1
|
Shun EHK, Situ J, Tsoi JYH, Wu S, Cai J, Lo KHY, Chew NFS, Li Z, Poon RWS, Teng JLL, Cheng VCC, Yuen KY, Sridhar S. Rat hepatitis E virus (Rocahepevirus ratti) exposure in cats and dogs, Hong Kong. Emerg Microbes Infect 2024; 13:2337671. [PMID: 38551320 PMCID: PMC11018080 DOI: 10.1080/22221751.2024.2337671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Hepatitis E virus (HEV) variants infecting humans belong to two species: Paslahepevirus balayani (bHEV) and Rocahepevirus ratti (rat hepatitis E virus; rHEV). R. ratti is a ubiquitous rodent pathogen that has recently been recognized to cause hepatitis in humans. Transmission routes of rHEV from rats to humans are currently unknown. In this study, we examined rHEV exposure in cats and dogs to determine if they are potential reservoirs of this emerging human pathogen. Virus-like particle-based IgG enzymatic immunoassays (EIAs) capable of differentiating rHEV & bHEV antibody profiles and rHEV-specific real-time RT-PCR assays were used for this purpose. The EIAs could detect bHEV and rHEV patient-derived IgG spiked in dog and cat sera. Sera from 751 companion dogs and 130 companion cats in Hong Kong were tested with these IgG enzymatic immunoassays (EIAs). Overall, 13/751 (1.7%) dogs and 5/130 (3.8%) cats were sero-reactive to HEV. 9/751 (1.2%) dogs and 2/130 (1.5%) cats tested positive for rHEV IgG, which was further confirmed by rHEV immunoblots. Most rHEV-seropositive animals were from areas in or adjacent to districts reporting human rHEV infection. Neither 881 companion animals nor 652 stray animals carried rHEV RNA in serum or rectal swabs. Therefore, we could not confirm a role for cats and dogs in transmitting rHEV to humans. Further work is required to understand the reasons for low-level seropositivity in these animals.
Collapse
Affiliation(s)
- Estie Hon-Kiu Shun
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Jianwen Situ
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - James Yiu-Hung Tsoi
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Shusheng Wu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Jianpiao Cai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Kelvin Hon-Yin Lo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Nicholas Foo-Siong Chew
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Zhiyu Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Rosana Wing-Shan Poon
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Jade Lee-Lee Teng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| |
Collapse
|
2
|
Guo H, Xu J, Situ J, Li C, Wang X, Hou Y, Yang G, Wang L, Ying D, Li Z, Wang Z, Su J, Ding Y, Zeng D, Zhang J, Ding X, Wu S, Miao W, Tang R, Lu Y, Kong H, Zhou P, Zheng Z, Zheng K, Pan X, Sridhar S, Wang W. Cell binding tropism of rat hepatitis E virus is a pivotal determinant of its zoonotic transmission to humans. Proc Natl Acad Sci U S A 2024; 121:e2416255121. [PMID: 39467126 DOI: 10.1073/pnas.2416255121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
Classically, all hepatitis E virus (HEV) variants causing human infection belong to the genus Paslahepevirus (HEV-A). However, the increasing cases of rat HEV infection in humans since 2018 challenged this dogma, posing increasing health threats. Herein, we investigated the underlying mechanisms dictating the zoonotic potentials of different HEV species and their possible cross-protection relationships. We found that rat HEV virus-like particles (HEVVLPs) bound to human liver and intestinal cells/tissues with high efficiency. Moreover, rat HEVVLPs and infectious rat HEV particles penetrated the cell membrane and entered human target cells postbinding. In contrast, ferret HEVVLPs showed marginal cell binding and entry ability, bat HEVVLPs and avian HEVVLPs exhibited no binding and entry potency. Structure-based three-dimensional mapping identified that the surface spike domain of rat HEV is crucial for cell binding. Antigenic cartography indicated that rat HEV exhibited partial cross-reaction with HEV-A. Intriguingly, sera of HEV-A infected patients or human HEV vaccine Hecolin® immunized individuals provided partial cross-protection against the binding of rat HEVVLPs to human target cells. In summary, the interactions between the viral capsid and cellular receptor(s) regulate the distinct zoonotic potentials of different HEV species. The systematic characterization of antigenic cartography and serological cross-reactivity of different HEV species provide valuable insights for the development of species-specific diagnosis and protective vaccines against zoonotic HEV infection.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Jiaqi Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Jianwen Situ
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chunyang Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Xia Wang
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yao Hou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Guangde Yang
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Lingli Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Dong Ying
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zheng Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Zijie Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Jia Su
- Chinese Academy of Sciences Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510320, China
| | - Yibo Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Dou Zeng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Jikai Zhang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaohui Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Shusheng Wu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Weiwei Miao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Peng Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510320, China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
3
|
Liu T, Li J, Yin X, Lu F, Zhao H, Wang L, Qin CF. Establishment of enterically transmitted hepatitis virus animal models using lipid nanoparticle-based full-length viral genome RNA delivery system. Gut 2024:gutjnl-2024-332784. [PMID: 39353724 DOI: 10.1136/gutjnl-2024-332784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Enterically transmitted hepatitis viruses, such as hepatitis A virus (HAV) and hepatitis E virus (HEV), remain notable threats to public health. However, stable and reliable animal models of HAV and HEV infection are lacking. OBJECTIVE This study aimed to establish HAV and HEV infections in multiple small animals by intravenously injecting lipid nanoparticle (LNP)-encapsulated full-length viral RNAs (LNP-vRNA). DESIGN In vitro transcribed and capped full-length HAV RNA was encapsulated into LNP and was intravenously inoculated to Ifnar-/- mice, and HEV RNA to rabbits and gerbils. Virological parameters were determined by RT-qPCR, ELISA and immunohistochemistry. Liver histopathological changes were analysed by H&E staining. Antiviral drug and vaccine efficacy were further evaluated by using the LNP-vRNA-based animal model. RESULTS On intravenous injection of LNP-vRNA, stable viral shedding was detected in the faeces and infectious HAV or HEV was recovered from the livers of the inoculated animals. Liver damage was observed in LNP-vRNA (HAV)-injected mice and LNP-vRNA (HEV)-injected rabbits. Mongolian gerbils were also susceptible to LNP-vRNA (HEV) injections. Finally, the antiviral countermeasures and in vivo function of HEV genome deletions were validated in the LNP-vRNA-based animal model. CONCLUSION This stable and standardised LNP-vRNA-based animal model provides a powerful platform to investigate the pathogenesis and evaluate countermeasures for enterically transmitted hepatitis viruses and can be further expanded to other viruses that are not easily cultured in vitro or in vivo.
Collapse
Affiliation(s)
- Tianxu Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lin Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Shenzhen Blood Center, Shen Zhen, Guangdong, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, China
| |
Collapse
|
4
|
Yadav KK, Kenney SP. Hepatitis E virus immunosuppressed animal models. BMC Infect Dis 2024; 24:965. [PMID: 39266958 PMCID: PMC11395946 DOI: 10.1186/s12879-024-09870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
Hepatitis E virus (HEV) is an important emerging pathogen producing significant morbidity in immunosuppressed patients. HEV has been detrimental to solid organ transplant (SOT) patients, cancer patients, and HIV-positive patients, where chronic HEV infections occur. Blood-borne transfusions and multiple cases of chronic HEV infection in transplant patients have been reported in the past few decades, necessitating research on HEV pathogenesis using immunosuppressed animal models. Numerous animal species with unique naturally occurring HEV strains have been found, several of which have the potential to spread to humans and to serve as pathogenesis models. Host immunosuppression leads to viral persistence and chronic HEV infection allows for genetic adaptation to the human host creating new strains with worse disease outcomes. Procedures necessary for SOT often entail blood transfusions placing immunosuppressive patients into a "high risk group" for HEV infection. This scenario requires an appropriate immunosuppressive animal model to understand disease patterns in these patients. Hence, this article reviews the recent advances in the immunosuppressed animal models for chronic HEV infection with emphasis on pathogenesis, immune correlates, and the liver pathology associated with the chronic HEV infections.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA
| | - Scott P Kenney
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA.
| |
Collapse
|
5
|
Liu T, He Q, Yang X, Li Y, Yuan D, Lu Q, Tang T, Guan G, Zheng L, Zhang H, Xia C, Yin X, Wei G, Chen X, Lu F, Wang L. An Immunocompetent Mongolian Gerbil Model for Hepatitis E Virus Genotype 1 Infection. Gastroenterology 2024; 167:750-763.e10. [PMID: 38582270 DOI: 10.1053/j.gastro.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND & AIMS Hepatitis E virus (HEV), primarily genotype 1 (HEV-1), causes approximately 20.1 million infections, 44,000 deaths, and 3000 stillbirths annually. Current evidence indicates that HEV-1 is only transmitted in humans. Here, we evaluated whether Mongolian gerbils can serve as animal models for HEV-1 infection. METHODS Mongolian gerbils were used for HEV-1 and hepatitis E virus genotype 3 infection experiments. HEV infection parameters, including detection of HEV RNA and HEV antigen, liver function assessment, and histopathology, were evaluated. RESULTS We adapted a clinical isolate of HEV-1 for Mongolian gerbils by serial passaging in feces of aged male gerbils. The gerbil-adapted strain obtained at passage 3 induced a robust, acute HEV infection, characterized by stable fecal virus shedding, elevated liver enzymes, histopathologic changes in the liver, and seroconversion to anti-HEV. An infectious complementary DNA clone of the adapted virus was generated. HEV-1-infected pregnant gerbils showed a high rate of maternal mortality and vertical transmission. HEV RNA or antigens were detected in the liver, kidney, intestine, placenta, testis, and fetus liver. Liver and placental transcriptomic analyses indicated activation of host immunity. Tacrolimus prolonged HEV-1 infection, whereas ribavirin cleared infection. The protective efficacy of a licensed HEV vaccine was validated using this model. CONCLUSIONS HEV-1 efficiently infected Mongolian gerbils. This HEV-1 infection model will be valuable for investigating hepatitis E immunopathogenesis and evaluating vaccines and antivirals against HEV.
Collapse
Affiliation(s)
- Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyue Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuebao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Disen Yuan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qinghui Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianyu Tang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liwei Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guochao Wei
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
6
|
He Q, Liu T, Yang X, Yuan D, Lu Q, Li Y, Zhang H, Liu X, Xia C, Sridhar S, Tian L, Liu X, Meng L, Ning J, Lu F, Wang L, Yin X, Wang L. Optimization of immunosuppression strategies for the establishment of chronic hepatitis E virus infection in rabbits. J Virol 2024; 98:e0084624. [PMID: 38899900 PMCID: PMC11264948 DOI: 10.1128/jvi.00846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic hepatitis E mostly occurs in organ transplant recipients and can lead to rapid liver fibrosis and cirrhosis. Previous studies found that the development of chronic hepatitis E virus (HEV) infection is linked to the type of immunosuppressant used. Animal models are crucial for the study of pathogenesis of chronic hepatitis E. We previously established a stable chronic HEV infection rabbit model using cyclosporine A (CsA), a calcineurin inhibitor (CNI)-based immunosuppressant. However, the immunosuppression strategy and timing may be optimized, and how different types of immunosuppressants affect the establishment of chronic HEV infection in this model is still unknown. Here, we showed that chronic HEV infection can be established in 100% of rabbits when CsA treatment was started at HEV challenge or even 4 weeks after. Tacrolimus or prednisolone treatment alone also contributed to chronic HEV infection, resulting in 100% and 77.8% chronicity rates, respectively, while mycophenolate mofetil (MMF) only led to a 28.6% chronicity rate. Chronic HEV infection was accompanied with a persistent activation of innate immune response evidenced by transcriptome analysis. The suppressed adaptive immune response evidenced by low expression of genes related to cytotoxicity (like perforin and FasL) and low anti-HEV seroconversion rates may play important roles in causing chronic HEV infection. By analyzing HEV antigen concentrations with different infection outcomes, we also found that HEV antigen levels could indicate chronic HEV infection development. This study optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits and highlighted the potential association between the development of chronic HEV infection and immunosuppressants.IMPORTANCEOrgan transplant recipients are at high risk of chronic hepatitis E and generally receive a CNI-based immunosuppression regimen containing CNI (tacrolimus or CsA), MMF, and/or corticosteroids. Previously, we established stable chronic HEV infection in a rabbit model by using CsA before HEV challenge. In this study, we further optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits. Chronic HEV infection can also be established when CsA treatment was started at the same time or even 4 weeks after HEV challenge, clearly indicating the risk of progression to chronic infection under these circumstances and the necessity of HEV screening for both the recipient and the donor preoperatively. CsA, tacrolimus, or prednisolone instead of MMF significantly contributed to chronic HEV infection. HEV antigen in acute infection phase indicates the development of chronic infection. Our results have important implications for understanding the potential association between chronic HEV infection and immunosuppressants.
Collapse
Affiliation(s)
- Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyue Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Disen Yuan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qinghui Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuebao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lili Tian
- Miyun District Center for Disease Control and Prevention, Beijing, China
| | - Xiaofeng Liu
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lulu Meng
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
Xu L, Bie M, Li J, Zhou H, Hu T, Carr MJ, Lu L, Shi W. Isolation and characterization of a novel rodent hepevirus in long-tailed dwarf hamsters ( Cricetulus longicaudatus) in China. J Gen Virol 2024; 105. [PMID: 38767609 DOI: 10.1099/jgv.0.001989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Hepeviruses have been identified in a broad range of animal hosts, including mammals, birds, and fish. In this study, rodents (n=91) from seven different species and ten pikas (Ochotona curzoniae) were collected in Qinghai Province, China. Using transcriptomic sequencing and confirmatory molecular testing, hepeviruses were detected in 27 of 45 (60 %) long-tailed dwarf hamsters (Cricetulus longicaudatus) and were undetected in other rodents and pika. The complete genome sequences from 14 representative strains were subsequently obtained, and phylogenetic analyses suggested that they represent a novel species within the genus Rocahepevirus, which we tentatively designated as Cl-2018QH. The virus was successfully isolated in human hepatoma (Huh-7) and murine fibroblast (17 Cl-1) cell lines, though both exhibited limited replication as assayed by detection of negative-sense RNA intermediates. A129 immunodeficient mice were inoculated with Cl-2018QH and the virus was consistently detected in multiple organs, despite relatively low viral loads. In summary, this study has described a novel rodent hepevirus, which enhances our knowledge of the genetic diversity of rodent hepeviruses and highlights its potential for cross-species transmission.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Mengyu Bie
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Juan Li
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Hong Zhou
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Tao Hu
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, PR China
| | - Michael J Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, D04 E1W1, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Weifeng Shi
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| |
Collapse
|
8
|
Chen Z, Li G, Situ J, Li Z, Guo S, Huang Y, Wu S, Tang Z, Wen G, Wang S, Fang M, Wang Y, Yu H, Sridhar S, Zheng Z, Xia N. Redeveloping antigen detection kits for the diagnosis of rat hepatitis E virus. J Clin Microbiol 2023; 61:e0071023. [PMID: 38038482 PMCID: PMC10729709 DOI: 10.1128/jcm.00710-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023] Open
Abstract
The emergence of Rocahepevirus ratti [species HEV ratti (r HEV)] as a causative agent of hepatitis E in humans presents a new potential threat to global public health. The R. ratti genotype 1 (r-1 HEV) variant only shares 50%-60% genomic identity with Paslahepevirus balayani [species HEV balayani (b HEV)] variants, which are the main causes of hepatitis E infection in humans. Here, we report antigen diagnoses for r-1 HEV and b HEV using an enzymatic immunoassay (EIA) method. We detected recombinant virus-like particles protein (HEV 239) of r HEV and b HEV using a collection of hepatitis E virus (HEV)-specific monoclonal antibodies. Two optimal candidates, the capture antibody P#1-H4 and the detection antibodies C145 (P#1-H4*/C145#) and C158 (P#1-H4*/C158#), were selected to detect antigen in infected rat samples and r-1 HEV- or b HEV-infected human clinical samples. The two candidates showed similar diagnostic efficacy to the Wantai HEV antigen kit in b HEV-infected clinical samples. Genomic divergence resulted in low diagnostic efficacy of the Wantai HEV antigen kit (0%, 0 of 10) for detecting r-1 HEV infection. Compared with the P#1-H4*/C145# candidate (80%, 8 of 10), the P#1-H4*/C158# candidate had excellent diagnostic efficacy in r-1 HEV-infected clinical samples (100%, 10 of 10). The two candidates bind to a discrete antigenic site that is highly conserved across r HEV and b HEV. P#1-H4*/C145# and P#1-H4*/C158# are efficacious candidate antibody combinations for rat HEV antigen detection.
Collapse
Affiliation(s)
- Zihao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guanghui Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jianwen Situ
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhiyong Li
- The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Shaoqi Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yang Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shusheng Wu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zimin Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guiping Wen
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Siling Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingbin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Zizheng Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| |
Collapse
|
9
|
Benavent S, Carlos S, Reina G. Rocahepevirus ratti as an Emerging Cause of Acute Hepatitis Worldwide. Microorganisms 2023; 11:2996. [PMID: 38138140 PMCID: PMC10745784 DOI: 10.3390/microorganisms11122996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis E virus (HEV) is a widespread human infection that causes mainly acute infection and can evolve to a chronic manifestation in immunocompromised individuals. In addition to the common strains of hepatitis E virus (HEV-A), known as Paslahepevirus balayani, pathogenic to humans, a genetically highly divergent rat origin hepevirus (RHEV) can cause hepatitis possessing a potential risk of cross-species infection and zoonotic transmission. Rocahepevirus ratti, formerly known as Orthohepevirus C, is a single-stranded RNA virus, recently reassigned to Rocahepevirus genus in the Hepeviridae family, including genotypes C1 and C2. RHEV primarily infects rats but has been identified as a rodent zoonotic virus capable of infecting humans through the consumption of contaminated food or water, causing both acute and chronic hepatitis cases in both animals and humans. This review compiles data concluding that 60% (295/489) of RHEV infections are found in Asia, being the continent with the highest zoonotic and transmission potential. Asia not only has the most animal cases but also 16 out of 21 human infections worldwide. Europe follows with 26% (128/489) of RHEV infections in animals, resulting in four human cases out of twenty-one globally. Phylogenetic analysis and genomic sequencing will be employed to gather global data, determine epidemiology, and assess geographical distribution. This information will enhance diagnostic accuracy, pathogenesis understanding, and help prevent cross-species transmission, particularly to humans.
Collapse
Affiliation(s)
- Sara Benavent
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (S.B.); (G.R.)
| | - Silvia Carlos
- Department of Preventive Medicine and Public Health, Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (S.B.); (G.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
10
|
Stahl Y, Kabar I, Heinzow H, Maasoumy B, Bremer B, Wedemeyer H, Schmidt HHJ, Pietschmann T, Schlevogt B, Behrendt P. Enhanced monitoring and detection of recent genotype 3 hepatitis E virus infection through urine antigen testing. Emerg Microbes Infect 2023; 12:2251598. [PMID: 37649441 PMCID: PMC10512750 DOI: 10.1080/22221751.2023.2251598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Hepatitis E virus (HEV) is the leading cause of acute viral hepatitis. Numerous studies have investigated the dynamics of HEV infection markers, but the most suitable marker for diagnosing ongoing or recent HEV infection remains to be determined. Recent evidence suggests that serum antigen testing is superior to serum IgM and RNA quantification. Moreover, it has been found that infected individuals excrete HEV antigen in significant quantities through urine. To address this question, we conducted a longitudinal analysis involving 16 patients with acute or chronic HEV infection in an area where genotype 3 HEV is prevalent. Our findings indicate that the diagnostic and monitoring capabilities of antigen testing for HEV infection can be further enhanced by measuring it in urine. Additionally, we were able to demonstrate that this enhancement is likely due to the presence of HEV-reactive IgG in blood plasma, which hampers efficient detection of HEV antigen through sandwich ELISA. In conclusion, urine-based antigen testing appears to be superior to measuring anti-HEV antibodies or viral RNA for diagnosing suspected HEV infection and monitoring ongoing infections.
Collapse
Affiliation(s)
- Yannick Stahl
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Iyad Kabar
- Department of Medicine B, Muenster University Hospital, Muenster, Germany
- Department for Internal Medicine, Raphaelsklinik Muenster, Muenster, Germany
| | - Hauke Heinzow
- Department of Medicine B, Muenster University Hospital, Muenster, Germany
- Medical Clinic I, Klinikum Der Barmherzigen Brüder Trier, Trier, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology, Infectious Disease and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner-site Hannover-Braunschweig, Hannover, Germany
| | - Birgit Bremer
- Department of Gastroenterology, Hepatology, Infectious Disease and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Disease and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner-site Hannover-Braunschweig, Hannover, Germany
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Hartmut H.-J. Schmidt
- Department of Medicine B, Muenster University Hospital, Muenster, Germany
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- German Centre for Infection Research (DZIF), partner-site Hannover-Braunschweig, Hannover, Germany
| | - Bernhard Schlevogt
- Department of Medicine B, Muenster University Hospital, Muenster, Germany
- Department of Gastroenterology, Medical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Behrendt
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious Disease and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner-site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
11
|
León-Janampa N, Caballero-Posadas I, Barc C, Darrouzain F, Moreau A, Guinoiseau T, Gatault P, Fleurot I, Riou M, Pinard A, Pezant J, Rossignol C, Gaudy-Graffin C, Brand D, Marlet J. A pig model of chronic hepatitis E displaying persistent viremia and a downregulation of innate immune responses in the liver. Hepatol Commun 2023; 7:e0274. [PMID: 37938097 PMCID: PMC10635601 DOI: 10.1097/hc9.0000000000000274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a zoonotic virus transmitted by pig meat and responsible for chronic hepatitis E in immunocompromised patients. It has proved challenging to reproduce this disease in its natural reservoir. We therefore aimed to develop a pig model of chronic hepatitis E to improve the characterization of this disease. METHODS Ten pigs were treated with a tacrolimus-based regimen and intravenously inoculated with HEV. Tacrolimus trough concentration, HEV viremia, viral diversity, innate immune responses, liver histology, clinical disease and biochemical markers were monitored for 11 weeks post-infection (p.i.). RESULTS HEV viremia persisted for 11 weeks p.i. HEV RNA was detected in the liver, small intestine, and colon at necropsy. Histological analysis revealed liver inflammation and fibrosis. Several mutations selected in the HEV genome were associated with compartmentalization in the feces and intestinal tissues, consistent with the hypothesis of extrahepatic replication in the digestive tract. Antiviral responses were characterized by a downregulation of IFN pathways in the liver, despite an upregulation of RIG-I and ISGs in the blood and liver. CONCLUSIONS We developed a pig model of chronic hepatitis E that reproduced the major hallmarks of this disease. This model revealed a compartmentalization of HEV genomes in the digestive tract and a downregulation of innate immune responses in the liver. These original features highlight the relevance of our model for studies of the pathogenesis of chronic hepatitis E and for validating future treatments.
Collapse
Affiliation(s)
- Nancy León-Janampa
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
| | | | - Céline Barc
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - François Darrouzain
- Department of Pharmacology and Toxicology, Tours University Hospital, Tours, France
| | - Alain Moreau
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
| | - Thibault Guinoiseau
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Philippe Gatault
- Department of Nephrology and Transplantation, Tours University Hospital, Tours, France
- EA4245, University of Tours, Tours, France
| | | | - Mickaël Riou
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - Anne Pinard
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | - Jérémy Pezant
- UE-1277 Platform for Experimentation on Infectious Diseases, INRAe, Nouzilly, France
| | | | - Catherine Gaudy-Graffin
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Denys Brand
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| | - Julien Marlet
- INSERM U1259 MAVIVH, Tours University and Tours University Hospital, Tours, France
- Department of Bacteriology-Virology-Hygiene, Tours University Hospital, Tours, France
| |
Collapse
|
12
|
Subramaniam S, Fares-Gusmao R, Sato S, Cullen JM, Takeda K, Farci P, McGivern DR. Distinct disease features of acute and persistent genotype 3 hepatitis E virus infection in immunocompetent and immunosuppressed Mongolian gerbils. PLoS Pathog 2023; 19:e1011664. [PMID: 37703304 PMCID: PMC10519604 DOI: 10.1371/journal.ppat.1011664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/25/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Hepatitis E virus (HEV) causes self-limited acute hepatitis in immunocompetent individuals and can establish chronic infection in solid organ transplant recipients taking immunosuppressive drugs. A well characterized small animal model is needed to understand HEV pathogenesis. In this study, we established a robust model to study acute and persistent HEV infection using Mongolian gerbils (Meriones unguiculatus) with or without immunosuppression. Gerbils were implanted subcutaneously with continuous release tacrolimus pellet to induce immunosuppression. Gerbils with or without tacrolimus treatment were inoculated with HEV intraperitoneally. Viremia, fecal virus shedding, serum antibody and ALT levels, liver histopathological lesions, hepatocyte apoptosis, and liver macrophage distribution were assessed. Mild to moderate self-limited hepatitis and IgM and IgG antibody responses against HEV ORF2 were observed in immunocompetent gerbils. Levels of HEV-specific IgM responses were higher and lasted longer in immunocompetent gerbils with higher peak viremia. Persistent viremia and fecal virus shedding with either weak, or absent HEV antibody levels were seen in immunosuppressed gerbils. Following HEV infection, serum ALT levels were increased, with lower and delayed peaks observed in immunosuppressed compared to immunocompetent gerbils. In immunocompetent gerbils, foci of apoptotic hepatocytes were detected that were distributed with inflammatory infiltrates containing CD68+ macrophages. However, these foci were absent in immunosuppressed gerbils. The immunosuppressed gerbils showed no inflammation with no increase in CD68+ macrophages despite high virus replication in liver. Our findings suggest adaptive immune responses are necessary for inducing hepatocyte apoptosis, CD68+ macrophage recruitment, and inflammatory cell infiltration in response to HEV infection. Our studies show that Mongolian gerbils provide a promising model to study pathogenesis during acute and persistent HEV infection.
Collapse
Affiliation(s)
- Sakthivel Subramaniam
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Rafaelle Fares-Gusmao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Shinya Sato
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John M. Cullen
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David R. McGivern
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
13
|
Lean FZX, Leblond AL, Byrne AMP, Mollett B, James J, Watson S, Hurley S, Brookes SM, Weber A, Núñez A. Subclinical hepatitis E virus infection in laboratory ferrets in the UK. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ferrets are widely used for experimental modelling of viral infections. However, background disease in ferrets could potentially confound intended experimental interpretation. Here we report the detection of a subclinical infection of ferret hepatitis E virus (FRHEV) within a colony sub-group of female laboratory ferrets that had been enrolled on an experimental viral infection study (non-hepatitis). Lymphoplasmacytic cuffing of periportal spaces was identified on histopathology but was negative for the RNA and antigens of the administered virus. Follow-up viral metagenomic analysis conducted on liver specimens revealed sequences attributed to FRHEV and these were confirmed by reverse-transcriptase polymerase chain reaction. Further genomic analysis revealed contiguous sequences spanning 79–95 % of the FRHEV genome and that the sequences were closely related to those reported previously in Europe. Using in situ hybridization by RNAScope, we confirmed the presence of HEV-specific RNA in hepatocytes. The HEV open reading frame 2 (ORF2) protein was also detected by immunohistochemistry in the hepatocytes and the biliary canaliculi. In conclusion, the results of our study provide evidence of background infection with FRHEV in laboratory ferrets. As this infection can be subclinical, we recommend routine monitoring of ferret populations using virological and liver function tests to avoid incorrect causal attribution of any liver disease detected in in vivo studies.
Collapse
Affiliation(s)
- Fabian Z. X. Lean
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Present address: Department of Pathobiology & Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK
| | - Anne-Laure Leblond
- Department of Pathology and Molecular Pathology, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Alexander M. P. Byrne
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Benjamin Mollett
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Joe James
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Samantha Watson
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Shellene Hurley
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Sharon M. Brookes
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Alejandro Núñez
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|