1
|
Itkin M, Horak J, Pascual JL, Chang CWJ, Lile D, Tomita B, Bass GA, Kovach SJ, Kaplan LJ. Disorders of Lymphatic Architecture and Flow in Critical Illness. Crit Care Med 2025:00003246-990000000-00440. [PMID: 39791972 DOI: 10.1097/ccm.0000000000006561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
OBJECTIVES To provide a narrative review of disordered lymphatic dynamics and its impact on critical care relevant condition management. DATA SOURCES Detailed search strategy using PubMed and Ovid Medline for English language articles (2013-2023) describing congenital or acquired lymphatic abnormalities including lymphatic duct absence, injury, leak, or obstruction and their associated clinical conditions that might be managed by a critical care medicine practitioner. STUDY SELECTION Studies that specifically addressed abnormalities of lymphatic flow and their management were selected. The search strategy time frame was limited to the last 10 years to enhance relevance to current practice. DATA EXTRACTION Relevant descriptions or studies were reviewed, and abstracted data were parsed into structural or functional etiologies, congenital or acquired conditions, and their management within critical care spaces in an acute care facility. DATA SYNTHESIS Abnormal lymph flow may be identified stemming from congenital lymphatic anomalies including lymphatic structure absence as well as acquired obstruction or increased flow from clinical entities or acute therapy. Macro- and microsurgical as well as interventional radiological techniques may address excess, inadequate, or obstructed lymph flow. Patients with deranged lymph flow often require critical care, and those who require critical care may concomitantly demonstrate deranged lymph flow that adversely impacts care. CONCLUSIONS Critical care clinicians ideally demonstrate functional knowledge of conditions that are directly related to, or are accompanied by, deranged lymphatic dynamics to direct timely diagnostic and therapeutic interventions during a patient's ICU care episode.
Collapse
Affiliation(s)
- Maxim Itkin
- Division of Interventional Radiology, Department of Radiology, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Jiri Horak
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jose L Pascual
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Cherylee W J Chang
- Department of Neurology, Division of Neurocritical Care, Duke University, Durham, NC
| | - Deacon Lile
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Beverly Tomita
- Carle Illinois College of Medicine, University of Illinois Urbana-Champlain, Urbana, IL
| | - Gary Alan Bass
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephen J Kovach
- Division of Plastic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lewis J Kaplan
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Barri H, Johnson G, Hua C, McGregor H. Hepatic Arteriolymphatic Fistula following Percutaneous Biopsy. J Vasc Interv Radiol 2024; 35:1878-1880. [PMID: 39214382 DOI: 10.1016/j.jvir.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Harika Barri
- Department of Radiology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195
| | - Guy Johnson
- Department of Radiology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195
| | - Charles Hua
- Department of Radiology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195
| | - Hugh McGregor
- Department of Radiology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195.
| |
Collapse
|
3
|
Pilling D, Martinez TC, Gomer RH. Inhibition of CCl4-induced liver inflammation and fibrosis by a NEU3 inhibitor. PLoS One 2024; 19:e0308060. [PMID: 39570922 PMCID: PMC11581222 DOI: 10.1371/journal.pone.0308060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 11/24/2024] Open
Abstract
Sialic acids are located on the ends of many glycoconjugates and are cleaved off by enzymes called sialidases (neuraminidases). Upregulation of neuraminidase 3 (NEU3) is associated with intestinal inflammation and colitis, neuroinflammation, and lung fibrosis. Genetic ablation of NEU3 or pharmacological inhibition of NEU3 reduces lung fibrosis in mice. To determine if inhibiting NEU3 can inhibit liver fibrosis in the commonly-used CCl4 model, in this report, we examined the effects of injections of the NEU3 inhibitor 2-acetyl pyridine (2AP). 2AP inhibited CCl4-induced weight loss in female but not male mice. 2AP attenuated CCl4-induced liver inflammation and fibrosis in male and female mice, but did not affect CCl4-induced steatosis. After CCl4 treatment, female but not male mice had significant increases in liver neutrophils, and 2AP attenuated this response. 2AP also reversed CCl4-induced liver desialylation and CCl4-induced increased expression of NEU3. Patients with pulmonary fibrosis have increased desialylation of some serum proteins, and elevated serum levels of NEU3. We find that sera from patients with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) have elevated desialylation of a serum protein and patients with NAFLD have increased levels of NEU3. These data suggest that elevated levels of NEU3 may be associated with liver inflammation and fibrosis, and that in mice this is ameliorated by injections of a NEU3 inhibitor.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Trevor C. Martinez
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
4
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
5
|
Gupta V, Sehrawat TS, Pinzani M, Strazzabosco M. Portal Fibrosis and the Ductular Reaction: Pathophysiological Role in the Progression of Liver Disease and Translational Opportunities. Gastroenterology 2024:S0016-5085(24)05455-6. [PMID: 39251168 DOI: 10.1053/j.gastro.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
A consistent feature of chronic liver diseases and the hallmark of pathologic repair is the so-called "ductular reaction." This is a histologic abnormality characterized by an expansion of dysmorphic cholangiocytes inside and around portal spaces infiltrated by inflammatory, mesenchymal, and vascular cells. The ductular reaction is a highly regulated response based on the reactivation of morphogenetic signaling mechanisms and a complex crosstalk among a multitude of cell types. The nature and mechanism of these exchanges determine the difference between healthy regenerative liver repair and pathologic repair. An orchestrated signaling among cell types directs mesenchymal cells to deposit a specific extracellular matrix with distinct physical and biochemical properties defined as portal fibrosis. Progression of fibrosis leads to vast architectural and vascular changes known as "liver cirrhosis." The signals regulating the ecology of this microenvironment are just beginning to be addressed. Contrary to the tumor microenvironment, immune modulation inside this "benign" microenvironment is scarcely known. One of the reasons for this is that both the ductular reaction and portal fibrosis have been primarily considered a manifestation of cholestatic liver disease, whereas this phenomenon is also present, albeit with distinctive features, in all chronic human liver diseases. Novel human-derived cellular models and progress in "omics" technologies are increasing our knowledge at a fast pace. Most importantly, this knowledge is on the edge of generating new diagnostic and therapeutic advances. Here, we will critically review the latest advances, in terms of mechanisms, pathophysiology, and treatment prospects. In addition, we will delineate future avenues of research, including innovative translational opportunities.
Collapse
Affiliation(s)
- Vikas Gupta
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Tejasav S Sehrawat
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Massimo Pinzani
- University College London Institute for Liver and Digestive Health, Royal Free Hospital, London, UK; University of Pittsburgh Medical Center-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
6
|
Yang Y, Jeong J, Su T, Lai S, Zhang P, Garcia-Milian R, Graham M, Liu X, McConnell MJ, Utsumi T, Pereira J, Iwakiri Y. Interleukin-7-based identification of liver lymphatic endothelial cells reveals their unique structural features. JHEP Rep 2024; 6:101069. [PMID: 38966234 PMCID: PMC11222939 DOI: 10.1016/j.jhepr.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 07/06/2024] Open
Abstract
Background & Aims The lymphatic system plays crucial roles in maintaining fluid balance and immune regulation. Studying the liver lymphatics has been considered challenging, as common lymphatic endothelial cell (LyEC) markers are expressed by other liver cells. Additionally, isolation of sufficient numbers of LyECs has been challenging because of their extremely low abundance (<0.01% of entire liver cell population) in a normal liver. Methods Potential LyEC markers was identified using our published single-cell RNA sequencing (scRNA-seq) dataset (GSE147581) in mouse livers. Interleukin-7 (IL7) promoter-driven green fluorescent protein knock-in heterozygous mice were used for the validation of IL7 expression in LyECs in the liver, for the development of liver LyEC isolation protocol, and generating liver ischemia/reperfusion (I/R) injury. Scanning electron microscopy was used for the structural analysis of LyECs. Changes in LyEC phenotypes in livers of mice with I/R were determined by RNA-seq analysis. Results Through scRNA-seq analysis, we have identified IL7 as an exclusive marker for liver LyECs, with no overlap with other liver cell types. Based on IL7 expression in liver LyECs, we have established an LyEC isolation method and observed distinct cell surface structures of LyECs with fenestrae and cellular pores (ranging from 100 to 400 nm in diameter). Furthermore, we identified LyEC genes that undergo alterations during I/R liver injuries. Conclusions This study not only identified IL7 as an exclusively expressed gene in liver LyECs, but also enhanced our understanding of LyEC structures and demonstrated transcriptomic changes in injured livers. Impact and implications Understanding the lymphatic system in the liver is challenging because of the absence of specific markers for liver LyEC. This study has identified IL7 as a reliable marker for LyECs, enabling the development of an effective method for their isolation, elucidating their unique cell surface structure, and identifying LyEC genes that undergo changes during liver damage. The development of IL7 antibodies for detecting it in human liver specimens will further advance our understanding of the liver lymphatic system in the future.
Collapse
Affiliation(s)
- Yilin Yang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Tingting Su
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sanchuan Lai
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengpeng Zhang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
| | - Rolando Garcia-Milian
- Bioinformatics Support Hub, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Morven Graham
- Center for Cellular and Molecular Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Xinran Liu
- Center for Cellular and Molecular Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew J. McConnell
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Teruo Utsumi
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Joao Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
8
|
Kwanten W(WJ, Francque SM. The liver sinusoid in chronic liver disease: NAFLD and NASH. SINUSOIDAL CELLS IN LIVER DISEASES 2024:263-284. [DOI: 10.1016/b978-0-323-95262-0.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Lluís N, Asbun D, Wang JJ, Cao HST, Jimenez RE, Alseidi A, Asbun H. Lymph Node Dissection in Intrahepatic Cholangiocarcinoma: a Critical and Updated Review of the Literature. J Gastrointest Surg 2023; 27:3001-3013. [PMID: 37550590 DOI: 10.1007/s11605-023-05696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/15/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Lymphatic spread of intrahepatic cholangiocarcinoma (iCCA) is common and negatively impacts survival. However, the precise role of lymph node dissection (LND) in oncologic outcomes for patients with intrahepatic cholangiocarcinoma remains to be established. METHODS Updated evidence on the preoperative diagnosis and prognostic value of lymph node metastasis is reviewed, as well as the potential benefit of LND in patients with iCCA. RESULTS The ability to accurately determine nodal status for iCCA with current imaging modalities is equivocal. LND has prognostic value for both survival and disease recurrence. However, execution rates of LND are highly varied in the literature, ranging from 26.9 to 100%. At least 6 lymph nodes should be examined from nodal stations of the hepatoduodenal ligament and hepatic artery as well as based on the location of the primary tumor. Neoadjuvant therapies may be beneficial if lymph node metastases at diagnosis are suspected. Surgeons performing a minimally invasive approach should focus on increasing LND rates and harvesting ≥ 6 lymph nodes. Lymph node negativity is required in patients with iCCA being considered for liver transplantation under investigational protocols. CONCLUSION Despite an upward trend in the LND rate, the reality is that only 10% of patients with iCCA receive an adequate LND. This review underscores the importance of routinely increasing the rate of adequate LND in these patients in order to achieve accurate staging, appropriately select patients for adjuvant therapy, and improve the prognosis of clinical outcomes. While prospective data is lacking, the therapeutic impact of LND remains unknown.
Collapse
Affiliation(s)
- Núria Lluís
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, 8900 N Kendall Dr, Miami, FL, 33176, USA.
| | - Domenech Asbun
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, 8900 N Kendall Dr, Miami, FL, 33176, USA
| | - Jaeyun Jane Wang
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Hop S Tran Cao
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Ramon E Jimenez
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, 8900 N Kendall Dr, Miami, FL, 33176, USA
| | - Adnan Alseidi
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Horacio Asbun
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, 8900 N Kendall Dr, Miami, FL, 33176, USA
| |
Collapse
|
10
|
Tanaka M, Jeong J, Thomas C, Zhang X, Zhang P, Saruwatari J, Kondo R, McConnell MJ, Utsumi T, Iwakiri Y. The Sympathetic Nervous System Promotes Hepatic Lymphangiogenesis, which Is Protective Against Liver Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2182-2202. [PMID: 37673329 PMCID: PMC10699132 DOI: 10.1016/j.ajpath.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Liver is the largest lymph-producing organ. In cirrhotic patients, lymph production significantly increases concomitant with lymphangiogenesis. The aim of this study was to determine the mechanism of lymphangiogenesis in liver and its implication in liver fibrosis. Liver biopsies from portal hypertensive patients with portal-sinusoidal vascular disease (n = 22) and liver cirrhosis (n = 5) were evaluated for lymphangiogenesis and compared with controls (n = 9 and n = 6, respectively). For mechanistic studies, rats with partial portal vein ligation (PPVL) and bile duct ligation (BDL) were used. A gene profile data set (GSE77627), including 14 histologically normal liver, 18 idiopathic noncirrhotic portal hypertension, and 22 cirrhotic patients, was analyzed. Lymphangiogenesis was significantly increased in livers from patients with portal-sinusoidal vascular disease, cirrhotic patients, as well as PPVL and BDL rats. Importantly, Schwann cells of sympathetic nerves highly expressed vascular endothelial growth factor-C in PPVL rats. Vascular endothelial growth factor-C neutralizing antibody or sympathetic denervation significantly decreased lymphangiogenesis in livers of PPVL and BDL rats, which resulted in progression of liver fibrosis. Liver specimens from cirrhotic patients showed a positive correlation between sympathetic nerve/Schwann cell-positive areas and lymphatic vessel numbers, which was supported by gene set analysis from patients with noncirrhotic portal hypertension and cirrhotic patients. Sympathetic nerves promote hepatic lymphangiogenesis in noncirrhotic and cirrhotic livers. Increased hepatic lymphangiogenesis can be protective against liver fibrosis.
Collapse
Affiliation(s)
- Masatake Tanaka
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jain Jeong
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Courtney Thomas
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Pengpeng Zhang
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; The Organ Transplant Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Junji Saruwatari
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Matthew J McConnell
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Teruo Utsumi
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
11
|
Ma R, Iwakiri Y. Lymphatic drainage dysfunction is related to clinically significant portal hypertension. Hepatol Int 2023; 17:1327-1330. [PMID: 37743398 DOI: 10.1007/s12072-023-10592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Ruixue Ma
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, TAC S223B, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, TAC S223B, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Téllez L, Payancé A, Tjwa E, Del Cerro MJ, Idorn L, Ovroutski S, De Bruyne R, Verkade HJ, De Rita F, de Lange C, Angelini A, Paradis V, Rautou PE, García-Pagán JC. EASL-ERN position paper on liver involvement in patients with Fontan-type circulation. J Hepatol 2023; 79:1270-1301. [PMID: 37863545 DOI: 10.1016/j.jhep.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 10/22/2023]
Abstract
Fontan-type surgery is the final step in the sequential palliative surgical treatment of infants born with a univentricular heart. The resulting long-term haemodynamic changes promote liver damage, leading to Fontan-associated liver disease (FALD), in virtually all patients with Fontan circulation. Owing to the lack of a uniform definition of FALD and the competitive risk of other complications developed by Fontan patients, the impact of FALD on the prognosis of these patients is currently debatable. However, based on the increasing number of adult Fontan patients and recent research interest, the European Association for The Study of the Liver and the European Reference Network on Rare Liver Diseases thought a position paper timely. The aims of the current paper are: (1) to provide a clear definition and description of FALD, including clinical, analytical, radiological, haemodynamic, and histological features; (2) to facilitate guidance for staging the liver disease; and (3) to provide evidence- and experience-based recommendations for the management of different clinical scenarios.
Collapse
Affiliation(s)
- Luis Téllez
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBEREHD (Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas), University of Alcalá, Madrid, Spain
| | - Audrey Payancé
- DHU Unity, Pôle des Maladies de l'Appareil Digestif, Service d'Hépatologie, Hôpital Beaujon, AP-HP, Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, Paris, France
| | - Eric Tjwa
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - María Jesús Del Cerro
- Pediatric Cardiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Lars Idorn
- Department of Pediatrics, Section of Pediatric Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Stanislav Ovroutski
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Ruth De Bruyne
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Belgium
| | - Henkjan J Verkade
- Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, The Netherlands
| | - Fabrizio De Rita
- Adult Congenital and Paediatric Heart Unit, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Charlotte de Lange
- Department of Pediatric Radiology, Queen Silvia Childrens' Hospital, Sahlgrenska University Hospital, Behandlingsvagen 7, 41650 Göteborg, Sweden
| | - Annalisa Angelini
- Pathology of Cardiac Transplantation and Regenerative Medicine Unit, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Valérie Paradis
- Centre de recherche sur l'inflammation, INSERM1149, Université Paris Cité, Paris, France; Pathology Department, Beaujon Hospital, APHP.Nord, Clichy, France
| | - Pierre Emmanuel Rautou
- AP-HP, Service d'Hépatologie, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, Clichy, France; Université Paris-Cité, Inserm, Centre de recherche sur l'inflammation, UMR 1149, Paris, France
| | - Juan Carlos García-Pagán
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Departament de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain; CIBEREHD (Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Spain.
| |
Collapse
|
13
|
Jeong J, Tanaka M, Yang Y, Arefyev N, DiRito J, Tietjen G, Zhang X, McConnell MJ, Utsumi T, Iwakiri Y. An optimized visualization and quantitative protocol for in-depth evaluation of lymphatic vessel architecture in the liver. Am J Physiol Gastrointest Liver Physiol 2023; 325:G379-G390. [PMID: 37605828 PMCID: PMC10887843 DOI: 10.1152/ajpgi.00139.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
The liver lymphatic system is essential for maintaining tissue fluid balance and immune function. The detailed structure of lymphatic vessels (LVs) in the liver remains to be fully demonstrated. The aim of this study is to reveal LV structures in normal and diseased livers by developing a tissue-clearing and coimmunolabeling protocol optimized for the tissue size and the processing time for three-dimensional (3-D) visualization and quantification of LVs in the liver. We showed that our optimized protocol enables in-depth exploration of lymphatic networks in the liver, consisting of LVs along the portal tract (deep lymphatic system) and within the collagenous Glisson's capsule (superficial lymphatic system) in different species. With this protocol, we have shown 3-D LVs configurations in relation to blood vessels and bile ducts in cholestatic mouse livers, in which LVs were highly dilated and predominantly found around highly proliferating bile ducts and peribiliary vascular plexuses in the portal tract. We also established a quantification method using a 3-D volume-rendering approach. We observed a 1.6-fold (P < 0.05) increase in the average diameter of LVs and a 2.4-fold increase (P < 0.05) in the average branch number of LVs in cholestatic/fibrotic livers compared with control livers. Furthermore, cholestatic/fibrotic livers showed a 4.3-fold increase (P < 0.05) in total volume of LVs compared with control livers. Our optimized protocol and quantification method demonstrate an efficient and simple liver tissue-clearing procedure that allows the comprehensive analysis of liver lymphatic system.NEW & NOTEWORTHY This article showed a comprehensive 3-D-structural analysis of liver lymphatic vessel (LV) in normal and diseased livers in relation to blood vessels and bile ducts. In addition to the LVs highly localized at the portal tract, we revealed capsular LVs in mouse, rat, and human livers. In cholestatic livers, LVs are significantly increased and dilated compared with normal livers. Our optimized protocol provides detailed spatial information for LVs remodeling in normal and pathological conditions.
Collapse
Affiliation(s)
- Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Masatake Tanaka
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
- Division of Pathophysiology, Medical Institute of Bioregulation and Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yilin Yang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Nikolai Arefyev
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Jenna DiRito
- Department of Surgery, Section of Organ Transplantation and Immunology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Gregory Tietjen
- Department of Surgery, Section of Organ Transplantation and Immunology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Matthew J McConnell
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Teruo Utsumi
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
14
|
Wang D, Zhao Y, Zhou Y, Yang S, Xiao X, Feng L. Angiogenesis-An Emerging Role in Organ Fibrosis. Int J Mol Sci 2023; 24:14123. [PMID: 37762426 PMCID: PMC10532049 DOI: 10.3390/ijms241814123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the study of lymphangiogenesis and fibrotic diseases has made considerable achievements, and accumulating evidence indicates that lymphangiogenesis plays a key role in the process of fibrosis in various organs. Although the effects of lymphangiogenesis on fibrosis disease have not been conclusively determined due to different disease models and pathological stages of organ fibrosis, its importance in the development of fibrosis is unquestionable. Therefore, we expounded on the characteristics of lymphangiogenesis in fibrotic diseases from the effects of lymphangiogenesis on fibrosis, the source of lymphatic endothelial cells (LECs), the mechanism of fibrosis-related lymphangiogenesis, and the therapeutic effect of intervening lymphangiogenesis on fibrosis. We found that expansion of LECs or lymphatic networks occurs through original endothelial cell budding or macrophage differentiation into LECs, and the vascular endothelial growth factor C (VEGFC)/vascular endothelial growth factor receptor (VEGFR3) pathway is central in fibrosis-related lymphangiogenesis. Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), as a receptor of LECs, is also involved in the regulation of lymphangiogenesis. Intervention with lymphangiogenesis improves fibrosis to some extent. In the complex organ fibrosis microenvironment, a variety of functional cells, inflammatory factors and chemokines synergistically or antagonistically form the complex network involved in fibrosis-related lymphangiogenesis and regulate the progression of fibrosis disease. Further clarifying the formation of a new fibrosis-related lymphangiogenesis network may potentially provide new strategies for the treatment of fibrosis disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Feng
- Division of Liver Surgery, Department of General Surgery and Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; (D.W.); (Y.Z.); (Y.Z.); (S.Y.); (X.X.)
| |
Collapse
|
15
|
Baker ML, Cantley LG. The Lymphatic System in Kidney Disease. KIDNEY360 2023; 4:e841-e850. [PMID: 37019177 PMCID: PMC10371377 DOI: 10.34067/kid.0000000000000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
The high-capacity vessels of the lymphatic system drain extravasated fluid and macromolecules from nearly every part of the body. However, far from merely a passive conduit for fluid removal, the lymphatic system also plays a critical and active role in immune surveillance and immune response modulation through the presentation of fluid, macromolecules, and trafficking immune cells to surveillance cells in regional draining lymph nodes before their return to the systemic circulation. The potential effect of this system in numerous disease states both within and outside of the kidney is increasingly being explored for their therapeutic potential. In the kidneys, the lymphatics play a critical role in both fluid and macromolecule removal to maintain oncotic and hydrostatic pressure gradients for normal kidney function, as well as in shaping kidney immunity, and potentially in balancing physiological pathways that promote healthy organ maintenance and responses to injury. In many states of kidney disease, including AKI, the demand on the preexisting lymphatic network increases for clearance of injury-related tissue edema and inflammatory infiltrates. Lymphangiogenesis, stimulated by macrophages, injured resident cells, and other drivers in kidney tissue, is highly prevalent in settings of AKI, CKD, and transplantation. Accumulating evidence points toward lymphangiogenesis being possibly harmful in AKI and kidney allograft rejection, which would potentially position lymphatics as another target for novel therapies to improve outcomes. However, the extent to which lymphangiogenesis is protective rather than maladaptive in the kidney in various settings remains poorly understood and thus an area of active research.
Collapse
Affiliation(s)
- Megan L Baker
- Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
16
|
Ito Y, Hosono K, Amano H. Responses of hepatic sinusoidal cells to liver ischemia–reperfusion injury. Front Cell Dev Biol 2023; 11:1171317. [PMID: 37082623 PMCID: PMC10112669 DOI: 10.3389/fcell.2023.1171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The liver displays a remarkable regenerative capacity in response to acute liver injury. In addition to the proliferation of hepatocytes during liver regeneration, non-parenchymal cells, including liver macrophages, liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) play critical roles in liver repair and regeneration. Liver ischemia–reperfusion injury (IRI) is a major cause of increased liver damage during liver resection, transplantation, and trauma. Impaired liver repair increases postoperative morbidity and mortality of patients who underwent liver surgery. Successful liver repair and regeneration after liver IRI requires coordinated interplay and synergic actions between hepatic resident cells and recruited cell components. However, the underlying mechanisms of liver repair after liver IRI are not well understood. Recent technological advances have revealed the heterogeneity of each liver cell component in the steady state and diseased livers. In this review, we describe the progress in the biology of liver non-parenchymal cells obtained from novel technological advances. We address the functional role of each cell component in response to liver IRI and the interactions between diverse immune repertoires and non-hematopoietic cell populations during the course of liver repair after liver IRI. We also discuss how these findings can help in the design of novel therapeutic approaches. Growing insights into the cellular interactions during liver IRI would enhance the pathology of liver IRI understanding comprehensively and further develop the strategies for improvement of liver repair.
Collapse
|
17
|
Abdominal lymphatic pathway in Fontan circulation using non-invasive magnetic resonance lymphangiography. Heart Vessels 2023; 38:581-587. [PMID: 36318300 DOI: 10.1007/s00380-022-02196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
Lymphatic congestion is known to play an important role in the development of late Fontan complications. This study aimed to (1) develop a gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) contrast three-dimensional heavily T2-weighed MR technique that can detect abnormal lymphatic pathway in the abdomen while simultaneously evaluating hepatocellular carcinoma (HCC) and to (2) propose a new classification of abnormal abdominal lymphatic pathway using a non-invasive method in adults with Fontan circulation. Twenty-seven adults with Fontan circulation who underwent Gd-EOB-DTPA abdominal MR imaging were prospectively enrolled in this study. We proposed MR lymphangiography that suppresses the vascular signal on heavily T2-weighted imaging after EOB contrast. The patients were classified as follows: grade 1 with almost no lymphatic pathway, grade 2 with a lymphatic pathway mainly around the bile duct and liver surface, and grade 3 with a lymphatic pathway mainly around the vertebral body and inferior vena cava. The grade 3 group showed the lowest oxygen saturation level, highest central venous pressure, highest incidence of massive ascites, HCC, and focal nodular hyperplasia. This group also tended to have patients with the oldest age and highest cardiac index; however, the difference was not statistically significant. As for the blood test, the grade 3 group showed the lowest platelet count and serum albumin level and the highest fibrosis-4 index. A novel technique, Gd-EOB-DTPA MR lymphangiography, can detect abnormal abdominal lymphatic pathways in Fontan circulation, which can reflect the severity of failing Fontan.
Collapse
|
18
|
Iwakiri Y. Lymphatics in the liver for translational science. Clin Liver Dis (Hoboken) 2023; 21:122-124. [PMID: 37936952 PMCID: PMC10627586 DOI: 10.1097/cld.0000000000000019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/23/2022] [Indexed: 11/09/2023] Open
Abstract
1_k31wzfrsKaltura.
Collapse
|
19
|
Zhang XF, Xue F, Weiss M, Popescu I, Marques HP, Aldrighetti L, Maithel SK, Pulitano C, Bauer TW, Shen F, Poultsides GA, Cauchy F, Martel G, Koerkamp BG, Itaru E, Lv Y, Pawlik TM. Lymph Node Examination and Patterns of Nodal Metastasis Among Patients with Left- Versus Right-Sided Intrahepatic Cholangiocarcinoma After Major Curative-Intent Resection. Ann Surg Oncol 2023; 30:1424-1433. [PMID: 36400889 DOI: 10.1245/s10434-022-12797-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND We sought to investigate whether the unique lateral patterns of lymphatic drainage impacted lymphadenectomy (LND), lymph node metastasis (LNM), and long-term survival of patients after curative hemi-hepatectomy for left- versus right-sided intrahepatic cholangiocarcinoma (ICC). METHODS Data on patients who underwent curative hemi-hepatectomy for left- or right-sided ICC were collected from 15 high-volume centers worldwide, as well as from the Surveillance, Epidemiology, and End Results (SEER) registry. Primary outcomes included overall survival (OS) and disease-free survival (DFS). RESULTS Among 697 patients identified from the multi-institutional database, patients who underwent hemi-hepatectomy for left-sided ICC (n = 363, 52.1%) were more likely to have an increased number of LND versus patients with right-sided ICC (n = 334, 47.9%) (median, left 5 versus right 3, p = 0.012), although the frequency (left 66.4% versus right 63.8%, p = 0.469) and station (beyond station no. 12, left 25.3% versus right 21.1%, p = 0.293) were similar. Consequently, left-sided ICC was associated with higher incidence of LNM (left 33.3% versus right 25.7%, p = 0.036), whereas the station and number of LNM were not different (both p > 0.1). There was no difference in OS (median, left 34.9 versus right 29.6 months, p = 0.130) or DFS (median, left 14.5 versus right 15.2 months, p = 0.771) among patients who underwent hemi-hepatectomy for left- versus right-sided ICC, which were also verified in the SEER dataset. LNM beyond station no. 12 was associated with even worse long-term survival versus LNM within station no. 12 among patients with either left- or right-sided ICC after curative-intent resection (all p < 0.05). CONCLUSIONS The unique lateral patterns of lymphatic drainage were closely related to utilization of LND, as well as LNM of left- versus right-sided ICC.
Collapse
Affiliation(s)
- Xu-Feng Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710063, China.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Feng Xue
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710063, China
| | - Matthew Weiss
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Irinel Popescu
- Department of Surgery, Fundeni Clinical Institute, Bucharest, Romania
| | - Hugo P Marques
- Department of Surgery, Curry Cabral Hospital, Lisbon, Portugal
| | | | | | - Carlo Pulitano
- Department of Surgery, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - Todd W Bauer
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Feng Shen
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | | | - François Cauchy
- Department of Hepatobiliopancreatic Surgery and Liver Transplantation, AP-HP, Beaujon Hospital, Clichy, France
| | - Guillaume Martel
- Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - B Groot Koerkamp
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Endo Itaru
- Gastroenterological Surgery Division, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yi Lv
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710063, China.
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Surgery, The Ohio State University, Wexner Medical Center, 395 W. 12th Ave., Suite 670, Columbus, OH, 43210, USA.
| |
Collapse
|
20
|
Ripoll C, Ibáñez‐Samaniego L, Neumann B, Vaquero J, Greinert R, Bañares R, Zipprich A. Evaluation of the definition of hyperdynamic circulation in patients with cirrhosis and ascites. Hepatol Commun 2022; 6:3528-3538. [PMID: 36221228 PMCID: PMC9701480 DOI: 10.1002/hep4.2102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to evaluate potential criteria for defining hyperdynamic circulation in patients with cirrhosis according to the severity of ascites and its association with the activation of vasoactive systems and markers of systemic inflammation. Cross-sectional study of patients with cirrhosis and right heart catheter measurement from two different academic centers. We evaluated systemic vascular resistance (SVR)/cardiac output (CO) according to ascites severity. The first substudy evaluated the possible definition, the second validated the findings, and the third evaluated the possible mechanisms. Comparisons were performed by means of t test, Mann-Whitney U test, and analysis of variance. Finally, linear regression curves were adjusted to evaluate the relationship between CO and SVR according to the severity of ascites and compensated or decompensated stage of cirrhosis. The study included 721 patients (substudy 1, n = 437; substudy 2, n = 197; substudy 3, n = 87). Hyperdynamic circulation (HC), defined by absolute cutoffs, had no association with the presence or severity of ascites in the first two cohorts. No association was observed between HC with renin, aldosterone, or markers of bacterial translocation. Comparison of linear regression curves showed a shift of the CO-SVR relationship to the left in patients with refractory ascites (p < 0.001) compared to patients without ascites as well as to patients with decompensated cirrhosis (p = 0.002). Conclusion: HC according to the traditional concept of high CO and low SVR is not always present in ascites. Evaluation of the CO-SVR relationship according to the severity of ascites shows a shift to the left, suggesting that the presence of HC would be defined by this shift, independent of absolute values.
Collapse
Affiliation(s)
- Cristina Ripoll
- Department of Internal Medicine IMartin‐Luther University Halle‐WittenbergHalleGermany,Department of Internal Medicine IVJena University Hospital, Friedrich‐Schiller University JenaJenaGermany
| | | | - Beatrix Neumann
- Department of Internal Medicine IMartin‐Luther University Halle‐WittenbergHalleGermany
| | - Javier Vaquero
- Hospital General Universitario Gregorio Marañón. CiberEHDMadridSpain
| | - Robin Greinert
- Department of Internal Medicine IMartin‐Luther University Halle‐WittenbergHalleGermany
| | - Rafael Bañares
- Hospital General Universitario Gregorio Marañón. CiberEHDMadridSpain
| | - Alexander Zipprich
- Department of Internal Medicine IMartin‐Luther University Halle‐WittenbergHalleGermany,Department of Internal Medicine IVJena University Hospital, Friedrich‐Schiller University JenaJenaGermany
| |
Collapse
|
21
|
Bobe S, Beckmann D, Klump DM, Dierkes C, Kirschnick N, Redder E, Bauer N, Schäfers M, Erapaneedi R, Risse B, van de Pavert SA, Kiefer F. Volumetric imaging reveals VEGF-C-dependent formation of hepatic lymph vessels in mice. Front Cell Dev Biol 2022; 10:949896. [PMID: 36051444 PMCID: PMC9424489 DOI: 10.3389/fcell.2022.949896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
The liver is a major biosynthetic and detoxifying organ in vertebrates, but also generates 25%–50% of the lymph passing through the thoracic duct and is thereby the organ with the highest contribution to lymph flow. In contrast to its metabolic function, the role of the liver for lymph generation and composition is presently severely understudied. We took a rigorous, volume imaging-based approach to describe the microarchitecture and spatial composition of the hepatic lymphatic vasculature with cellular resolution in whole mount immune stained specimen ranging from thick sections up to entire mouse liver lobes. Here, we describe that in healthy adult livers, lymphatic vessels were exclusively located within the portal tracts, where they formed a unique, highly ramified tree. Ragged, spiky initials enmeshed the portal veins along their entire length and communicated with long lymphatic vessels that followed the path of the portal vein in close association with bile ducts. Together these lymphatic vessels formed a uniquely shaped vascular bed with a delicate architecture highly adapted to the histological structure of the liver. Unexpectedly, with the exception of short collector stretches at the porta hepatis, which we identified as exit point of the liver lymph vessels, the entire hepatic lymph vessel system was comprised of capillary lymphatic endothelial cells only. Functional experiments confirmed the space of Disse as the origin of the hepatic lymph and flow via the space of Mall to the portal lymph capillaries. After entry into the lymphatic initials, the lymph drained retrograde to the portal blood flow towards the exit at the liver hilum. Perinatally, the liver undergoes complex changes transforming from the main hematopoietic to the largest metabolic organ. We investigated the time course of lymphatic vessel development and identified the hepatic lymphatics to emerge postnatally in a process that relies on input from the VEGF-C/VERGFR-3 growth factor—receptor pair for formation of the fully articulate hepatic lymph vessel bed.
Collapse
Affiliation(s)
- Stefanie Bobe
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Daniel Beckmann
- Institute for Geoinformatics, University of Münster, Münster, Germany
| | - Dorothee Maria Klump
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Cathrin Dierkes
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Nils Kirschnick
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Esther Redder
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Nadine Bauer
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Raghu Erapaneedi
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Benjamin Risse
- Institute for Geoinformatics, University of Münster, Münster, Germany
| | - Serge A. van de Pavert
- Centre National de la Recherche Scientifique (CNRS), National Institute for Health and Medical Research (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Friedemann Kiefer
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- *Correspondence: Friedemann Kiefer,
| |
Collapse
|
22
|
Cadamuro M, Romanzi A, Guido M, Sarcognato S, Cillo U, Gringeri E, Zanus G, Strazzabosco M, Simioni P, Villa E, Fabris L. Translational Value of Tumor-Associated Lymphangiogenesis in Cholangiocarcinoma. J Pers Med 2022; 12:jpm12071086. [PMID: 35887583 PMCID: PMC9324584 DOI: 10.3390/jpm12071086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The prognosis of cholangiocarcinoma remains poor in spite of the advances in immunotherapy and molecular profiling, which has led to the identification of several targetable genetic alterations. Surgical procedures, including both liver resection and liver transplantation, still represent the treatment with the best curative potential, though the outcomes are significantly compromised by the early development of lymph node metastases. Progression of lymphatic metastasis from the primary tumor to tumor-draining lymph nodes is mediated by tumor-associated lymphangiogenesis, a topic largely overlooked until recently. Recent findings highlight tumor-associated lymphangiogenesis as paradigmatic of the role played by the tumor microenvironment in sustaining cholangiocarcinoma invasiveness and progression. This study reviews the current knowledge about the intercellular signaling and molecular mechanism of tumor-associated lymphangiogenesis in cholangiocarcinoma in the hope of identifying novel therapeutic targets to halt a process that often limits the success of the few available treatments.
Collapse
Affiliation(s)
| | - Adriana Romanzi
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, 41124 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.G.); (S.S.)
- Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy;
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.G.); (S.S.)
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Giacomo Zanus
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Mario Strazzabosco
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 208056, USA;
| | - Paolo Simioni
- Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy;
- General Internal Medicine Unit, Padua University-Hospital, 35122 Padua, Italy
| | - Erica Villa
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, 41124 Modena, Italy;
- Correspondence: (E.V.); (L.F.); Tel.: +39-059-422-5308 (E.V.); +39-049-821-3131 (L.F.); Fax: +39-059-422-4424 (E.V.); +39-049-827-2355 (L.F.)
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, 35122 Padua, Italy;
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 208056, USA;
- General Internal Medicine Unit, Padua University-Hospital, 35122 Padua, Italy
- Correspondence: (E.V.); (L.F.); Tel.: +39-059-422-5308 (E.V.); +39-049-821-3131 (L.F.); Fax: +39-059-422-4424 (E.V.); +39-049-827-2355 (L.F.)
| |
Collapse
|
23
|
Hassan M, Juanola O, Keller I, Nanni P, Wolski W, Martínez-López S, Caparrós E, Francés R, Moghadamrad S. Paneth Cells Regulate Lymphangiogenesis under Control of Microbial Signals during Experimental Portal Hypertension. Biomedicines 2022; 10:biomedicines10071503. [PMID: 35884808 PMCID: PMC9313283 DOI: 10.3390/biomedicines10071503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Intestinal microbiota can modulate portal hypertension through the regulation of the intestinal vasculature. We have recently demonstrated that bacterial antigens activate Paneth cells (PCs) to secrete products that regulate angiogenesis and portal hypertension. In the present work we hypothesized that Paneth cells regulate the development of lymphatic vessels under the control of intestinal microbiota during experimental portal hypertension. We used a mouse model of inducible PCs depletion (Math1Lox/LoxVilCreERT2) and performed partial portal vein ligation (PPVL) to induce portal hypertension. After 14 days, we performed mRNA sequencing and evaluated the expression of specific lymphangiogenic genes in small intestinal tissue. Intestinal and mesenteric lymphatic vessels proliferation was assessed by immunohistochemistry. Intestinal organoids with or without PCs were exposed to pathogen-associated molecular patterns, and conditioned media (CM) was used to stimulate human lymphatic endothelial cells (LECs). The lymphangiogenic activity of stimulated LECs was assessed by tube formation and wound healing assays. Secretome analysis of CM was performed using label-free proteomics quantification methods. Intestinal immune cell infiltration was evaluated by immunohistochemistry. We observed that the intestinal gene expression pattern was altered by the absence of PCs only in portal hypertensive mice. We found a decreased expression of specific lymphangiogenic genes in the absence of PCs during portal hypertension, resulting in a reduced proliferation of intestinal and mesenteric lymphatic vessels as compared to controls. In vitro analyses demonstrated that lymphatic tube formation and endothelial wound healing responses were reduced significantly in LECs treated with CM from organoids without PCs. Secretome analyses of CM revealed that PCs secrete proteins that are involved in lipid metabolism, cell growth and proliferation. Additionally, intestinal macrophages infiltrated the ileal mucosa and submucosa of mice with and without Paneth cells in response to portal hypertension. Our results suggest that intestinal microbiota signals stimulate Paneth cells to secrete factors that modulate the intestinal and mesenteric lymphatic vessels network during experimental portal hypertension.
Collapse
Affiliation(s)
- Mohsin Hassan
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Department for Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Oriol Juanola
- Laboratories for Translational Research, Department of Gastroenterology and Hepatology, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit, Swiss Institute of Bioinformatics, University of Bern, 3008 Bern, Switzerland;
| | - Paolo Nanni
- Functional Genomics Center Zurich, University/ETH Zurich, 8057 Zurich, Switzerland; (P.N.); (W.W.)
| | - Witold Wolski
- Functional Genomics Center Zurich, University/ETH Zurich, 8057 Zurich, Switzerland; (P.N.); (W.W.)
| | - Sebastián Martínez-López
- Hepatic and Intestinal Immunobiology Group, Departamento Medicina Clínica, Universidad Miguel Hernández, 03550 Alicante, Spain; (S.M.-L.); (E.C.); (R.F.)
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario, 03010 Alicante, Spain
| | - Esther Caparrós
- Hepatic and Intestinal Immunobiology Group, Departamento Medicina Clínica, Universidad Miguel Hernández, 03550 Alicante, Spain; (S.M.-L.); (E.C.); (R.F.)
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario, 03010 Alicante, Spain
| | - Rubén Francés
- Hepatic and Intestinal Immunobiology Group, Departamento Medicina Clínica, Universidad Miguel Hernández, 03550 Alicante, Spain; (S.M.-L.); (E.C.); (R.F.)
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario, 03010 Alicante, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03207 Elche, Spain
- CIBERehd, Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Sheida Moghadamrad
- Department for Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Laboratories for Translational Research, Department of Gastroenterology and Hepatology, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- University Clinic of Visceral Surgery and Medicine, Inselspital, 3008 Bern, Switzerland
- Correspondence: ; Tel.: +41-58-666-7117
| |
Collapse
|
24
|
van den Bent L, Frenkel NC, Poghosyan S, Molenaar IQ, Padera TP, Kranenburg O, Borel Rinkes IHM, Hagendoorn J. OUP accepted manuscript. Br J Surg 2022; 109:559-560. [PMID: 35576376 PMCID: PMC10364678 DOI: 10.1093/bjs/znac076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Lotte van den Bent
- Department of Surgical Oncology and Laboratory for Translational Oncology, University Medical Centre/Utrecht University, Utrecht, the Netherlands
| | - Nicola C Frenkel
- Department of Surgical Oncology and Laboratory for Translational Oncology, University Medical Centre/Utrecht University, Utrecht, the Netherlands
| | - Susanna Poghosyan
- Department of Surgical Oncology and Laboratory for Translational Oncology, University Medical Centre/Utrecht University, Utrecht, the Netherlands
| | - I Quintus Molenaar
- Department of Surgical Oncology and Laboratory for Translational Oncology, University Medical Centre/Utrecht University, Utrecht, the Netherlands
| | - Timothy P Padera
- E. L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Onno Kranenburg
- Department of Surgical Oncology and Laboratory for Translational Oncology, University Medical Centre/Utrecht University, Utrecht, the Netherlands
| | - Inne H M Borel Rinkes
- Department of Surgical Oncology and Laboratory for Translational Oncology, University Medical Centre/Utrecht University, Utrecht, the Netherlands
| | - Jeroen Hagendoorn
- Department of Surgical Oncology and Laboratory for Translational Oncology, University Medical Centre/Utrecht University, Utrecht, the Netherlands
| |
Collapse
|