is dedicated to gene-based therapeutics. The limitations of approved pharmacological approaches are discussed, and the potential of gene-related mechanisms in therapeutic development is reviewed, including the decision to perform genetic testing in patients with MASLD.
Collapse
Affiliation(s)
- Silvia Sookoian
- Clinical and Molecular Hepatology. Translational Health Research Center (CENITRES). Maimónides University. Buenos Aires, Argentina
- Faculty of Health Science. Maimónides University. Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luca Valenti
- Precision Medicine - Biological Resource Center, Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Lipiński P, Tylki-Szymańska A. The Liver and Lysosomal Storage Diseases: From Pathophysiology to Clinical Presentation, Diagnostics, and Treatment. Diagnostics (Basel) 2024; 14:1299. [PMID: 38928715 PMCID: PMC11202662 DOI: 10.3390/diagnostics14121299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The liver, given its role as the central metabolic organ, is involved in many inherited metabolic disorders, including lysosomal storage diseases (LSDs). The aim of this manuscript was to provide a comprehensive overview on liver involvement in LSDs, focusing on clinical manifestation and its pathomechanisms. Gaucher disease, acid sphingomyelinase deficiency, and lysosomal acid lipase deficiency were thoroughly reviewed, with hepatic manifestation being a dominant clinical phenotype. The natural history of liver disease in the above-mentioned lysosomal disorders was delineated. The importance of Niemann-Pick type C disease as a cause of cholestatic jaundice, preceding neurological manifestation, was also highlighted. Diagnostic methods and current therapeutic management of LSDs were also discussed in the context of liver involvement.
Collapse
Affiliation(s)
- Patryk Lipiński
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy, 00-136 Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| |
Collapse
|
7
|
Yao S, Kasargod A, Chiu R, Torgerson TR, Kupiec-Weglinski JW, Dery KJ. The Coming Age of Antisense Oligos for the Treatment of Hepatic Ischemia/Reperfusion (IRI) and Other Liver Disorders: Role of Oxidative Stress and Potential Antioxidant Effect. Antioxidants (Basel) 2024; 13:678. [PMID: 38929116 PMCID: PMC11200799 DOI: 10.3390/antiox13060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Imbalances in the redox state of the liver arise during metabolic processes, inflammatory injuries, and proliferative liver disorders. Acute exposure to intracellular reactive oxygen species (ROS) results from high levels of oxidative stress (OxS) that occur in response to hepatic ischemia/reperfusion injury (IRI) and metabolic diseases of the liver. Antisense oligonucleotides (ASOs) are an emerging class of gene expression modulators that target RNA molecules by Watson-Crick binding specificity, leading to RNA degradation, splicing modulation, and/or translation interference. Here, we review ASO inhibitor/activator strategies to modulate transcription and translation that control the expression of enzymes, transcription factors, and intracellular sensors of DNA damage. Several small-interfering RNA (siRNA) drugs with N-acetyl galactosamine moieties for the liver have recently been approved. Preclinical studies using short-activating RNAs (saRNAs), phosphorodiamidate morpholino oligomers (PMOs), and locked nucleic acids (LNAs) are at the forefront of proof-in-concept therapeutics. Future research targeting intracellular OxS-related pathways in the liver may help realize the promise of precision medicine, revolutionizing the customary approach to caring for and treating individuals afflicted with liver-specific conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Strnad P, Schrader C, Brunetti-Pierri N. A gene silencing-based approach to tackle fatty liver disease. Mol Ther Methods Clin Dev 2024; 32:101198. [PMID: 38371609 PMCID: PMC10869297 DOI: 10.1016/j.omtm.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Affiliation(s)
- Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christina Schrader
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Bernardini G, Braconi D, Zatkova A, Sireau N, Kujawa MJ, Introne WJ, Spiga O, Geminiani M, Gallagher JA, Ranganath LR, Santucci A. Alkaptonuria. Nat Rev Dis Primers 2024; 10:16. [PMID: 38453957 DOI: 10.1038/s41572-024-00498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Alkaptonuria is a rare inborn error of metabolism caused by the deficiency of homogentisate 1,2-dioxygenase activity. The consequent homogentisic acid (HGA) accumulation in body fluids and tissues leads to a multisystemic and highly debilitating disease whose main features are dark urine, ochronosis (HGA-derived pigment in collagen-rich connective tissues), and a painful and severe form of osteoarthropathy. Other clinical manifestations are extremely variable and include kidney and prostate stones, aortic stenosis, bone fractures, and tendon, ligament and/or muscle ruptures. As an autosomal recessive disorder, alkaptonuria affects men and women equally. Debilitating symptoms appear around the third decade of life, but a proper and timely diagnosis is often delayed due to their non-specific nature and a lack of knowledge among physicians. In later stages, patients' quality of life might be seriously compromised and further complicated by comorbidities. Thus, appropriate management of alkaptonuria requires a multidisciplinary approach, and periodic clinical evaluation is advised to monitor disease progression, complications and/or comorbidities, and to enable prompt intervention. Treatment options are patient-tailored and include a combination of medications, physical therapy and surgery. Current basic and clinical research focuses on improving patient management and developing innovative therapies and implementing precision medicine strategies.
Collapse
Affiliation(s)
- Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
| | - Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Andrea Zatkova
- Institute of Clinical and Translational Research, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
- Geneton Ltd, Bratislava, Slovakia
| | | | - Mariusz J Kujawa
- 2nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Wendy J Introne
- Human Biochemical Genetics Section, Medical Genetics Branch, Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Michela Geminiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - James A Gallagher
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences University of Liverpool, Liverpool, UK
| | - Lakshminarayan R Ranganath
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences University of Liverpool, Liverpool, UK
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Mašek J, Andersson ER. Jagged-mediated development and disease: Mechanistic insights and therapeutic implications for Alagille syndrome. Curr Opin Cell Biol 2024; 86:102302. [PMID: 38194749 DOI: 10.1016/j.ceb.2023.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024]
Abstract
Notch signaling controls multiple aspects of embryonic development and adult homeostasis. Alagille syndrome is usually caused by a single mutation in the jagged canonical Notch ligand 1 (JAG1), and manifests with liver disease and cardiovascular symptoms that are a direct consequence of JAG1 haploinsufficiency. Recent insights into Jag1/Notch-controlled developmental and homeostatic processes explain how pathology develops in the hepatic and cardiovascular systems and, together with recent elucidation of mechanisms modulating liver regeneration, provide a basis for therapeutic efforts. Importantly, disease presentation can be regulated by genetic modifiers, that may also be therapeutically leverageable. Here, we summarize recent insights into how Jag1 controls processes of relevance to Alagille syndrome, focused on Jag1/Notch functions in hepatic and cardiovascular development and homeostasis.
Collapse
Affiliation(s)
- Jan Mašek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic. https://twitter.com/JanMasekLab
| | - Emma R Andersson
- Dept of Cell and Molecular Biology, Karolinska Institutet, Sweden.
| |
Collapse
|
11
|
Gardin A, Rouillon J, Montalvo-Romeral V, Rossiaud L, Vidal P, Launay R, Vie M, Krimi Benchekroun Y, Cosette J, Bertin B, La Bella T, Dubreuil G, Nozi J, Jauze L, Fragnoud R, Daniele N, Van Wittenberghe L, Esque J, André I, Nissan X, Hoch L, Ronzitti G. A functional mini-GDE transgene corrects impairment in models of glycogen storage disease type III. J Clin Invest 2024; 134:e172018. [PMID: 38015640 PMCID: PMC10786702 DOI: 10.1172/jci172018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.
Collapse
Affiliation(s)
- Antoine Gardin
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Jérémy Rouillon
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Valle Montalvo-Romeral
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Lucille Rossiaud
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Patrice Vidal
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Romain Launay
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Mallaury Vie
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Youssef Krimi Benchekroun
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | - Bérangère Bertin
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Tiziana La Bella
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | - Justine Nozi
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Louisa Jauze
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | | | | | - Jérémy Esque
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Xavier Nissan
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Lucile Hoch
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| |
Collapse
|
12
|
Wang X, Moore MP, Shi H, Miyata Y, Donnelly SK, Radiloff DR, Tabas I. Hepatocyte-targeted siTAZ therapy lowers liver fibrosis in NASH diet-fed chimeric mice with hepatocyte-humanized livers. Mol Ther Methods Clin Dev 2023; 31:101165. [PMID: 38144682 PMCID: PMC10746533 DOI: 10.1016/j.omtm.2023.101165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is emerging as the most common cause of liver disease. Although many studies in mouse NASH models have suggested therapies, translation to humans is poor, with no approved drugs for NASH. One explanation may lie in differences between mouse and human hepatocytes. We used NASH diet-fed chimeric mice reconstituted with human hepatocytes (hu-liver mice) to test a mechanism-based hepatocyte-targeted small interfering RNA (siRNA), GalNAc-siTaz, shown previously to block the progression to fibrotic NASH in mice. Following ablation of endogenous hepatocytes, male mice were reconstituted with human hepatocytes from a single donor with the rs738409-C/G PNPLA3 risk variant, resulting in ∼95% human hepatocyte reconstitution. The mice were then fed a high-fat choline-deficient l-amino acid-defined diet for 6 weeks to induce NASH, followed by six weekly injections of GalNAc-siTAZ to silence hepatocyte-TAZ or control GalNAc-siRNA (GalNAc-control) while still on the NASH diet. GalNAc-siTAZ lowered human hepatic TAZ and IHH, a TAZ target that promotes NASH fibrosis. Most important, GalNAc-siTAZ decreased liver inflammation, hepatocellular injury, hepatic fibrosis, and profibrogenic mediator expression versus GalNAc-control, indicating that GalNAc-siTAZ decreased the progression of NASH in mice reconstituted with human hepatocytes. In conclusion, silencing TAZ in human hepatocytes suppresses liver fibrosis in a hu-liver model of NASH.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mary P. Moore
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongxue Shi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | | | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
13
|
Gardin A, Ronzitti G. Current limitations of gene therapy for rare pediatric diseases: Lessons learned from clinical experience with AAV vectors. Arch Pediatr 2023; 30:8S46-8S52. [PMID: 38043983 DOI: 10.1016/s0929-693x(23)00227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene therapy using adeno-associated viral (AAV) vectors is a promising therapeutic strategy for multiple inherited diseases. Following intravenous injection, AAV vectors carrying a copy of the missing gene or the genome-editing machinery reach their target cells and deliver the genetic material. Several clinical trials are currently ongoing and significant success has already been achieved with at least six AAV gene therapy products with market approval in Europe and the United States. Nonetheless, clinical trials and preclinical studies have uncovered several limitations of AAV gene transfer, which need to be addressed in order to improve the safety and enable the treatment of the largest patient population. Limitations include the occurrence of immune-mediated toxicities, the potential loss of correction in the long run, and the development of neutralizing antibodies against AAV vectors preventing re-administration. In this review, we summarize these limitations and discuss the potential technological developments to overcome them. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Antoine Gardin
- Genethon, 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000 Evry, France; Hépatologie et Transplantation Hépatique Pédiatriques, Centre de référence de l'atrésie des voies biliaires et des cholestases génétiques, FSMR FILFOIE, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000 Evry, France.
| |
Collapse
|
14
|
Wang L, Zhu L, Liang C, Huang X, Liu Z, Huo J, Zhang Y, Zhang Y, Chen L, Xu H, Li X, Xu L, Kuang M, Wong CC, Yu J. Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis. J Hepatol 2023; 79:1185-1200. [PMID: 37459919 DOI: 10.1016/j.jhep.2023.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND & AIMS RNA N6-methyladenosine (m6A) reader protein YTHDF1 has been implicated in cancer; however, its role in hepatocellular carcinoma (HCC), especially in non-alcoholic steatohepatitis-associated HCC (NASH-HCC), remains unknown. Here, we investigated the functional role of YTHDF1 in NASH-HCC and its interplay with the tumor immune microenvironment. METHODS Hepatocyte-specific Ythdf1-overexpressing mice were subjected to a NASH-HCC-inducing diet. Tumor-infiltrating immune cells were profiled with single-cell RNA-sequencing, flow cytometry, and immunostaining. The molecular target of YTHDF1 was elucidated with RNA-sequencing, m6A-sequencing, YTHDF1 RNA immunoprecipitation-sequencing, proteomics, and ribosome-profiling. Ythdf1 in NASH-HCC models was targeted by lipid nanoparticle (LNP)-encapsulated small-interfering Ythdf1. RESULTS YTHDF1 is overexpressed in tumor tissues compared to adjacent peri-tumor tissues from patients with NASH-HCC. Liver-specific Ythdf1 overexpression drives tumorigenesis in dietary models of spontaneous NASH-HCC. Single-cell RNA-sequencing and flow cytometry revealed that Ythdf1 induced accumulation of myeloid-derived suppressor cells (MDSCs) and suppressed cytotoxic CD8+ T-cell function. Mechanistically, Ythdf1 expression in NASH-HCC cells induced the secretion of IL-6, which mediated MDSC recruitment and activation, leading to CD8+ T-cell dysfunction. EZH2 mRNA was identified as a key YTHDF1 target. YTHDF1 binds to m6A-modified EZH2 mRNA and promotes EZH2 translation. EZH2 in turn increased expression and secretion of IL-6. Ythdf1 knockout synergized with anti-PD-1 treatment to suppress tumor growth in NASH-HCC allografts. Furthermore, therapeutic targeting of Ythdf1 using LNP-encapsulated small-interfering RNA significantly increased the efficacy of anti-PD-1 blockade in NASH-HCC allografts. CONCLUSIONS We identified that YTHDF1 promotes NASH-HCC tumorigenesis via EZH2-IL-6 signaling, which recruits and activates MDSCs to cause cytotoxic CD8+ T-cell dysfunction. YTHDF1 may be a novel therapeutic target to improve responses to anti-PD-1 immunotherapy in NASH-HCC. IMPACT AND IMPLICATIONS YTHDF1, a N6-methyladenosine reader, is upregulated in patients with non-alcoholic steatohepatitis (NASH)-associated hepatocellular carcinoma (HCC); however, its role in modulating the tumor immune microenvironment in NASH-HCC remains unclear. Here, we show that Ythdf1 mediates immunosuppression in NASH-HCC and that targeting YTHDF1 in combination with immune checkpoint blockade elicits robust antitumor immune responses. Our findings suggest novel therapeutic targets for potentiating the efficacy of immune checkpoint blockade in NASH-HCC and provide the rationale for developing YTHDF1 inhibitors for the treatment of NASH-HCC.
Collapse
Affiliation(s)
- Lina Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lefan Zhu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Liang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Huang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziqin Liu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jihui Huo
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifan Zhang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lili Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Xu
- Institute for Microbial Ecology, School of Medicine, Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi Chun Wong
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
15
|
Spencer-Dene B, Mukherjee P, Alex A, Bera K, Tseng WJ, Shi J, Chaney EJ, Spillman DR, Marjanovic M, Miranda E, Boppart SA, Hood SR. Localization of unlabeled bepirovirsen antisense oligonucleotide in murine tissues using in situ hybridization and CARS imaging. RNA (NEW YORK, N.Y.) 2023; 29:1575-1590. [PMID: 37460153 PMCID: PMC10578491 DOI: 10.1261/rna.079699.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 09/20/2023]
Abstract
Current methods for detecting unlabeled antisense oligonucleotide (ASO) drugs rely on immunohistochemistry (IHC) and/or conjugated molecules, which lack sufficient sensitivity, specificity, and resolution to fully investigate their biodistribution. Our aim was to demonstrate the qualitative and quantitative distribution of unlabeled bepirovirsen, a clinical stage ASO, in livers and kidneys of dosed mice using novel staining and imaging technologies at subcellular resolution. ASOs were detected in formalin-fixed paraffin-embedded (FFPE) and frozen tissues using an automated chromogenic in situ hybridization (ISH) assay: miRNAscope. This was then combined with immunohistochemical detection of cell lineage markers. ASO distribution in hepatocytes versus nonparenchymal cell lineages was quantified using HALO AI image analysis. To complement this, hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) imaging microscopy was used to specifically detect the unique cellular Raman spectral signatures following ASO treatment. Bepirovirsen was localized primarily in nonparenchymal liver cells and proximal renal tubules. Codetection of ASO with distinct cell lineage markers of liver and kidney populations aided target cell identity facilitating quantification. Positive liver signal was quantified using HALO AI, with 12.9% of the ASO localized to the hepatocytes and 87.1% in nonparenchymal cells. HS-CARS imaging specifically detected ASO fingerprints based on the unique vibrational signatures following unlabeled ASO treatment in a totally nonperturbative manner at subcellular resolution. Together, these novel detection and imaging modalities represent a significant increase in our ability to detect unlabeled ASOs in tissues, demonstrating improved levels of specificity and resolution. These methods help us understand their underlying mechanisms of action and ultimately improve the therapeutic potential of these important drugs for treating globally significant human diseases.
Collapse
Affiliation(s)
- Bradley Spencer-Dene
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
| | - Prabuddha Mukherjee
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- In Vitro/In Vivo Translation, BioImaging, GSK, Upper Providence, Pennsylvania 19426, USA
| | - Kajari Bera
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wei-Ju Tseng
- In Vitro/In Vivo Translation, BioImaging, GSK, Upper Providence, Pennsylvania 19426, USA
| | - Jindou Shi
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Elena Miranda
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Steve R Hood
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
16
|
Ruiz M, Lacaille F, Schrader C, Pons M, Socha P, Krag A, Sturm E, Bouchecareilh M, Strnad P. Pediatric and Adult Liver Disease in Alpha-1 Antitrypsin Deficiency. Semin Liver Dis 2023; 43:258-266. [PMID: 37402396 DOI: 10.1055/a-2122-7674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) arises due to inherited variants in SERPINA1, the AAT gene that impairs the production or secretion of this hepatocellular protein and leads to a gain-of-function liver proteotoxicity. Homozygous Pi*Z pathogenic variant (Pi*ZZ genotype) is the leading cause of severe AATD. It manifests in 2 to 10% of carriers as neonatal cholestasis and 20 to 35% of adults as significant liver fibrosis. Both children and adults may develop an end-stage liver disease requiring liver transplantation. Heterozygous Pi*Z pathogenic variant (Pi*MZ genotype) constitutes an established disease modifier. Our review summarizes the natural history and management of subjects with both pediatric and adult AATD-associated liver disease. Current findings from a phase 2 clinical trial indicate that RNA silencing may constitute a viable therapeutic approach for adult AATD. In conclusion, AATD is an increasingly appreciated pediatric and adult liver disorder that is becoming an attractive target for modern pharmacologic strategies.
Collapse
Affiliation(s)
- Mathias Ruiz
- Hépatologie, Gastroentérologie et Nutrition Pédiatriques, Hôpital Femme Mère Enfant, Hospices civils de Lyon, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Lyon, France
| | - Florence Lacaille
- Service de Gastroentérologie-Nutrition Pédiatriques et Unité d'Hépatologie Pédiatrique Hôpital Universitaire Necker-Enfants Malades, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Paris, France
| | - Christina Schrader
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Piotr Socha
- The Children's Memorial Health Institute, Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, Al. Dzieci Polskich, Warszawa, Poland
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Ekkehard Sturm
- Pediatric Gastroenterology and Hepatology, University Children's Hospital Tübingen, Member Center of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Tübingen, Germany
| | | | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|
17
|
Strnad P, San Martin J. RNAi therapeutics for diseases involving protein aggregation: fazirsiran for alpha-1 antitrypsin deficiency-associated liver disease. Expert Opin Investig Drugs 2023; 32:571-581. [PMID: 37470509 DOI: 10.1080/13543784.2023.2239707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Therapeutic agents that prevent protein misfolding or promote protein clearance are being studied to treat proteotoxic diseases. Among them, alpha-1 antitrypsin deficiency (AATD) is caused by mutations in the alpha-1 antitrypsin (SERPINA1) gene. Fazirsiran is a small interfering RNA (siRNA) that is intended to address the underlying cause of liver disease associated with AATD through the RNA interference (RNAi) mechanism. AREAS COVERED This article describes the role of misfolded proteins and protein aggregates in disease and options for therapeutic approaches. The RNAi mechanism is discussed, along with how the siRNA therapeutic fazirsiran for the treatment of AATD was developed. We also describe the implications of siRNA therapeutics in extrahepatic diseases. EXPERT OPINION Using RNAi as a therapeutic approach is well suited to treat disease in conditions where an excess of a protein or the effect of an abnormal mutated protein causes disease. The results observed for the first few siRNA therapeutics that were approved or are in development provide an important promise for the development of future drugs that can address such conditions in a specific and targeted way. Current developments should enable the use of RNAi therapeutics outside the liver, where there are many more possible diseases to address.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany
| | | |
Collapse
|
18
|
Rademacher L, Fromme M, Strnad P. Cleaning up alpha-1 antitrypsin deficiency related liver disease. Curr Opin Gastroenterol 2023; 39:163-168. [PMID: 37144533 DOI: 10.1097/mog.0000000000000919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW Alpha-1 antitrypsin deficiency (AATD) is one of the most common genetic disorders arising due to mutations in alpha-1 antitrypsin (AAT) gene affecting primarily the lung and the liver. This review summarizes the pathophysiology and clinical manifestation of different AATD genotypes and discusses the recent therapeutic developments. The focus is on the severe, rare homozygous Pi∗ZZ and the common heterozygous Pi∗MZ genotype. RECENT FINDINGS Pi∗ZZ individuals harbor an up to 20 times higher risk of liver fibrosis and cirrhosis than noncarriers and liver transplantation is currently the only available therapeutic option. AATD constitutes a proteotoxic disorder arising from hepatic AAT accumulation and the currently most promising data come from a phase 2, open-label trial of fazirsiran, a hepatocyte-targeted siRNA. Pi∗MZ subjects display an increased risk of advanced liver disease and at the latter stage, a faster deterioration than individuals without AAT mutation. SUMMARY Although the fazirsiran data offer a glimpse of hope to AATD patients, a consensus on appropriate study endpoint, a careful patient selection as well as monitoring of long-term safety will be essential for an approval.
Collapse
Affiliation(s)
- Laura Rademacher
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Healthcare Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | | | | |
Collapse
|
19
|
Berasain C, Arechederra M, Argemí J, Fernández-Barrena MG, Avila MA. Loss of liver function in chronic liver disease: An identity crisis. J Hepatol 2023; 78:401-414. [PMID: 36115636 DOI: 10.1016/j.jhep.2022.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Adult hepatocyte identity is constructed throughout embryonic development and fine-tuned after birth. A multinodular network of transcription factors, along with pre-mRNA splicing regulators, define the transcriptome, which encodes the proteins needed to perform the complex metabolic and secretory functions of the mature liver. Transient hepatocellular dedifferentiation can occur as part of the regenerative mechanisms triggered in response to acute liver injury. However, persistent downregulation of key identity genes is now accepted as a strong determinant of organ dysfunction in chronic liver disease, a major global health burden. Therefore, the identification of core transcription factors and splicing regulators that preserve hepatocellular phenotype, and a thorough understanding of how these networks become disrupted in diseased hepatocytes, is of high clinical relevance. In this context, we review the key players in liver differentiation and discuss in detail critical factors, such as HNF4α, whose impairment mediates the breakdown of liver function. Moreover, we present compelling experimental evidence demonstrating that restoration of core transcription factor expression in a chronically injured liver can reset hepatocellular identity, improve function and ameliorate structural abnormalities. The possibility of correcting the phenotype of severely damaged and malfunctional livers may reveal new therapeutic opportunities for individuals with cirrhosis and advanced liver disease.
Collapse
Affiliation(s)
- Carmen Berasain
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| | - Maria Arechederra
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Josepmaria Argemí
- Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain; Liver Unit, Clinica Universidad de Navarra, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Matías A Avila
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| |
Collapse
|
20
|
Fromme M, Strnad P. Alpha-1 antitrypsin deficiency. COMPREHENSIVE GUIDE TO HEPATITIS ADVANCES 2023:473-483. [DOI: 10.1016/b978-0-323-98368-6.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
21
|
Lv J, Xing C, Chen Y, Bian H, Lv N, Wang Z, Liu M, Su L. The STING in Non-Alcoholic Fatty Liver Diseases: Potential Therapeutic Targets in Inflammation-Carcinogenesis Pathway. Pharmaceuticals (Basel) 2022; 15:1241. [PMID: 36297353 PMCID: PMC9611148 DOI: 10.3390/ph15101241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), an important chronic disease, is one of the major causes of high mortality and creates a substantial financial burden worldwide. The various immune cells in the liver, including macrophages, NK cells, dendritic cells, and the neutrophils involved in the innate immune response, trigger inflammation after recognizing the damage signaled from infection or injured cells and tissues. The stimulator of interferon genes (STING) is a critical molecule that binds to the cyclic dinucleotides (CDNs) generated by the cyclic GMP-AMP synthase (cGAS) to initiate the innate immune response against infection. Previous studies have demonstrated that the cGAS-STING pathway plays a critical role in inflammatory, auto-immune, and anti-viral immune responses. Recently, studies have focused on the role of STING in liver diseases, the results implying that alterations in its activity may be involved in the pathogenesis of liver disorders. Here, we summarize the function of STING in the development of NAFLD and present the current inhibitors and agonists targeting STING.
Collapse
Affiliation(s)
- Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yuhong Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Nanning Lv
- Lianyungang Second People’s Hospital, Lianyungang 222002, China
| | - Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200020, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Mingming Liu
- Lianyungang Second People’s Hospital, Lianyungang 222002, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
22
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
23
|
Strnad P, Mandorfer M, Choudhury G, Griffiths W, Trautwein C, Loomba R, Schluep T, Chang T, Yi M, Given BD, Hamilton JC, San Martin J, Teckman JH. Fazirsiran for Liver Disease Associated with Alpha 1-Antitrypsin Deficiency. N Engl J Med 2022; 387:514-524. [PMID: 35748699 DOI: 10.1056/nejmoa2205416] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alpha1-antitrypsin (AAT) deficiency results from carriage of a homozygous SERPINA1 "Z" mutation (proteinase inhibitor [PI] ZZ). The Z allele produces a mutant AAT protein called Z-AAT, which accumulates in hepatocytes and can lead to progressive liver disease and fibrosis. This open-label, phase 2 trial investigated the safety and efficacy of fazirsiran, an RNA interference therapeutic, in patients with liver disease associated with AAT deficiency. METHODS We assigned adults with the PI ZZ genotype and liver fibrosis to receive fazirsiran at a dose of 200 mg (cohorts 1 [4 patients] and 2 [8 patients]) or 100 mg (cohort 1b [4 patients]) subcutaneously on day 1 and week 4 and then every 12 weeks. The primary end point was the change from baseline to week 24 (cohorts 1 and 1b) or week 48 (cohort 2) in liver Z-AAT concentrations, which were measured by means of liquid chromatography-mass spectrometry. RESULTS All the patients had reduced accumulation of Z-AAT in the liver (median reduction, 83% at week 24 or 48). The nadir in serum was a reduction of approximately 90%, and treatment was also associated with a reduction in histologic globule burden (from a mean score of 7.4 [scores range from 0 to 9, with higher scores indicating a greater globule burden] at baseline to 2.3 at week 24 or 48). All cohorts had reductions in liver enzyme concentrations. Fibrosis regression was observed in 7 of 15 patients and fibrosis progression in 2 of 15 patients after 24 or 48 weeks. There were no adverse events leading to trial or drug discontinuation. Four serious adverse events (viral myocarditis, diverticulitis, dyspnea, and vestibular neuronitis) resolved. CONCLUSIONS In this small trial, fazirsiran was associated with a strong reduction of Z-AAT concentrations in the serum and liver and concurrent improvements in liver enzyme concentrations. (Funded by Arrowhead Pharmaceuticals; AROAAT-2002 ClinicalTrials.gov number, NCT03946449.).
Collapse
Affiliation(s)
- Pavel Strnad
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Mattias Mandorfer
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Gourab Choudhury
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - William Griffiths
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Christian Trautwein
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Rohit Loomba
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Thomas Schluep
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Ting Chang
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Min Yi
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Bruce D Given
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - James C Hamilton
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Javier San Martin
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Jeffery H Teckman
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| |
Collapse
|
24
|
Breakthroughs in hepatology. J Hepatol 2022; 76:1247-1248. [PMID: 35589247 DOI: 10.1016/j.jhep.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/04/2022]
|