1
|
Neves W, Rocha G, Senger MH, Hubbe M. The taxonomy of Sahelanthropus tchadensis from a craniometric perspective. AN ACAD BRAS CIENC 2024; 96:e20230680. [PMID: 38985030 DOI: 10.1590/0001-3765202420230680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/20/2024] [Indexed: 07/11/2024] Open
Abstract
Sahelanthropus tchadensis has raised much debate since its initial discovery in Chad in 2001, given its controversial classification as the earliest representative of the hominin lineage. This debate extends beyond the phylogenetic position of the species, and includes several aspects of its habitual behavior, especially in what regards its locomotion. The combination of ancestral and derived traits observed in the fossils associated with the species has been used to defend different hypotheses related to its relationship to hominins. Here, the cranial morphology of Sahelanthropus tchadensis was assessed through 16 linear craniometric measurements, and compared to great apes and hominins through Principal Component Analysis based on size and shape and shape information alone. The results show that S. tchadensis share stronger morphological affinities with hominins than with apes for both the analysis that include size information and the one that evaluates shape alone. Since TM 266-01-060-1 shows a strong morphological affinity with the remaining hominins represented in the analysis, our results support the initial interpretations that S. tchadensis represents an early specimen of our lineage or a stem basal lineage more closely related to hominins than to Panini.
Collapse
Affiliation(s)
- Walter Neves
- Universidade de São Paulo, Instituto de Estudos Avançados, Rua da Praça do Relógio, 109, 05508-050 São Paulo, SP, Brazil
| | - Gabriel Rocha
- Universidade de São Paulo, Instituto de Estudos Avançados, Rua da Praça do Relógio, 109, 05508-050 São Paulo, SP, Brazil
| | - Maria H Senger
- Universidade de São Paulo, Instituto de Estudos Avançados, Rua da Praça do Relógio, 109, 05508-050 São Paulo, SP, Brazil
| | - Mark Hubbe
- Ohio State University, Department of Anthropology, 174W 18th Ave., 43210 Columbus, Ohio, USA
| |
Collapse
|
2
|
Hoenecke H, Fiske JW, Tamayo AE, D'Lima DD. Evolution of the throwing shoulder: why apes don't throw well and how that applies to throwing athletes. J Shoulder Elbow Surg 2024; 33:1404-1417. [PMID: 38316235 DOI: 10.1016/j.jse.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Humans have unique characteristics making us the only primate that can throw well while most other primates throw predominately underhand with poor speed and accuracy. The purpose of this study is to illuminate the uniquely human characteristics that allow us to throw so well. When treating an injury such as a labral tear or capsule tear, this study hopes the reader can gain a better understanding of the issues that lead to the tear and those that may determine the success of treatment besides the actual repair. METHODS In addition to a review of scientific and medical literature, information was obtained from interviews and experience with primate veterinarians, anthropologists, archeologists, and professional baseball players. These sources were used to study the connection between evolutionary throwing activities and current sports medicine issues. RESULTS Arm acceleration requires a functional kinetic chain, rapid motor sequences, and the ability to absorb elastic energy in the shoulder. Successful treatment of the throwing shoulder requires awareness of the shoulder's position in the kinetic chain and correction of defects in the ability to execute the kinetic chain. Some problems in the shoulder could reflect regression to a more primitive anatomy or dyskinesis. Return of performance requires regaining the elasticity in the tissues of the shoulder to temporarily store kinetic energy. For example, tissue remodeling after rotator cuff repair continues for months to years; however, the newly formed tissue lacks the same elasticity of the native tendon. This suggests why throwing performance typically does not return for 7 or more months after repair even though there may be structural integrity at 3-4 months. CONCLUSION The shoulder has developed uniquely in modern man for the act of throwing. The anatomic deficiencies in primates for throwing provide an illustration of the more subtle changes that a throwing athlete might have that are detrimental to throwing. Nonhuman primates have been unable to demonstrate the kinetic chain sequence for throwing secondary to the lack of neurologic pathways required. Humans are more sophisticated and precise in their movements but lack robusticity in their bone and muscle architecture, seen especially in the human rotator cuff. Successful treatment of a throwing injury requires familiarity with the conditions that cause the injury or affect the rehabilitation process. The return of performance following injury or surgery requires regaining the elasticity in the tissues of the shoulder to temporarily store kinetic energy from the kinetic chain.
Collapse
Affiliation(s)
- Heinz Hoenecke
- Division of Sports Medicine, Department of Orthopaedic Surgery, Scripps Clinic, La Jolla, CA, USA; Shiley Center for Orthopaedic Research & Education at Scripps Clinic, La Jolla, CA, USA.
| | | | | | - Darryl D D'Lima
- Division of Sports Medicine, Department of Orthopaedic Surgery, Scripps Clinic, La Jolla, CA, USA; Shiley Center for Orthopaedic Research & Education at Scripps Clinic, La Jolla, CA, USA
| |
Collapse
|
3
|
Sekhavati Y, Strait D. Estimating ancestral ranges and biogeographical processes in early hominins. J Hum Evol 2024; 191:103547. [PMID: 38781711 DOI: 10.1016/j.jhevol.2024.103547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Historical biogeography provides crucial insights into understanding the evolutionary history of hominins. We applied maximum-likelihood and biogeographical stochastic mapping to infer the ancestral ranges of hominins and estimate the frequency of biogeographical events. These events were inferred using two time-calibrated phylogenetic trees that differ in the position of Australopithecus sediba. Results suggest that regardless of which phylogeny was selected, Northcentral Africa was the preferred ancestral region for the ancestor of the Homo-Pan clade, as well as the ancestor of Sahelanthropus and later hominins. The northern and middle part of eastern Africa was the preferred ancestral region for several clades originating at subsequent deep nodes of the trees (∼5-4 Ma). The choice of tree topology had one important effect on results: whether hominin ancestors appearing after ∼4 Ma were widespread or endemic. These different patterns highlight the biogeographic significance of the phylogenetic relationships of A. sediba. Overall, the results showed that dispersal, local extinction, and sympatry played vital roles in creating the hominin distribution, whereas vicariance and jump dispersal were not as common. The results suggested symmetry in the directionality of dispersals. Distance probably influenced how rapidly taxa colonized a new region, and dispersals often followed the closest path. These findings are potentially impacted by the imperfection of the fossil record, suggesting that the results should be interpreted cautiously.
Collapse
Affiliation(s)
- Yeganeh Sekhavati
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - David Strait
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA; Palaeo-Research Institute, University of Johannesburg, Cnr Kingsway and University Road Auckland Park, PO Box 524, Auckland Park 2006, South Africa
| |
Collapse
|
4
|
Schuh A, Heuzé Y, Gunz P, Berthaume MA, Shaw CN, Hublin JJ, Freidline S. A shared pattern of midfacial bone modelling in hominids suggests deep evolutionary roots for human facial morphogenesis. Proc Biol Sci 2024; 291:20232738. [PMID: 38628118 PMCID: PMC11022013 DOI: 10.1098/rspb.2023.2738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Midfacial morphology varies between hominoids, in particular between great apes and humans for which the face is small and retracted. The underlying developmental processes for these morphological differences are still largely unknown. Here, we investigate the cellular mechanism of maxillary development (bone modelling, BM), and how potential changes in this process may have shaped facial evolution. We analysed cross-sectional developmental series of gibbons, orangutans, gorillas, chimpanzees and present-day humans (n = 183). Individuals were organized into five age groups according to their dental development. To visualize each species's BM pattern and corresponding morphology during ontogeny, maps based on microscopic data were mapped onto species-specific age group average shapes obtained using geometric morphometrics. The amount of bone resorption was quantified and compared between species. Great apes share a highly similar BM pattern, whereas gibbons have a distinctive resorption pattern. This suggests a change in cellular activity on the hominid branch. Humans possess most of the great ape pattern, but bone resorption is high in the canine area from birth on, suggesting a key role of canine reduction in facial evolution. We also observed that humans have high levels of bone resorption during childhood, a feature not shared with other apes.
Collapse
Affiliation(s)
- Alexandra Schuh
- CNRS, Ministère de la Culture, PACEA, UMR 5199, Université de Bordeaux, Bât. B2, Allée Geoffroy Saint-Hilaire, Pessac 33615, France
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Yann Heuzé
- CNRS, Ministère de la Culture, PACEA, UMR 5199, Université de Bordeaux, Bât. B2, Allée Geoffroy Saint-Hilaire, Pessac 33615, France
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Michael A. Berthaume
- Department of Engineering, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - Colin N. Shaw
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
- Chaire de Paléoanthropologie, Collège de France, Paris, France
| | - Sarah Freidline
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
- Department of Anthropology, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
5
|
Martin JM, Leece AB, Baker SE, Herries AIR, Strait DS. A lineage perspective on hominin taxonomy and evolution. Evol Anthropol 2024; 33:e22018. [PMID: 38217397 DOI: 10.1002/evan.22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
An uncritical reliance on the phylogenetic species concept has led paleoanthropologists to become increasingly typological in their delimitation of new species in the hominin fossil record. As a practical matter, this approach identifies species as diagnosably distinct groups of fossils that share a unique suite of morphological characters but, ontologically, a species is a metapopulation lineage segment that extends from initial divergence to eventual extinction or subsequent speciation. Working from first principles of species concept theory, it is clear that a reliance on morphological diagnosabilty will systematically overestimate species diversity in the fossil record; because morphology can evolve within a lineage segment, it follows that early and late populations of the same species can be diagnosably distinct from each other. We suggest that a combination of morphology and chronology provides a more robust test of the single-species null hypothesis than morphology alone.
Collapse
Affiliation(s)
- Jesse M Martin
- Palaeoanthropology Lab, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia
| | - A B Leece
- Palaeoanthropology Lab, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia
- Geoarchaeology and Archaeometry Research Group, Southern Cross Geoscience, Southern Cross University, Lismore, New South Wales, Australia
| | - Stephanie E Baker
- Palaeo-Research Institute, University of Johannesburg, Gauteng, South Africa
| | - Andy I R Herries
- Palaeoanthropology Lab, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia
- Palaeo-Research Institute, University of Johannesburg, Gauteng, South Africa
| | - David S Strait
- Palaeo-Research Institute, University of Johannesburg, Gauteng, South Africa
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Aramendi J, Mabulla A, Baquedano E, Domínguez-Rodrigo M. Biomechanical and taxonomic diversity in the Early Pleistocene in East Africa: Structural analysis of a recently discovered femur shaft from Olduvai Gorge (bed I). J Hum Evol 2024; 186:103469. [PMID: 38071888 DOI: 10.1016/j.jhevol.2023.103469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Recent Plio-Pleistocene hominin findings have revealed the complexity of human evolutionary history and the difficulties involved in its interpretation. Moreover, the study of hominin long bone remains is particularly problematic, since it commonly depends on the analysis of fragmentary skeletal elements that in many cases are merely represented by small diaphyseal portions and appear in an isolated fashion in the fossil record. Nevertheless, the study of the postcranial skeleton is particularly important to ascertain locomotor patterns. Here we report on the discovery of a robust hominin femoral fragment (OH 84) at the site of Amin Mturi Korongo dated to 1.84 Ma (Olduvai Bed I). External anatomy and internal bone structure of OH 84 were analyzed and compared with previously published data for modern humans and chimpanzees, as well as for Australopithecus, Paranthropus and Homo specimens ranging from the Late Pliocene to Late Pleistocene. Biomechanical analyses based on transverse cross-sections and the comparison of OH 84 with another robust Olduvai specimen (OH 80) suggest that OH 84 might be tentatively allocated to Paranthropus boisei. More importantly, the identification of a unique combination of traits in OH 84 could indicate both terrestrial bipedalism and an arboreal component in the locomotor repertoire of this individual. If interpreted correctly, OH 84 could thus add to the already mounting evidence of substantial locomotor diversity among Early Pleistocene hominins. Likewise, our results also highlight the difficulties in accurately interpreting the link between form and function in the human fossil record based on fragmentary remains, and ultimately in distinguishing between coeval hominin groups due to the heterogeneous pattern of inter- and intraspecific morphological variability detected among fossil femora.
Collapse
Affiliation(s)
- Julia Aramendi
- McDonald Institute for Archaeological Research, University of Cambridge, CB2 1TN, UK.
| | - Audax Mabulla
- Department of Archaeology and Heritage Studies, University of Dar Es Salaam, P.O. Box 35050, Dar Es Salaam, Tanzania
| | - Enrique Baquedano
- Archaeological and Paleontological Museum of the Community of Madrid, Plaza de Las Bernardas s/n, 28801, Alcalá de Henares, Spain; Institute of Evolution in Africa (IDEA), University of Alcalá and Archaeological and Paleontological Museum of the Community of Madrid, C/Covarrubias 36, 28010, Madrid, Spain
| | - Manuel Domínguez-Rodrigo
- Institute of Evolution in Africa (IDEA), University of Alcalá and Archaeological and Paleontological Museum of the Community of Madrid, C/Covarrubias 36, 28010, Madrid, Spain; University of Alcalá, Department of History and Philosophy, Area of Prehistory, C/Colegios 2, 28801, Alcalá de Henares, Spain; Rice University, Department of Anthropology, 6100 Main St., Houston, TX, 77005 1827, USA
| |
Collapse
|
7
|
Buck LT, Menéndez LP, De Groote I, Hassett BR, Matsumura H, Stock JT. Factors influencing cranial variation between prehistoric Japanese forager populations. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2023; 16:3. [PMID: 38098511 PMCID: PMC10716076 DOI: 10.1007/s12520-023-01901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Understanding the factors shaping human crania has long been a goal of biological anthropology, and climate, diet, and population history are three of the most well-established influences. The effects of these factors are, however, rarely compared within a single, variable population, limiting interpretations of their relative contribution to craniofacial form. Jomon prehistoric foragers inhabited Japan throughout its climatic and ecological range and developed correspondingly varied modes of subsistence. We have previously demonstrated that a large sample of Jomon crania showed no clear climatic pattern; here, we examine variation in Jomon crania in more detail to determine if dietary factors and/or population history influence human intrapopulation variation at this scale. Based on well-established archaeological differences, we divide the Jomon into dietary groups and use geometric morphometric methods to analyse relationships between cranial shape, diet, and population history. We find evidence for diet-related influences on the shape of the neurocranium, particularly in the temporalis region. These shape differences may be interpreted in the context of regional variation in the biomechanical requirements of different diets. More experimental biomechanical and nutritional evidence is needed, however, to move suggested links between dietary content and cranial shape from plausible to well-supported. In contrast with the global scale of human variation, where neutral processes are the strongest influence on cranial shape, we find no pattern of population history amongst individuals from these Jomon sites. The determinants of cranial morphology are complex and the effect of diet is likely mediated by factors including sex, social factors, and chronology. Our results underline the subtlety of the effects of dietary variation beyond the forager/farmer dichotomy on cranial morphology and contribute to our understanding of the complexity of selective pressures shaping human phenotypes on different geographic scales. Supplementary Information The online version contains supplementary material available at 10.1007/s12520-023-01901-6.
Collapse
Affiliation(s)
- L. T. Buck
- Research Centre for Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF UK
| | - L. P. Menéndez
- Department of Anthropology of the Americas, University of Bonn, Oxfordstrasse 15, 53111 Bonn, Germany
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - I. De Groote
- Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, 9000 Ghent, Belgium
| | - B. R. Hassett
- University of Central Lancashire, Fylde Rd, Preston, PR1 2HE Lancashire UK
- Natural History Museum London, Cromwell Road, London, SW7 5BD UK
| | - H. Matsumura
- School of Health Sciences, Sapporo Medical University, S1W17, Sapporo, 0608556 Japan
| | - J. T. Stock
- Department of Anthropology, Western University, London, ON N6A 3K7 Canada
| |
Collapse
|
8
|
Post NW, Gilbert CC, Pugh KD, Mongle CS. Implications of outgroup selection in the phylogenetic inference of hominoids and fossil hominins. J Hum Evol 2023; 184:103437. [PMID: 37783198 DOI: 10.1016/j.jhevol.2023.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023]
Abstract
Understanding the phylogenetic relationships among hominins and other hominoid species is critical to the study of human origins. However, phylogenetic inferences are dependent on both the character data and taxon sampling used. Previous studies of hominin phylogenetics have used Papio and Colobus as outgroups in their analyses; however, these extant monkeys possess many derived traits that may confound the polarities of morphological changes among living apes and hominins. Here, we consider Victoriapithecus and Ekembo as more suitable outgroups. Both Victoriapithecus and Ekembo are anatomically well known and are widely accepted as morphologically primitive stem cercopithecoid and hominoid taxa, respectively, making them more appropriate for inferring polarity for later-occurring hominoid- and hominin-focused analyses. Craniodental characters for both taxa were scored and then added to a previously published matrix of fossil hominin and extant hominoid taxa, replacing outgroups Papio and Colobus over a series of iterative analyses using both parsimony and Bayesian inference methods. Neither the addition nor replacement of outgroup taxa changed tree topology in any analysis. Importantly, however, bootstrap support values and posterior probabilities for nodes supporting their relationships generally increased compared to previous analyses. These increases were the highest at extant hominoid and basal hominin nodes, recovering the molecular ape phylogeny with considerably higher support and strengthening the inferred relationships among basal hominins. Interestingly, however, the inclusion of both extant and fossil outgroups reduced support for the crown hominid node. Our findings suggest that, in addition to improving character polarity estimation, including fossil outgroups generally strengthens confidence in relationships among extant hominoid and basal hominins.
Collapse
Affiliation(s)
- Nicholas W Post
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; New York Consortium in Evolutionary Primatology (NYCEP), New York, NY 10024, USA
| | - Christopher C Gilbert
- New York Consortium in Evolutionary Primatology (NYCEP), New York, NY 10024, USA; Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065-5024, USA; PhD Program in Anthropology, Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016-4309, USA; Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
| | - Kelsey D Pugh
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; New York Consortium in Evolutionary Primatology (NYCEP), New York, NY 10024, USA; Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Carrie S Mongle
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| |
Collapse
|
9
|
Gautney JR. A new approach to exploratory data analysis in hominin phylogenetic reconstruction. J Hum Evol 2023; 182:103412. [PMID: 37499423 DOI: 10.1016/j.jhevol.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
The phylogenetic relationships between fossil hominin taxa have been a contentious topic for decades. Recent discoveries of new taxa, rather than resolving the issue, have only further confused it. Compounding this problem are the limitations of some of the tools frequently used by paleoanthropologists to analyze these relationships. Most commonly, phylogenetic questions are investigated using analytical methods such as maximum parsimony and Bayesian analysis. While these are useful analytical tools, these tree-building methods can have limitations when investigating taxa that may have complex evolutionary histories. Exploratory data analysis can provide information about patterns in a dataset that are obscured by tree-based methods. These patterns include phylogenetic signal conflict, which is not depicted in tree-based methods. Signal conflict can have a number of sources, including methodological issues with character choice, taxonomic issues, homoplasy, and gene flow between taxa. In this study, an exploratory data analysis of fossil hominin morphological data is conducted using the tree-based analytical method neighbor-joining and the network-based analytical method neighbor-net with the goal of visualizing phylogenetic signal conflict within a hominin morphological data set. The data set is divided into cranial regions, and each cranial region is analyzed individually to investigate which regions of the skull contain the highest levels of signal conflict. Results of this analysis show that conflicting phylogenetic signals are present in the hominin fossil record during the relatively speciose period between 3 and 1 Ma, and they also indicate that levels of signal conflict vary by cranial region. Possible sources of these conflicting signals are then explored. Exploratory data analyses such as this can be a useful tool in generating phylogenetic hypotheses and in refining character choice. This study also highlights the value network-based approaches can bring to the hominin phylogenetic analysis toolkit.
Collapse
Affiliation(s)
- Joanna R Gautney
- Department of Sociology and Anthropology, Weber State University, 1299 Edvalson St., Ogden, UT, USA.
| |
Collapse
|
10
|
Antón SC, Middleton ER. Making meaning from fragmentary fossils: Early Homo in the Early to early Middle Pleistocene. J Hum Evol 2023; 179:103307. [PMID: 37030994 DOI: 10.1016/j.jhevol.2022.103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 04/10/2023]
Abstract
In celebration of the 50th anniversary of the Journal of Human Evolution, we re-evaluate the fossil record for early Homo (principally Homo erectus, Homo habilis, and Homo rudolfensis) from early diversification and dispersal in the Early Pleistocene to the ultimate demise of H. erectus in the early Middle Pleistocene. The mid-1990s marked an important historical turning point in our understanding of early Homo with the redating of key H. erectus localities, the discovery of small H. erectus in Asia, and the recovery of an even earlier presence of early Homo in Africa. As such, we compare our understanding of early Homo before and after this time and discuss how the order of fossil discovery and a focus on anchor specimens has shaped, and in many ways biased, our interpretations of early Homo species and the fossils allocated to them. Fragmentary specimens may counter conventional wisdom but are often overlooked in broad narratives. We recognize at least three different cranial and two or three pelvic morphotypes of early Homo. Just one postcranial morph aligns with any certainty to a cranial species, highlighting the importance of explicitly identifying how we link specimens together and to species; we offer two ways of visualizing these connections. Chronologically and morphologically H. erectus is a member of early Homo, not a temporally more recent species necessarily evolved from either H. habilis or H. rudolfensis. Nonetheless, an ancestral-descendant notion of their evolution influences expectations around the anatomy of missing elements, especially the foot. Weak support for long-held notions of postcranial modernity in H. erectus raises the possibility of alternative drivers of dispersal. New observations suggest that the dearth of faces in later H. erectus may mask taxonomic diversity in Asia and suggest various later mid-Pleistocene populations could derive from either Asia or Africa. Future advances will rest on the development of nuanced ways to affiliate fossils, greater transparency of implicit assumptions, and attention to detailed life history information for comparative collections; all critical pursuits for future research given the great potential they have to enrich our evolutionary reconstructions for the next fifty years and beyond.
Collapse
Affiliation(s)
- Susan C Antón
- Center for the Study of Human Origins, Department of Anthropology, New York University, NY, NY 10003, USA.
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, WI 53211, USA
| |
Collapse
|
11
|
Pestana C, de Sousa AA, Todorov OS, Beaudet A, Benoit J. Evolutionary history of hominin brain size and phylogenetic comparative methods. PROGRESS IN BRAIN RESEARCH 2023; 275:217-232. [PMID: 36841569 DOI: 10.1016/bs.pbr.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
An absolutely and relatively large brain has traditionally been viewed as a distinctive characteristic of the Homo genus, with anatomically modern humans presented at the apex of a long line of progressive increases in encephalization. Many studies continue to focus attention on increasing brain size in the Homo genus, while excluding measures of absolute and relative brain size of more geologically recent, smaller brained, hominins such as Homo floresiensis, and Homo naledi and smaller brained Homo erectus specimens. This review discusses the benefits of using phylogenetic comparative methods to trace the diverse changes in hominin brain evolution and the drawbacks of not doing so.
Collapse
Affiliation(s)
- Christopher Pestana
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julien Benoit
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Reed DN, Raney E, Johnson J, Jackson H, Virabalin N, Mbonu N. Hominin nomenclature and the importance of information systems for managing complexity in paleoanthropology. J Hum Evol 2023; 175:103308. [PMID: 36649665 DOI: 10.1016/j.jhevol.2022.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/17/2023]
Affiliation(s)
- Denné N Reed
- Department of Anthropology, University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA.
| | - Emily Raney
- Department of Anthropology, University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA
| | - Jyhreh Johnson
- Department of Anthropology, University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA
| | - Harper Jackson
- University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA
| | - Nida Virabalin
- University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA
| | - Nina Mbonu
- University of Texas at Austin, 2100 Speedway, Stop C3200, Austin, TX, 78712, USA
| |
Collapse
|
13
|
Mongle CS, Strait DS, Grine FE. An updated analysis of hominin phylogeny with an emphasis on re-evaluating the phylogenetic relationships of Australopithecus sediba. J Hum Evol 2023; 175:103311. [PMID: 36706599 DOI: 10.1016/j.jhevol.2022.103311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023]
Abstract
The discovery and description of Australopithecus sediba has reignited the debate over the evolutionary history of the australopiths and the genus Homo. It has been suggested that A. sediba may be an ancestor of Homo because it possesses a mosaic of derived Homo-like and primitive australopith-like traits. However, an alternative hypothesis proposes that the majority of the purported Homo-like craniodental characters can be attributed to the juvenile status of the type specimen, MH1. We conducted an independent character assessment of the craniodental morphology of A. sediba, with particular emphasis on evaluating whether the ontogenetic status of MH1 may have affected its purported Homo-like characteristics. In doing so, we have also expanded fossil hypodigms to incorporate the new Australopithecus anamensis cranium from Woranso-Mille (MRD-VP-1/1), as well as recently described Paranthropus robustus cranial remains from Drimolen (DNH 7, DNH 155). Morphological character data were analyzed using both standard parsimony and Bayesian techniques. In addition, we conducted a series of Bayesian analyses constrained to evaluate the hypothesis that Australopithecus africanus and A. sediba are sister taxa. Based on the results of the parsimony and Bayesian analyses, we could not reject the hypothesis that A. sediba shares its closest phylogenetic affinities with the genus Homo. Therefore, based on currently available craniodental evidence, we conclude that A. sediba is plausibly the terminal end of a lineage that shared a common ancestor with the earliest representatives of Homo. We caution, however, that the discovery of new A. sediba fossils preserving adult cranial morphology or the inclusion of postcranial characters may ultimately necessitate a re-evaluation of this hypothesis.
Collapse
Affiliation(s)
- Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| | - David S Strait
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130, USA; Palaeo-Research Institute, University of Johannesburg, Cottesloe, Johannesburg, 2092, South Africa
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA
| |
Collapse
|
14
|
Grine FE, Mongle CS, Fleagle JG, Hammond AS. The taxonomic attribution of African hominin postcrania from the Miocene through the Pleistocene: Associations and assumptions. J Hum Evol 2022; 173:103255. [PMID: 36375243 DOI: 10.1016/j.jhevol.2022.103255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Postcranial bones may provide valuable information about fossil taxa relating to their locomotor habits, manipulative abilities and body sizes. Distinctive features of the postcranial skeleton are sometimes noted in species diagnoses. Although numerous isolated postcranial fossils have become accepted by many workers as belonging to a particular species, it is worthwhile revisiting the evidence for each attribution before including them in comparative samples in relation to the descriptions of new fossils, functional analyses in relation to particular taxa, or in evolutionary contexts. Although some workers eschew the taxonomic attribution of postcranial fossils as being less important (or interesting) than interpreting their functional morphology, it is impossible to consider the evolution of functional anatomy in a taxonomic and phylogenetic vacuum. There are 21 widely recognized hominin taxa that have been described from sites in Africa dated from the Late Miocene to the Middle Pleistocene; postcranial elements have been attributed to 17 of these. The bones that have been thus assigned range from many parts of a skeleton to isolated elements. However, the extent to which postcranial material can be reliably attributed to a specific taxon varies considerably from site to site and species to species, and is often the subject of considerable debate. Here, we review the postcranial remains attributed to African hominin taxa from the Late Miocene to the Middle and Late Pleistocene and place these assignations into categories of reliability. The catalog of attributions presented here may serve as a guide for making taxonomic decisions in the future.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - John G Fleagle
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; New York Consortium of Evolutionary Primatology (NYCEP), New York, NY 10024, USA
| |
Collapse
|
15
|
Comparative description and taxonomic affinity of 3.7-million-year-old hominin mandibles from Woranso-Mille (Ethiopia). J Hum Evol 2022; 173:103265. [PMID: 36306541 DOI: 10.1016/j.jhevol.2022.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
Fossil discoveries of early Australopithecus species from Woranso-Mille have played a significant role in improving our understanding of mid-Pliocene hominin evolution and diversity. Here, we describe two mandibles with dentitions, recovered from sediments immediately above a tuff radiometrically dated to 3.76 ± 0.02 Ma, and assess their taxonomic affinity. The two mandibles (MSD-VP-5/16 and MSD-VP-5/50) show morphological similarities with both Australopithecus anamensis and Australopithecus afarensis. Some of the unique features that distinguish Au. anamensis from Au. afarensis are present in the mandibles, which also share a few derived features with Au. afarensis. Their retention of more Kanapoi Au. anamensis-like traits, compared to the fewer derived features they share with Au. afarensis, and the presence of Au. anamensis at Woranso-Mille in 3.8-million-year-old deposits, lends support to their assignment to Au. anamensis. However, it is equally arguable that the few derived dentognathic features they share with Au. afarensis could be taxonomically more significant, making it difficult to conclusively assign these specimens to either species. Regardless of which species they are assigned to, the mosaic nature of the dentognathic morphology and geological age of the two mandibles lends further support to the hypothesized ancestor-descendant relationship between Au. anamensis and Au. afarensis. However, there is now limited fossil evidence indicating that these two species may have overlapped in time. Hence, the last appearance of Au. anamensis and first appearance of Au. afarensis are currently unknown. Recovery of Australopithecus fossils from 4.1 to 3.8 Ma is critical to further address the timing of these events.
Collapse
|
16
|
Mongle CS, Pugh KD, Strait DS, Grine FE. Modelling hominin evolution requires accurate hominin data. Nat Ecol Evol 2022; 6:1090-1091. [PMID: 35788710 DOI: 10.1038/s41559-022-01791-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/17/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Carrie S Mongle
- Division of Anthropology, American Museum of Natural History, New York, USA. .,Department of Anthropology, Stony Brook University, New York, USA. .,Turkana Basin Institute, Stony Brook University, New York, USA.
| | - Kelsey D Pugh
- Division of Anthropology, American Museum of Natural History, New York, USA.,New York Consortium in Evolutionary Primatology, New York, USA
| | - David S Strait
- Department of Anthropology, Washington University in St Louis, St Louis, USA
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, New York, USA.,Department of Anatomical Sciences, Stony Brook University, New York, USA
| |
Collapse
|
17
|
Ledogar JA, Senck S, Villmoare BA, Smith AL, Weber GW, Richmond BG, Dechow PC, Ross CF, Grosse IR, Wright BW, Wang Q, Byron C, Benazzi S, Carlson KJ, Carlson KB, Pryor McIntosh LC, van Casteren A, Strait DS. Mechanical compensation in the evolution of the early hominin feeding apparatus. Proc Biol Sci 2022; 289:20220711. [PMID: 35703052 DOI: 10.1098/rspb.2022.0711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Australopiths, a group of hominins from the Plio-Pleistocene of Africa, are characterized by derived traits in their crania hypothesized to strengthen the facial skeleton against feeding loads and increase the efficiency of bite force production. The crania of robust australopiths are further thought to be stronger and more efficient than those of gracile australopiths. Results of prior mechanical analyses have been broadly consistent with this hypothesis, but here we show that the predictions of the hypothesis with respect to mechanical strength are not met: some gracile australopith crania are as strong as that of a robust australopith, and the strength of gracile australopith crania overlaps substantially with that of chimpanzee crania. We hypothesize that the evolution of cranial traits that increased the efficiency of bite force production in australopiths may have simultaneously weakened the face, leading to the compensatory evolution of additional traits that reinforced the facial skeleton. The evolution of facial form in early hominins can therefore be thought of as an interplay between the need to increase the efficiency of bite force production and the need to maintain the structural integrity of the face.
Collapse
Affiliation(s)
- Justin A Ledogar
- Department of Health Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | - Sascha Senck
- Research Group Computed Tomography, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Brian A Villmoare
- Department of Anthropology, University of Nevada, Las Vegas, NV 89154, USA
| | - Amanda L Smith
- Department of Anatomy, Pacific Northwest University of Health Sciences, Yakima, WA 98901, USA
| | - Gerhard W Weber
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria.,Human Evolution and Archaeological Sciences (HEAS), University of Vienna, 1030 Vienna, Austria
| | | | - Paul C Dechow
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Ian R Grosse
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Barth W Wright
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66106, USA
| | - Qian Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Craig Byron
- Department of Biology, Mercer University, Macon, GA 31207, USA
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna 48121, Italy
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Keely B Carlson
- Department of Anthropology, Texas A&M University, College Station, TX 77843, USA
| | - Leslie C Pryor McIntosh
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine South Georgia, Moultrie, GA 31768, USA
| | - Adam van Casteren
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - David S Strait
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63103, USA.,Palaeo-Research Institute, University of Johannesburg, Auckland Park, Johannesburg, Gauteng, South Africa
| |
Collapse
|
18
|
Pugh KD. Phylogenetic analysis of Middle-Late Miocene apes. J Hum Evol 2022; 165:103140. [DOI: 10.1016/j.jhevol.2021.103140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 01/18/2023]
|
19
|
Caparros M, Prat S. Protocol combining tree-based Maximum Parsimony and web-like Phylogenetic Networks analyses to investigate reticulate human evolution. STAR Protoc 2022; 3:101191. [PMID: 35308130 PMCID: PMC8931433 DOI: 10.1016/j.xpro.2022.101191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our protocol combines Maximum Parsimony and Phylogenetic Networks approaches to understand the phylogenetic relationships and evolutionary processes of hominin species that might have shared inheritance from multiple ancestors. By addressing the questions of pattern and process in human phylogeny, the protocol can be used to clarify the taxonomic definition(s) of diverse hominin groups and ascertain whether or not the mode of evolution of genus Homo is reticulate. Using high quality and informative phenotypic data sets is necessary to yield meaningful results. For complete details on the use and execution of this protocol, please refer to Caparros and Prat (2021).
Collapse
Affiliation(s)
- Miguel Caparros
- UMR 7194 "Histoire naturelle de l'Homme préhistorique" CNRS-MNHN-UPVD, Alliance Sorbonne Université, Musée de l’Homme, Palais de Chaillot, 17 place du Trocadéro, 75116 Paris, France
| | - Sandrine Prat
- UMR 7194 "Histoire naturelle de l'Homme préhistorique" CNRS-MNHN-UPVD, Alliance Sorbonne Université, Musée de l’Homme, Palais de Chaillot, 17 place du Trocadéro, 75116 Paris, France
| |
Collapse
|
20
|
Calhoun GV, Guatelli-Steinberg D, Lagan EM, McGraw WS. Dental macrowear, diet, and anterior tooth use in Colobus polykomos and Piliocolobus badius. J Hum Evol 2022; 163:103123. [PMID: 34999336 DOI: 10.1016/j.jhevol.2021.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
Two similarly-sized colobine species living sympatrically in the Ivory Coast's Taï Forest that differ in both diet and oral processing behavior provide an opportunity to explore the strength of associations between feeding behavior and dental wear patterns. Here we test the hypothesis that vigorous processing of tough, hard Pentaclethra macrophylla pods by Colobus polykomos manifests in greater anterior tooth wear relative to that observed in Piliocolobus badius, which does not exploit this resource. We assessed levels of anterior tooth wear in a sample of 160 upper incisors and 131 lower incisors from 18 adult Colobus polykomos and 62 adult Piliocolobus badius naturally deceased individuals from Taï National Park. We operationalized tooth wear by dividing the area of exposed dentin by total occlusal crown area. To assess relative degrees of incisor wear, we regressed incisor wear against molar wear (sample = 105 upper molars, 135 lower molars) for the pooled Colobus polykomos and Piliocolobus badius wear data and compared the number of individuals from each species that fell above and below the pooled regression curve for each model using Chi-square tests of independence and odds ratios. Under our hypothesis, we would expect more Colobus polykomos points above the pooled regression curve than Piliocolobus badius, indicating higher incisor wear relative to molar wear in Colobus polykomos. Nine of sixteen interspecific comparisons demonstrated this predicted pattern; however, none of the Chi-square tests or odds ratios were significant, indicating no difference between Colobus polykomos and Piliocolobusbadius incisor wear relative to molar wear. The absence of significant differences in incisor wear relative to molar wear highlights the challenge of identifying idiosyncratic feeding behavior in fossil taxa and the necessity for continued exploration of the relationship between diet and macrowear.
Collapse
Affiliation(s)
- Grace V Calhoun
- Department of Anthropology, University of Florida, Gainesville, FL 32611-7305, USA.
| | | | - Emma M Lagan
- Department of Anthropology, The Ohio State University, Columbus, OH, 43210-1106, USA
| | - W Scott McGraw
- Department of Anthropology, The Ohio State University, Columbus, OH, 43210-1106, USA
| |
Collapse
|
21
|
Haile-Selassie Y. From Trees to the Ground: The Significance of Australopithecus anamensis in Human Evolution. JOURNAL OF ANTHROPOLOGICAL RESEARCH 2021. [DOI: 10.1086/716743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Massive cranium from Harbin in northeastern China establishes a new Middle Pleistocene human lineage. ACTA ACUST UNITED AC 2021; 2:100130. [PMID: 34557770 PMCID: PMC8454562 DOI: 10.1016/j.xinn.2021.100130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
It has recently become clear that several human lineages coexisted with Homo sapiens during the late Middle and Late Pleistocene. Here, we report an archaic human fossil that throws new light on debates concerning the diversification of the Homo genus and the origin of H. sapiens. The fossil was recovered in Harbin city in northeastern China, with a minimum uranium-series age of 146 ka. This cranium is one of the best preserved Middle Pleistocene human fossils. Its massive size, with a large cranial capacity (∼1,420 mL) falling in the range of modern humans, is combined with a mosaic of primitive and derived characters. It differs from all the other named Homo species by presenting a combination of features, such as long and low cranial vault, a wide and low face, large and almost square orbits, gently curved but massively developed supraorbital torus, flat and low cheekbones with a shallow canine fossa, and a shallow palate with thick alveolar bone supporting very large molars. The excellent preservation of the Harbin cranium advances our understanding of several less-complete late Middle Pleistocene fossils from China, which have been interpreted as local evolutionary intermediates between the earlier species Homo erectus and later H. sapiens. Phylogenetic analyses based on parsimony criteria and Bayesian tip-dating suggest that the Harbin cranium and some other Middle Pleistocene human fossils from China, such as those from Dali and Xiahe, form a third East Asian lineage, which is a part of the sister group of the H. sapiens lineage. Our analyses of such morphologically distinctive archaic human lineages from Asia, Europe, and Africa suggest that the diversification of the Homo genus may have had a much deeper timescale than previously presumed. Sympatric isolation of small populations combined with stochastic long-distance dispersals is the best fitting biogeographical model for interpreting the evolution of the Homo genus. More than 100,000 years ago, several human species coexisted in Asia, Europe, and Africa A completely preserved fossil human cranium discovered in the Harbin area provides critical evidence for understanding the evolution of humans and the origin of our species The Harbin cranium has a large cranial capacity (∼1,420 mL) falling in the range of modern humans, but is combined with a mosaic of primitive and derived characters Our comprehensive phylogenetic analyses suggest that the Harbin cranium represents a new sister lineage for Homo sapiens A multi-directional “shuttle dispersal model” is more likely to explain the complex phylogenetic connections among African and Eurasian Homo species/populations
Collapse
|
23
|
Harper CM, Ruff CB, Sylvester AD. Calcaneal shape variation in humans, nonhuman primates, and early hominins. J Hum Evol 2021; 159:103050. [PMID: 34438297 DOI: 10.1016/j.jhevol.2021.103050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/08/2023]
Abstract
The foot has played a prominent role in evaluating early hominin locomotion. The calcaneus, in particular, plays an important role in weight-bearing. Although the calcanei of early hominins have been previously scrutinized, a three-dimensional analysis of the entire calcaneal shape has not been conducted. Here, we investigate the relationship between external calcaneal shape and locomotion in modern Homo sapiens (n = 130), Gorilla (n = 86), Pan (n = 112), Pongo (n = 31), Papio (n = 28), and hylobatids (Hylobates, Symphalangus; n = 32). We use these results to place the calcanei attributed to Australopithecus sediba, A. africanus, A. afarensis, H. naledi, and Homo habilis/Paranthropus boisei into a locomotor context. Calcanei were scanned using either surface scanning or micro-CT and their external shape analyzed using a three-dimensional geometric morphometric sliding semilandmark analysis. Blomberg's K statistic was used to estimate phylogenetic signal in the shape data. Shape variation was summarized using a principal components analysis. Procrustes distances between all taxa as well as distances between each fossil and the average of each taxon were calculated. Blomberg's K statistic was small (K = 0.1651), indicating weak phylogenetic effects, suggesting variation is driven by factors other than phylogeny (e.g., locomotion or body size). Modern humans have a large calcaneus relative to body size and display a uniquely convex cuboid facet, facilitating a rigid midfoot for bipedalism. More arboreal great apes display relatively deeper cuboid facet pivot regions for increased midfoot mobility. Australopithecus afarensis demonstrates the most human-like calcaneus, consistent with obligate bipedalism. Homo naledi is primarily modern human-like, but with some intermediate traits, suggesting a different form of bipedalism than modern humans. Australopithecus africanus, A. sediba, and H. habilis/P. boisei calcanei all possess unique combinations of human and nonhuman ape-like morphologies, suggesting a combination of bipedal and arboreal behaviors.
Collapse
Affiliation(s)
- Christine M Harper
- The Johns Hopkins University School of Medicine, Center for Functional Anatomy and Evolution, 1830 East Monument Street, Room 302, Baltimore, MD 21205, United States; Cooper Medical School of Rowan University, Department of Biomedical Sciences, 401 S Broadway, Room 453, Camden, NJ 08103, United States.
| | - Christopher B Ruff
- The Johns Hopkins University School of Medicine, Center for Functional Anatomy and Evolution, 1830 East Monument Street, Room 302, Baltimore, MD 21205, United States
| | - Adam D Sylvester
- The Johns Hopkins University School of Medicine, Center for Functional Anatomy and Evolution, 1830 East Monument Street, Room 302, Baltimore, MD 21205, United States
| |
Collapse
|
24
|
Irish JD, Grabowski M. Relative tooth size, Bayesian inference, and Homo naledi. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:262-282. [PMID: 34190335 DOI: 10.1002/ajpa.24353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 06/08/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Size-corrected tooth crown measurements were used to estimate phenetic affinities among Homo naledi (~335-236 ka) and 11 other Plio-Pleistocene and recent species. To assess further their efficacy, and identify dental evolutionary trends, the data were then quantitatively coded for phylogenetic analyses. Results from both methods contribute additional characterization of H. naledi relative to other hominins. MATERIALS AND METHODS After division by their geometric mean, scaled mesiodistal and buccolingual dimensions were used in tooth size apportionment analysis to compare H. naledi with Australopithecus africanus, A. afarensis, Paranthropus robustus, P. boisei, H. habilis, H. ergaster, H. erectus, H. heidelbergensis, H. neanderthalensis, H. sapiens, and Pan troglodytes. These data produce equivalently scaled samples unaffected by interspecific size differences. The data were then gap-weighted for Bayesian inference. RESULTS Congruence in interspecific relationships is evident between methods, and with many inferred from earlier systematic studies. However, the present results place H. naledi as a sister taxon to H. habilis, based on a symplesiomorphic pattern of relative tooth size. In the preferred Bayesian phylogram, H. naledi is nested within a clade comprising all Homo species, but it shares some characteristics with australopiths and, particularly, early Homo. DISCUSSION Phylogenetic analyses of relative tooth size yield information about evolutionary dental trends not previously reported in H. naledi and the other hominins. Moreover, with an appropriate model these data recovered plausible evolutionary relationships. Together, the findings support recent study suggesting H. naledi originated long before the geological date of the Dinaledi Chamber, from which the specimens under study were recovered.
Collapse
Affiliation(s)
- Joel D Irish
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Caparros M, Prat S. A Phylogenetic Networks perspective on reticulate human evolution. iScience 2021; 24:102359. [PMID: 33898948 PMCID: PMC8054162 DOI: 10.1016/j.isci.2021.102359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/04/2020] [Accepted: 03/23/2021] [Indexed: 01/02/2023] Open
Abstract
We present a methodological phylogenetic reconstruction approach combining Maximum Parsimony and Phylogenetic Networks methods for the study of human evolution applied to phenotypic craniodental characters of 22 hominin species. The approach consists in selecting and validating a tree-like most parsimonious scenario out of several parsimony runs based on various numerical constraints. An intermediate step from tree to network methods is implemented by running an analysis with a reduced apomorphous character dataset that generates multiple parsimonious trees. These most parsimonious trees are then used as input for a Phylogenetic Networks analysis that results in consensus and reticulate networks. We show here that the phylogenetic tree-like definition of the genus Homo is a relative concept linked to craniodental characters that come in support of hypothetical Last Common Ancestors of the most parsimonious scenario and infer that the Homo reticulate network concords with recent findings in paleogenomic research regarding its mode of evolution.
Collapse
Affiliation(s)
- Miguel Caparros
- UMR 7194 "Histoire naturelle de l'Homme préhistorique" CNRS-MNHN-UPVD, Alliance Sorbonne Université, Musée de l’Homme, Palais de Chaillot, 17 place du Trocadéro, 75116 Paris, France
| | - Sandrine Prat
- UMR 7194 "Histoire naturelle de l'Homme préhistorique" CNRS-MNHN-UPVD, Alliance Sorbonne Université, Musée de l’Homme, Palais de Chaillot, 17 place du Trocadéro, 75116 Paris, France
| |
Collapse
|
26
|
Divergence-time estimates for hominins provide insight into encephalization and body mass trends in human evolution. Nat Ecol Evol 2021; 5:808-819. [PMID: 33795855 DOI: 10.1038/s41559-021-01431-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
Quantifying speciation times during human evolution is fundamental as it provides a timescale to test for the correlation between key evolutionary transitions and extrinsic factors such as climatic or environmental change. Here, we applied a total evidence dating approach to a hominin phylogeny to estimate divergence times under different topological hypotheses. The time-scaled phylogenies were subsequently used to perform ancestral state reconstructions of body mass and phylogenetic encephalization quotient (PEQ). Our divergence-time estimates are consistent with other recent studies that analysed extant species. We show that the origin of the genus Homo probably occurred between 4.30 and 2.56 million years ago. The ancestral state reconstructions show a general trend towards a smaller body mass before the emergence of Homo, followed by a trend towards a greater body mass. PEQ estimations display a general trend of gradual but accelerating encephalization evolution. The obtained results provide a rigorous temporal framework for human evolution.
Collapse
|
27
|
Prang TC, Ramirez K, Grabowski M, Williams SA. Ardipithecus hand provides evidence that humans and chimpanzees evolved from an ancestor with suspensory adaptations. SCIENCE ADVANCES 2021; 7:eabf2474. [PMID: 33627435 PMCID: PMC7904256 DOI: 10.1126/sciadv.abf2474] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/12/2021] [Indexed: 05/08/2023]
Abstract
The morphology and positional behavior of the last common ancestor of humans and chimpanzees are critical for understanding the evolution of bipedalism. Early 20th century anatomical research supported the view that humans evolved from a suspensory ancestor bearing some resemblance to apes. However, the hand of the 4.4-million-year-old hominin Ardipithecus ramidus purportedly provides evidence that the hominin hand was derived from a more generalized form. Here, we use morphometric and phylogenetic comparative methods to show that Ardipithecus retains suspensory adapted hand morphologies shared with chimpanzees and bonobos. We identify an evolutionary shift in hand morphology between Ardipithecus and Australopithecus that renews questions about the coevolution of hominin manipulative capabilities and obligate bipedalism initially proposed by Darwin. Overall, our results suggest that early hominins evolved from an ancestor with a varied positional repertoire including suspension and vertical climbing, directly affecting the viable range of hypotheses for the origin of our lineage.
Collapse
Affiliation(s)
- Thomas C Prang
- Department of Anthropology, Texas A&M University, College Station, TX 77843, USA.
| | - Kristen Ramirez
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
- Department of Anthropology, CUNY Graduate Center, New York, NY 10016, USA
- Office of Medical Education, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
- Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Scott A Williams
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| |
Collapse
|
28
|
Parins-Fukuchi C. Morphological and phylogeographic evidence for budding speciation: an example in hominins. Biol Lett 2021; 17:20200754. [PMID: 33465331 PMCID: PMC7876604 DOI: 10.1098/rsbl.2020.0754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Parametric phylogenetic approaches that attempt to delineate between distinct 'modes' of speciation (splitting cladogenesis, budding cladogenesis and anagenesis) between fossil taxa have become increasingly popular among comparative biologists. But it is not yet well understood how clearly morphological data from fossil taxa speak to detailed questions of speciation mode when compared with the lineage diversification models that serve as their basis. In addition, the congruence of inferences made using these approaches with geographical patterns has not been explored. Here, I extend a previously introduced maximum-likelihood approach for the examination of ancestor-descendant relationships to accommodate budding speciation and apply it to a dataset of fossil hominins. I place these results in a phylogeographic context to better understand spatial dynamics underlying the hypothesized speciation patterns. The spatial patterns implied by the phylogeny hint at the complex demographic processes underlying the spread and diversification of hominins throughout the Pleistocene. I also find that inferences of budding are driven primarily by stratigraphic, versus morphological, data and discuss the ramifications for interpretations of speciation process in hominins specifically and from phylogenetic data in general.
Collapse
Affiliation(s)
- Caroline Parins-Fukuchi
- Division of the Physical Sciences, Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Rak Y, Kimbel WH, Moggi-Cecchi J, Lockwood CA, Menter C. The DNH 7 skull of Australopithecus robustus from Drimolen (Main Quarry), South Africa. J Hum Evol 2020; 151:102913. [PMID: 33388495 DOI: 10.1016/j.jhevol.2020.102913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
Although the early hominin species Australopithecus robustus has been known for more than eight decades and is represented by hundreds of fossils from sites in South Africa, a complete, well-preserved skull has been elusive. DNH 7, an adult cranium and mandible from the Drimolen site, was identified, on the basis of its small size, as a presumptive female of A. robustus. Here, we provide a detailed comparative description of the specimen. In cranial, facial, and dental size, DNH 7 is confirmed to lie at the extreme small end of the A. robustus range of variation, along with a few fragmentary maxillofacial specimens from Swartkrans. In addition, relative to the classically derived craniofacial features of the Swartkrans+Kromdraai portions of the A. robustus hypodigm, primitive anatomy pervades the DNH 7 face, braincase, and cranial base. Taken together, these pieces of evidence place DNH 7 in a previously unfilled position on the robust Australopithecus morphocline, where the specimen highlights the morphological distinctions between southern and eastern African species of this group and epitomizes the anatomy expected of the group's last common ancestor.
Collapse
Affiliation(s)
- Yoel Rak
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Institute of Human Origins, Arizona State University, PO Box 874101, Tempe, AZ, 85287, USA
| | - William H Kimbel
- Institute of Human Origins, Arizona State University, PO Box 874101, Tempe, AZ, 85287, USA; School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, AZ, 85287, USA.
| | - Jacopo Moggi-Cecchi
- Department of Biology, University of Florence, via del Proconsolo 12, 50122, Florence, Italy
| | - Charles A Lockwood
- Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| | - Colin Menter
- Department of Biology, University of Florence, via del Proconsolo 12, 50122, Florence, Italy
| |
Collapse
|
30
|
Macchiarelli R, Bergeret-Medina A, Marchi D, Wood B. Nature and relationships of Sahelanthropus tchadensis. J Hum Evol 2020; 149:102898. [PMID: 33142154 DOI: 10.1016/j.jhevol.2020.102898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
A partial left femur (TM 266-01-063) was recovered in July 2001 at Toros-Menalla, Chad, at the same fossiliferous location as the late Miocene holotype of Sahelanthropus tchadensis (the cranium TM 266-01-060-1). It was recognized as a probable primate femur in 2004 when one of the authors was undertaking a taphonomic survey of the fossil assemblages from Toros-Menalla. We are confident the TM 266 femoral shaft belongs to a hominid. It could sample a hominid hitherto unrepresented at Toros-Menalla, but a more parsimonious working hypothesis is that it belongs to S. tchadensis. The differences between TM 266 and the late Miocene Orrorin tugenensis partial femur BAR 1002'00, from Kenya, are consistent with maintaining at least a species-level distinction between S. tchadensis and O. tugenensis. The results of our preliminary functional analysis suggest the TM 266 femoral shaft belongs to an individual that was not habitually bipedal, something that should be taken into account when considering the relationships of S. tchadensis. The circumstances of its discovery should encourage researchers to check to see whether there is more postcranial evidence of S. tchadensis among the fossils recovered from Toros-Menalla.
Collapse
Affiliation(s)
- Roberto Macchiarelli
- Unité de Formation Géosciences, Université de Poitiers, 86073, Poitiers, France; Département Homme & Environnement, UMR 7194 CNRS, Muséum national d'Histoire naturelle, 75116, Paris, France.
| | | | - Damiano Marchi
- Department of Biology, University of Pisa, 56126, Pisa, Italy; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Wits, 2050, South Africa
| | - Bernard Wood
- Center for the Advanced Study of Human Paleobiology and Department of Anthropology, George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
31
|
A genotype:phenotype approach to testing taxonomic hypotheses in hominids. Naturwissenschaften 2020; 107:40. [PMID: 32870408 DOI: 10.1007/s00114-020-01696-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Paleontology has long relied on assumptions about the genetic and developmental influences on skeletal variation. The last few decades of developmental genetics have elucidated the genetic pathways involved in making teeth and patterning the dentition. Quantitative genetic analyses have refined this genotype:phenotype map even more, especially for primates. We now have the ability to define dental traits with a fair degree of fidelity to the underlying genetic architecture; for example, the molar module component (MMC) and the premolar-molar module (PMM) that have been defined through quantitative genetic analyses. We leverage an extensive dataset of extant and extinct hominoid dental variation to explore how these two genetically patterned phenotypes have evolved through time. We assess MMC and PMM to test the hypothesis that these two traits reveal a more biologically informed taxonomy at the genus and species levels than do more traditional measurements. Our results indicate that MMC values for hominids fall into two categories and that Homo is derived compared with earlier taxa. We find a more variable, species-level pattern for PMM. These results, in combination with previous research, demonstrate that MMC reflects the phenotypic output of a more evolutionarily stable, or phylogenetically congruent, genetic mechanism, and PMM is a reflection of a more evolutionarily labile mechanism. These results suggest that the human lineage since the split with chimpanzees may not represent as much genus-level variation as has been inferred from traits whose etiologies are not understood.
Collapse
|
32
|
Isotopic evidence for the timing of the dietary shift toward C 4 foods in eastern African Paranthropus. Proc Natl Acad Sci U S A 2020; 117:21978-21984. [PMID: 32839330 DOI: 10.1073/pnas.2006221117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New approaches to the study of early hominin diets have refreshed interest in how and when our diets diverged from those of other African apes. A trend toward significant consumption of C4 foods in hominins after this divergence has emerged as a landmark event in human evolution, with direct evidence provided by stable carbon isotope studies. In this study, we report on detailed carbon isotopic evidence from the hominin fossil record of the Shungura and Usno Formations, Lower Omo Valley, Ethiopia, which elucidates the patterns of C4 dietary utilization in the robust hominin Paranthropus The results show that the most important shift toward C4 foods occurred at ∼2.37 Ma, within the temporal range of the earliest known member of the genus, Paranthropus aethiopicus, and that this shift was not unique to Paranthropus but occurred in all hominins from this fossil sequence. This uptake of C4 foods by hominins occurred during a period marked by an overall trend toward increased C4 grazing by cooccurring mammalian taxa from the same sequence. However, the timing and geographic patterns of hominin diets in this region differ from those observed elsewhere in the same basin, where environmental controls on the underlying availability of various food sources were likely quite different. These results highlight the complexities of dietary responses by hominins to changes in the availability of food resources.
Collapse
|
33
|
Morphometric analysis of the hominin talus: Evolutionary and functional implications. J Hum Evol 2020; 142:102747. [PMID: 32240884 DOI: 10.1016/j.jhevol.2020.102747] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 01/07/2020] [Accepted: 01/21/2020] [Indexed: 11/21/2022]
Abstract
The adoption of bipedalism is a key benchmark in human evolution that has impacted talar morphology. Here, we investigate talar morphological variability in extinct and extant hominins using a 3D geometric morphometric approach. The evolutionary timing and appearance of modern human-like features and their contributions to bipedal locomotion were evaluated on the talus as a whole, each articular facet separately, and multiple combinations of facets. Distinctive suites of features are consistently present in all fossil hominins, despite the presence of substantial interspecific variation, suggesting a potential connection of these suites to bipedal gait. A modern human-like condition evolved in navicular and lateral malleolar facets early in the hominin lineage compared with other facets, which demonstrate more complex morphological variation within Homininae. Interestingly, navicular facet morphology of Australopithecus afarensis is derived in the direction of Homo, whereas more recent hominin species such as Australopithecus africanus and Australopithecus sediba retain more primitive states in this facet. Combining the navicular facet with the trochlea and the posterior calcaneal facet as a functional suite, however, distinguishes Australopithecus from Homo in that the medial longitudinal arch had not fully developed in the former. Our results suggest that a more everted foot and stiffer medial midtarsal region are adaptations that coincide with the emergence of bipedalism, whereas a high medial longitudinal arch emerges later in time, within Homo. This study provides novel insights into the emergence of talar morphological traits linked to bipedalism and its transition from a facultative to an obligate condition.
Collapse
|
34
|
Paul KS, Stojanowski CM, Hughes TE, Brook AH, Townsend GC. Patterns of heritability across the human diphyodont dental complex: Crown morphology of Australian twins and families. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:447-461. [DOI: 10.1002/ajpa.24019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/31/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kathleen S. Paul
- Department of Anthropology University of Arkansas Fayetteville Arkansas
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change Arizona State University Tempe Arizona
| | - Toby E. Hughes
- Adelaide Dental School University of Adelaide Adelaide South Australia
| | - Alan H. Brook
- Adelaide Dental School University of Adelaide Adelaide South Australia
- Institute of Dental Surgery Queen Mary University of London London UK
| | - Grant C. Townsend
- Adelaide Dental School University of Adelaide Adelaide South Australia
| |
Collapse
|
35
|
Early anthropoid femora reveal divergent adaptive trajectories in catarrhine hind-limb evolution. Nat Commun 2019; 10:4778. [PMID: 31699998 PMCID: PMC6838095 DOI: 10.1038/s41467-019-12742-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022] Open
Abstract
The divergence of crown catarrhines—i.e., the split of cercopithecoids (Old World monkeys) from hominoids (apes and humans)—is a poorly understood phase in our shared evolutionary history with other primates. The two groups differ in the anatomy of the hip joint, a pattern that has been linked to their locomotor strategies: relatively restricted motion in cercopithecoids vs. more eclectic movements in hominoids. Here we take advantage of the first well-preserved proximal femur of the early Oligocene stem catarrhine Aegyptopithecus to investigate the evolution of this anatomical region using 3D morphometric and phylogenetically-informed evolutionary analyses. Our analyses reveal that cercopithecoids and hominoids have undergone divergent evolutionary transformations of the proximal femur from a similar ancestral morphology that is not seen in any living anthropoid, but is preserved in Aegyptopithecus, stem platyrrhines, and stem cercopithecoids. These results highlight the relevance of fossil evidence for illuminating key adaptive shifts in primate evolution. The proximal femur is key for understanding locomotion in primates. Here, the authors analyze the evolution of the proximal femur in catarrhines, including a new Aegyptopithecus fossil, and suggest that Old World monkeys and hominoids diverged from an ancestral state similar to Aegyptopithecus.
Collapse
|
36
|
Bailey SE, Brophy JK, Moggi-Cecchi J, Delezene LK. The deciduous dentition of Homo naledi: A comparative study. J Hum Evol 2019; 136:102655. [DOI: 10.1016/j.jhevol.2019.102655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
|
37
|
Haile-Selassie Y, Melillo SM, Vazzana A, Benazzi S, Ryan TM. A 3.8-million-year-old hominin cranium from Woranso-Mille, Ethiopia. Nature 2019; 573:214-219. [DOI: 10.1038/s41586-019-1513-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/01/2019] [Indexed: 11/09/2022]
|
38
|
Heaton JL, Pickering TR, Carlson KJ, Crompton RH, Jashashvili T, Beaudet A, Bruxelles L, Kuman K, Heile AJ, Stratford D, Clarke RJ. The long limb bones of the StW 573 Australopithecus skeleton from Sterkfontein Member 2: Descriptions and proportions. J Hum Evol 2019; 133:167-197. [DOI: 10.1016/j.jhevol.2019.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
|
39
|
Davies TW, Delezene LK, Gunz P, Hublin JJ, Skinner MM. Endostructural morphology in hominoid mandibular third premolars: Geometric morphometric analysis of dentine crown shape. J Hum Evol 2019; 133:198-213. [PMID: 31358180 DOI: 10.1016/j.jhevol.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/17/2023]
Abstract
In apes, the mandibular third premolar (P3) is adapted for a role in honing the large upper canine. The role of honing was lost early in hominin evolution, releasing the tooth from this functional constraint and allowing it to respond to subsequent changes in masticatory demands. This led to substantial morphological changes, and as such the P3 has featured prominently in systematic analyses of the hominin clade. The application of microtomography has also demonstrated that examination of the enamel-dentine junction (EDJ) increases the taxonomic value of variations in crown morphology. Here we use geometric morphometric techniques to analyze the shape of the P3 EDJ in a broad sample of fossil hominins, modern humans, and extant apes (n = 111). We test the utility of P3 EDJ shape for distinguishing among hominoids, address the affinities of a number of hominin specimens of uncertain taxonomic attribution, and characterize the changes in P3 EDJ morphology across our sample, with particular reference to features relating to canine honing and premolar 'molarization'. We find that the morphology of the P3 EDJ is useful in taxonomic identification of individual specimens, with a classification accuracy of up to 88%. The P3 EDJ of canine-honing apes displays a tall protoconid, little metaconid development, and an asymmetrical crown shape. Plio-Pleistocene hominin taxa display derived masticatory adaptations at the EDJ, such as the molarized premolars of Australopithecus africanus and Paranthropus, which have well-developed marginal ridges, an enlarged talonid, and a large metaconid. Modern humans and Neanderthals display a tall dentine body and reduced metaconid development, a morphology shared with premolars from Mauer and the Cave of Hearths. Homo naledi displays a P3 EDJ morphology that is unique among our sample; it is quite unlike Middle Pleistocene and recent Homo samples and most closely resembles Australopithecus, Paranthropus and early Homo specimens.
Collapse
Affiliation(s)
- Thomas W Davies
- School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NZ, UK; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Lucas K Delezene
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Matthew M Skinner
- School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NZ, UK; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
40
|
Mongle CS, Strait DS, Grine FE. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J Hum Evol 2019; 131:28-39. [DOI: 10.1016/j.jhevol.2019.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 02/24/2019] [Accepted: 03/01/2019] [Indexed: 11/16/2022]
|
41
|
Meyer MR, Williams SA. Earliest axial fossils from the genus Australopithecus. J Hum Evol 2019; 132:189-214. [PMID: 31203847 DOI: 10.1016/j.jhevol.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 11/19/2022]
Abstract
Australopitheus anamensis fossils demonstrate that craniodentally and postcranially the taxon was more primitive than its evolutionary successor Australopithecus afarensis. Postcranial evidence suggests habitual bipedality combined with primitive upper limbs and an inferred significant arboreal adaptation. Here we report on A. anamensis fossils from the Assa Issie locality in Ethiopia's Middle Awash area dated to ∼4.2 Ma, constituting the oldest known Australopithecus axial remains. Because the spine is the interface between major body segments, these fossils can be informative on the adaptation, behavior and our evolutionary understanding of A. anamensis. The atlas, or first cervical vertebra (C1), is similar in size to Homo sapiens, with synapomorphies in the articular facets and transverse processes. Absence of a retroglenoid tubercle suggests that, like humans, A. anamensis lacked the atlantoclavicularis muscle, resulting in reduced capacity for climbing relative to the great apes. The retroflexed C2 odontoid process and long C6 spinous process are reciprocates of facial prognathism, a long clivus and retroflexed foramen magnum, rather than indications of locomotor or postural behaviors. The T1 is derived in shape and size as in Homo with an enlarged vertebral body epiphyseal surfaces for mitigating the high-magnitude compressive loads of full-time bipedality. The full costal facet is unlike the extant great ape demifacet pattern and represents the oldest evidence for the derived univertebral pattern in hominins. These fossils augment other lines of evidence in A. anamensis indicating habitual bipedality despite some plesiomorphic vertebral traits related to craniofacial morphology independent of locomotor or postural behaviors (i.e., a long clivus and a retroflexed foramen magnum). Yet in contrast to craniodental lines of evidence, some aspects of vertebral morphology in A. anamensis appear more derived than its descendant A. afarensis.
Collapse
Affiliation(s)
- Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, CA, 91737, USA.
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY, 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY, 10024, USA
| |
Collapse
|
42
|
Hardin AM. Genetic correlations in the dental dimensions of
Saguinus fuscicollis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:557-566. [DOI: 10.1002/ajpa.23861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Anna M. Hardin
- Department of Anthropology University of Minnesota Minneapolis Minnesota
- Department of Pathology and Anatomical Sciences University of Missouri Columbia Missouri
| |
Collapse
|
43
|
Prang TC. The African ape-like foot of Ardipithecus ramidus and its implications for the origin of bipedalism. eLife 2019; 8:44433. [PMID: 31038121 PMCID: PMC6491036 DOI: 10.7554/elife.44433] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/25/2019] [Indexed: 11/27/2022] Open
Abstract
The ancestral condition from which humans evolved is critical for understanding the adaptive origin of bipedal locomotion. The 4.4 million-year-old hominin partial skeleton attributed to Ardipithecus ramidus preserves a foot that purportedly shares morphometric affinities with monkeys, but this interpretation remains controversial. Here I show that the foot of Ar. ramidus is most similar to living chimpanzee and gorilla species among a large sample of anthropoid primates. The foot morphology of Ar. ramidus suggests that the evolutionary precursor of hominin bipedalism was African ape-like terrestrial quadrupedalism and climbing. The elongation of the midfoot and phalangeal reduction in Ar. ramidus relative to the African apes is consistent with hypotheses of increased propulsive capabilities associated with an early form of bipedalism. This study provides evidence that the modern human foot was derived from an ancestral form adapted to terrestrial plantigrade quadrupedalism. Walking on two legs is considered to be one of the first steps towards becoming human. While some animals are also able to walk on two legs, such as kangaroos, birds, and some rodents, the way they move is nevertheless quite distinct to the way humans walk. How animals evolve traits is influenced by the characteristics of their ancestors. But what exactly was the common ancestor of humans and chimpanzees like? Most primates are suited for a life in the trees. But some also have skeletal characteristics associated with living on the ground. For example, the feet of chimpanzees and gorillas show adaptations that suit life on the ground, such as walking on the sole of the foot with a heel first foot posture. So far, it was unclear whether the ancestor of humans and chimpanzees was primarily adapted to living on the ground or in the trees. To investigate this further, Prang studied the oldest-known fossil foot (4.4 million years) attributed to the hominin Ardipithecus ramidus. This involved using evolutionary models to evaluate the relationship between foot bone proportions and the locomotory behaviour of monkeys and apes. The results revealed that humans evolved from an ancestor that had a foot similar to living chimpanzees and gorillas. The African ape foot is uniquely suited to life on the ground, including shorter toe bones, but also shows some adaptations to life in the trees, such as an elongated, grasping big toe. Therefore, the locomotion of our common ancestor probably bore a strong resemblance to these two ape species. Moreover, if the last common ancestor already had ground-living characteristics, the first step of the evolution of human bipedalism did not involve descending from the trees to the ground, as our ancestors had already achieved this milestone in some form and frequency. This is an important discovery. If this ancestor already had adaptations for life on the ground, why did only humans evolve to walk upright despite the retention of climbing capabilities in the earliest human relatives? A next step could be to investigate what selective pressures favored upright walking in a partly ground-living African ape. This may provide us with more insight into our own evolutionary story as well as the ways in which living primates evolve adaptations in an ecological context.
Collapse
Affiliation(s)
- Thomas Cody Prang
- Department of Anthropology, Center for the Study of Human Origins (CSHO), New York University, New York, United states.,New York Consortium in Evolutionary Primatology (NYCEP), New York, United States
| |
Collapse
|
44
|
Rasmussen DT, Friscia AR, Gutierrez M, Kappelman J, Miller ER, Muteti S, Reynoso D, Rossie JB, Spell TL, Tabor NJ, Gierlowski-Kordesch E, Jacobs BF, Kyongo B, Macharwas M, Muchemi F. Primitive Old World monkey from the earliest Miocene of Kenya and the evolution of cercopithecoid bilophodonty. Proc Natl Acad Sci U S A 2019; 116:6051-6056. [PMID: 30858323 PMCID: PMC6442627 DOI: 10.1073/pnas.1815423116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Old World monkeys (Cercopithecoidea) are a highly successful primate radiation, with more than 130 living species and the broadest geographic range of any extant group except humans. Although cercopithecoids are highly variable in habitat use, social behavior, and diet, a signature dental feature unites all of its extant members: bilophodonty (bi: two, loph: crest, dont: tooth), or the presence of two cross-lophs on the molars. This feature offers an adaptable Bauplan that, with small changes to its individual components, permits its members to process vastly different kinds of food. Old World monkeys diverged from apes perhaps 30 million years ago (Ma) according to molecular estimates, and the molar lophs are sometimes incompletely developed in fossil species, suggesting a mosaic origin for this key adaptation. However, critical aspects of the group's earliest evolution remain unknown because the cercopithecoid fossil record before ∼18 Ma consists of only two isolated teeth, one from Uganda and one from Tanzania. Here we describe a primitive Old World monkey from Nakwai, Kenya, dated at ∼22 Ma, that offers direct evidence for the initial key steps in the evolution of the cercopithecoid dentition. The simple dentition and absence of bilophodonty in the Nakwai monkey indicate that the initial radiation of Old World monkeys was first characterized by a reorganization of basic molar morphology, and a reliance on cusps rather than lophs suggests frugivorous diets and perhaps hard object feeding. Bilophodonty evolved later, likely in response to the inclusion of leaves in the diet.
Collapse
Affiliation(s)
- D Tab Rasmussen
- Department of Anthropology, Washington University, St. Louis, MO 63130-4899
| | - Anthony R Friscia
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-7246
| | - Mercedes Gutierrez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455
| | - John Kappelman
- Department of Anthropology, The University of Texas,Austin, TX 78712;
- Department of Geological Sciences, The University of Texas, Austin, TX 78712
| | - Ellen R Miller
- Department of Anthropology, Wake Forest University, Winston Salem, NC 27109-7807
| | - Samuel Muteti
- Palaeontology Section, National Museums of Kenya, 00100 Nairobi, Kenya
| | - Dawn Reynoso
- Department of Geoscience, University of Nevada, Las Vegas, NV 89154-4010
| | - James B Rossie
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794
| | - Terry L Spell
- Department of Geoscience, University of Nevada, Las Vegas, NV 89154-4010
| | - Neil J Tabor
- Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275-0395
| | | | - Bonnie F Jacobs
- Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275-0395
| | - Benson Kyongo
- Palaeontology Section, National Museums of Kenya, 00100 Nairobi, Kenya
| | - Mathew Macharwas
- Palaeontology Section, National Museums of Kenya, 00100 Nairobi, Kenya
| | - Francis Muchemi
- Palaeontology Section, National Museums of Kenya, 00100 Nairobi, Kenya
| |
Collapse
|
45
|
Pitirri MK, Begun D. A new method to quantify mandibular corpus shape in extant great apes and its potential application to the hominoid fossil record. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168:318-328. [PMID: 30537105 DOI: 10.1002/ajpa.23749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/08/2018] [Accepted: 10/20/2018] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Mandibular corpus robusticity (corpus breadth/corpus height) is the most commonly utilized descriptor of the mandibular corpus in the great ape and hominin fossil records. As a consequence of its contoured shape, linear metrics used to characterize mandibular robusticity are inadequate to quantify the shape of the mandibular corpus. Here, we present an alternative to the traditional assessment of mandibular shape by analyzing the outline of the mandibular corpus in cross-section using landmarks and semilandmarks. MATERIALS AND METHODS Outlines of the mandibular corpus in cross-section between M1 and M2 were quantified in a sample of hominoids and analyzed using generalized Procrustes analysis, Procrustes ANOVA, CVA, and cluster analysis. Corpus breadth and width were also collected from the same sample and analyzed using regression, ANOVA, and cluster analysis. RESULTS Analysis of corpus outline shape revealed significant differences in mandibular corpus shape that are independent of size and sex at the genus level across hominoids. Cluster analysis based on the analysis of corpus outline shape results in almost all specimens grouping based on taxonomic affinity (99.28% correct classification). Comparison of these results to results using traditional measures of mandibular robusticity shows that analysis of the outline of the corpus in cross-section discriminate extant great apes more reliably. CONCLUSION The strong taxonomic signal revealed by this analysis indicates that quantification of the outline of the mandibular corpus more fully captures mandibular corpus shape and offers the potential for greater power in discriminating among taxa in the hominoid fossil record.
Collapse
Affiliation(s)
- M Kathleen Pitirri
- Department of Anthropology, Pennsylvania State University, Pennsylvania.,Department of Anthropology, University of Toronto, St. Toronto, Ontario, Canada
| | - David Begun
- Department of Anthropology, University of Toronto, St. Toronto, Ontario, Canada
| |
Collapse
|
46
|
Rossie JB, Hill A. A new species of Simiolus from the middle Miocene of the Tugen Hills, Kenya. J Hum Evol 2018; 125:50-58. [PMID: 30502897 DOI: 10.1016/j.jhevol.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/01/2022]
Abstract
A new species of the "small-bodied ape" Simiolus is described here that extends the temporal range of the genus to the end of the Middle Miocene. As such, it is one of the few species of fossil primates known from East Africa during a time of significant change in which Old World monkeys and crown hominoids replaced the primitive ape-like primates that had dominated the early Miocene. The dynamics of this important event in our evolutionary history are obscured by the small number of fossil primates known from Africa between 14 and 6 million years ago, as well as persistent ambiguity regarding the phylogenetic status of the ape-like Miocene primates. The new species described here helps to fill this temporal gap, and our analysis of its phylogenetic position suggests that Simiolus and many other Miocene primates were not only ape-like, they were, indeed, stem hominoids. Judging from the available material, the new species may be the smallest known ape.
Collapse
Affiliation(s)
- James B Rossie
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Andrew Hill
- Department of Anthropology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
47
|
Pugh KD, Gilbert CC. Phylogenetic relationships of living and fossil African papionins: Combined evidence from morphology and molecules. J Hum Evol 2018; 123:35-51. [DOI: 10.1016/j.jhevol.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 11/16/2022]
|
48
|
Pampush JD, Scott JE, Robinson CA, Delezene LK. Oblique human symphyseal angle is associated with an evolutionary rate-shift early in the hominin clade. J Hum Evol 2018; 123:84-95. [DOI: 10.1016/j.jhevol.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023]
|
49
|
Ancient teeth, phenetic affinities, and African hominins: Another look at where Homo naledi fits in. J Hum Evol 2018; 122:108-123. [DOI: 10.1016/j.jhevol.2018.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022]
|
50
|
Grabowski M, Hatala KG, Jungers WL. Body mass estimates of the earliest possible hominins and implications for the last common ancestor. J Hum Evol 2018; 122:84-92. [DOI: 10.1016/j.jhevol.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 10/28/2022]
|