1
|
Sabt A, Abdelraof M, Hamissa MF, Noamaan MA. Antibacterial Activity of Quinoline-Based Derivatives against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa: Design, Synthesis, DFT and Molecular Dynamic Simulations. Chem Biodivers 2023; 20:e202300804. [PMID: 37933986 DOI: 10.1002/cbdv.202300804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023]
Abstract
Bacterial virulence becomes a significant challenge for clinical treatments, particularly those characterized as Multi-Drug-Resistant (MDR) strains. Therefore, the preparation of new compounds with active moieties could be a successful approach for eradication of MDR strains. For this purpose, newly synthesized quinoline compounds were prepared and tested for their antimicrobial activity against Methicillin-Resistant Staphylococcus Aureus (MRSA) and Pseudomonas Aeruginosa (PA). Among the synthesized derivatives, compounds 1-(quinolin-2-ylamino)pyrrolidine-2,5-dione (8) and 2-(2-((5-methylfuran-2-yl)methylene)hydrazinyl)quinoline (12) were shown to possess the highest antimicrobial activity with the minimum inhibitory concentration with the values of 5±2.2 and10±1.5 μg/mL towards Pseudomonas aeruginosa without any activity towards MRSA. Interestingly, compounds 2-(2-((1H-indol-3-yl)methylene)hydrazinyl)quinoline (13) and 2-(4-bromophenyl)-3-(quinolin-2-ylamino)thiazolidin-4-one (16c) showed significant inhibition activity against Staphylococcus aureus MRSA and Pseudomonas aeruginosa. Compound 13 (with indole moiety) particularly displayed excellent bactericidal activity with low MIC values 20±3.3 and 10±1.5 μg/mL against Staphylococcus aureus MRSA and Pseudomonas aeruginosa, respectively. Effects molecular modelling was used to determine the mode of action for the antimicrobial effect. The stability of complexes formed by docking and target-ligand pairing was evaluated using molecular dynamics simulations. The compounds were also tested for binding affinity to the target protein using MM-PBSA. Density-functional theory (DFT) calculations were also used to investigate the electrochemical properties of various compounds.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center (NRC), 33 El Behouth St., Giza P.O., 12622, Egypt
| | - Mohamed Farouk Hamissa
- Department of Biomolecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| | - Mahmoud A Noamaan
- Mathematics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
He X, Han B, Wang R, Guo Y, Kao RYT, Li H, Sun H, Xia W. Dual-action gallium-flavonoid compounds for combating Pseudomonas aeruginosa infection. RSC Chem Biol 2023; 4:774-784. [PMID: 37799578 PMCID: PMC10549236 DOI: 10.1039/d3cb00033h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/10/2023] [Indexed: 10/07/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) causes infections that are difficult to treat, which is due to the bacterial natural resistance to antibiotics. The bacterium is also able to form a biofilm that protects the bacterium from clearance by the human immune system and leads to chronic infection. Herein, we synthesized and characterized a novel gallium compound that interferes with both the iron metabolism and quorum sensing system of P. aeruginosa to achieve a significant bactericidal activity. The compound could substantially reduce the secretion of bacterial virulence factors as well as eliminate biofilm formation. Integrative omics analysis indicates that this compound can significantly disturb the gene transcription and metabolism of P. aeruginosa. The effectiveness of the gallium compound was further validated in mammalian cell and murine skin infection models. Our study offers a new strategy to design new gallium-based antimicrobials to combat P. aeruginosa infection.
Collapse
Affiliation(s)
- Xiaojun He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Bingjie Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Runming Wang
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Department of Microbiology and State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong Hong Kong P. R. China
| | - Yu Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Richard Y T Kao
- Department of Microbiology and State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong Hong Kong P. R. China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
3
|
Aguilar-Rodea P, Zúñiga G, Cerritos R, Rodríguez-Espino BA, Gomez-Ramirez U, Nolasco-Romero CG, López-Marceliano B, Rodea GE, Mendoza-Elizalde S, Reyes-López A, Olivares Clavijo H, Vigueras Galindo JC, Velázquez-Guadarrama N, Rosas-Pérez I. Nucleotide substitutions in the mexR, nalC and nalD regulator genes of the MexAB-OprM efflux pump are maintained in Pseudomonas aeruginosa genetic lineages. PLoS One 2022; 17:e0266742. [PMID: 35536836 PMCID: PMC9089866 DOI: 10.1371/journal.pone.0266742] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa has different resistant mechanisms including the constitutive MexAB-OprM efflux pump. Single nucleotide polymorphisms (SNPs) in the mexR, nalC, and nalD repressors of this efflux pump can contribute to antimicrobial resistance; however, it is unknown whether these changes are mainly related to genetic lineages or environmental pressure. This study identifies SNPs in the mexR, nalC, and nalD genes in clinical and environmental isolates of P. aeruginosa (including high-risk clones). Ninety-one P. aeruginosa strains were classified according to their resistance to antibiotics, typified by multilocus sequencing, and mexR, nalC, and nalD genes sequenced for SNPs identification. The mexAB-oprM transcript expression was determined. The 96.7% of the strains were classified as multidrug resistant. Eight strains produced serine carbapenemases, and 11 strains metallo-β-lactamases. Twenty-three new STs and high-risk clones ST111 and ST233 were identified. SNPs in the mexR, nalC, and nalD genes revealed 27 different haplotypes (patterns). Sixty-two mutational changes were identified, 13 non-synonymous. Haplotype 1 was the most frequent (n = 40), and mainly identified in strains ST1725 (33/40), with 57.5% pan drug resistant strains, 36.5% extensive drug resistant and two strains exhibiting serin-carbapenemases. Haplotype 12 (n = 9) was identified in ST233 and phylogenetically related STs, with 100% of the strains exhibiting XDR and 90% producing metallo-β-lactamases. Haplotype 5 was highly associated with XDR and related to dead when compared to ST1725 and ST233 (RRR 23.34; p = 0.009 and RRR 32.01; p = 0.025). A significant relationship between the mexR-nalC-nalD haplotypes and phylogenetically related STs was observed, suggesting mutational changes in these repressors are highly maintained within genetic lineages. In addition, phylogenetically related STs showed similar resistant profiles; however, the resistance was (likely or partly) attributed to the MexAB-OprM efflux pump in 56% of the strains (only 45.05% showed mexA overtranscription), in the remaining strains the resistance could be attributed to carbapenemases or mechanisms including other pumps, since same SNPs in the repressor genes gave rise to different resistance profiles.
Collapse
Affiliation(s)
- Pamela Aguilar-Rodea
- Posgrado en Ciencias de la Tierra, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
- Laboratorio de Aerobiología, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - René Cerritos
- Centro de Investigación en Políticas Población y Salud, Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Benjamín Antonio Rodríguez-Espino
- Laboratorio de Investigación y Diagnóstico en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Uriel Gomez-Ramirez
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
- Programa de Posgrado en Ciencias Químicobiologicas, Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, Ciudad de México, México
| | - Carolina G. Nolasco-Romero
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
- Programa de Posgrado en Ciencias Químicobiologicas, Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, Ciudad de México, México
| | - Beatriz López-Marceliano
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Gerardo E. Rodea
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Sandra Mendoza-Elizalde
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Alfonso Reyes-López
- Centro de Estudios Económicos y Sociales en Salud, Dirección de Investigación, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | | | - Juan Carlos Vigueras Galindo
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Norma Velázquez-Guadarrama
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
- * E-mail: ,
| | - Irma Rosas-Pérez
- Laboratorio de Aerobiología, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Reducing the urine collection rate could prevent hospital-acquired horizontal transmission of multidrug-resistant Pseudomonas aeruginosa. J Infect Chemother 2022; 28:786-790. [DOI: 10.1016/j.jiac.2022.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
|
5
|
A View on 20 Years of Antimicrobial Resistance in Japan by Two National Surveillance Systems: The National Epidemiological Surveillance of Infectious Diseases and Japan Nosocomial Infections Surveillance. Antibiotics (Basel) 2021; 10:antibiotics10101189. [PMID: 34680770 PMCID: PMC8532729 DOI: 10.3390/antibiotics10101189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
The Ministry of Health, Labour and Welfare (MHLW) of Japan has conducted two national surveillance systems for approximately 20 years to monitor antimicrobial resistance (AMR) in bacteria: the National Epidemiological Surveillance of Infectious Diseases (NESID) and the Japan Nosocomial Infections Surveillance (JANIS). Data accumulated for 20 years by these two surveillance systems have helped depict the epidemiology of the representative AMR bacteria in Japan chronologically. The epidemiology of methicillin-resistant Staphylococcus aureus teaches us that once AMR bacteria have established their high endemicity, controlling such AMR bacteria requires time and is challenging. On the other hand, the epidemiology that multidrug-resistant Acinetobacter sp. exhibits when a strict containment policy for AMR bacteria was introduced in the early phase of its emergence and spread reveals that it is possible to control it. Detailed epidemiology provided by these two different national surveillance systems in Japan enabled us to set up the goal for controlling each AMR bacteria at the hospital level to the prefecture/national level. It is the public health authorities' responsibility to maintain a good surveillance system for AMR bacteria and share the data and findings with healthcare professionals and academicians.
Collapse
|
6
|
Kishk RM, Abdalla MO, Hashish AA, Nemr NA, El Nahhas N, Alkahtani S, Abdel-Daim MM, Kishk SM. Efflux MexAB-Mediated Resistance in P. aeruginosa Isolated from Patients with Healthcare Associated Infections. Pathogens 2020; 9:pathogens9060471. [PMID: 32549303 PMCID: PMC7350317 DOI: 10.3390/pathogens9060471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 01/20/2023] Open
Abstract
Today, one of the most important challenges for physicians is the adequate treatment of infections due to multidrug resistant organism (MDR). Pseudomonas aeruginosa is considered an opportunistic organism causing different types of healthcare associated infections (HAIs). We aimed to investigate the MDR and pandrug resistance (PDR) rate in P. aeruginosa in our region and detect efflux-pump mexAB genes and the proposed binding interactions of five different categories of antimicrobial agents with the mexB pump. A total of 180 non-duplicated P. aeruginosa strains were isolated from patients with HAIs in the Suez Canal University Hospital. Phenotypically, minimum inhibitory concentration (MIC) was done for all MDR and PDR strains before and after addition of efflux pump inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Molecular detection of mexA and mexB genes was done by using polymerase chain reaction (PCR). Most of the isolated strains (126 strains) were MDR (70%); only 10 samples (5.5%) were PDR. MexA and mexB genes were detected in 88.2% (120 strains) and 70.5% (96 strains) of stains, respectively. All PDR strains (10 stains) carried both mexA and mexB genes. Efflux mexAB genes were detected in all MDR and PDR strains (136 strains). Molecular modeling studies were performed to investigate the modes of intermolecular binding interactions between the antimicrobial agents and mexB key amino acids that resulted in MDR and PDR. The current study reported high prevalence of MDR and PDR P. aeruginosa in patients with HAIs in the Suez Canal University Hospitals.
Collapse
Affiliation(s)
- Rania M. Kishk
- Department of Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +20-1025-099-921
| | - Mohamed O. Abdalla
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (M.O.A.); (A.A.H.)
| | - Abdullah A. Hashish
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (M.O.A.); (A.A.H.)
| | - Nader A. Nemr
- Endemic and Infectious Diseases, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Nihal El Nahhas
- Department of Botany, Faculty of Science, Alexandria University, Moharram baik, Alexandria 21515, Egypt;
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (M.M.A.-D.)
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (M.M.A.-D.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Safaa M. Kishk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
7
|
Ogbolu DO, Piddock LJ, Webber MA. Opening Pandora's box: High-level resistance to antibiotics of last resort in Gram-negative bacteria from Nigeria. J Glob Antimicrob Resist 2020; 21:211-217. [DOI: 10.1016/j.jgar.2019.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022] Open
|
8
|
Iovene MR, Pota V, Galdiero M, Corvino G, Lella FMD, Stelitano D, Passavanti MB, Pace MC, Alfieri A, Franco SD, Aurilio C, Sansone P, Niyas VKM, Fiore M. First Italian outbreak of VIM-producing Serratia marcescensin an adult polyvalent intensive care unit, August-October 2018: A case report and literature review. World J Clin Cases 2019. [DOI: 10.12998/wjcc.v7.i21.3518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
9
|
Iovene MR, Pota V, Galdiero M, Corvino G, Di Lella FM, Stelitano D, Passavanti MB, Pace MC, Alfieri A, Di Franco S, Aurilio C, Sansone P, Niyas VKM, Fiore M. First Italian outbreak of VIM-producing Serratia marcescens in an adult polyvalent intensive care unit, August-October 2018: A case report and literature review. World J Clin Cases 2019; 7:3535-3548. [PMID: 31750335 PMCID: PMC6854422 DOI: 10.12998/wjcc.v7.i21.3535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/14/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae has become a significant public health concern as hospital outbreaks are now being frequently reported and these organisms are becoming difficult to treat with the available antibiotics.
CASE SUMMARY An outbreak of VIM-producing Serratia marcescens occurred over a period of 11 wk (August, 1 to October, 18) in patients admitted to the adult polyvalent intensive care unit of the University of Campania “Luigi Vanvitelli” located in Naples. Four episodes occurred in three patients (two patients infected, and one patient colonized). All the strains revealed the production of VIM.
CONCLUSION After three decades of carbapenem antibiotics use, the emergence of carbapenem-resistance in Enterobacteriaceae has become a significant concern and a stricter control to preserve its clinical application is mandatory. This is, to our knowledge, the first outbreak of VIM-producing Serratia marcescens in Europe. Surveillance policies must be implemented to avoid future outbreaks.
Collapse
Affiliation(s)
- Maria Rosaria Iovene
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Vincenzo Pota
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Giusy Corvino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Federica Maria Di Lella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Beatrice Passavanti
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Aniello Alfieri
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Sveva Di Franco
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Caterina Aurilio
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Pasquale Sansone
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | | | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| |
Collapse
|
10
|
Sommer R, Rox K, Wagner S, Hauck D, Henrikus SS, Newsad S, Arnold T, Ryckmans T, Brönstrup M, Imberty A, Varrot A, Hartmann RW, Titz A. Anti-biofilm Agents against Pseudomonas aeruginosa: A Structure-Activity Relationship Study of C-Glycosidic LecB Inhibitors. J Med Chem 2019; 62:9201-9216. [PMID: 31553873 PMCID: PMC6873108 DOI: 10.1021/acs.jmedchem.9b01120] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biofilm formation is a key mechanism of antimicrobial resistance. We have recently reported two classes of orally bioavailable C-glycosidic inhibitors of the Pseudomonas aeruginosa lectin LecB with antibiofilm activity. They proved efficient in target binding, were metabolically stable, nontoxic, selective, and potent in inhibiting formation of bacterial biofilm. Here, we designed and synthesized six new carboxamides and 24 new sulfonamides for a detailed structure-activity relationship for two clinically representative LecB variants. Sulfonamides generally showed higher inhibition compared to carboxamides, which was rationalized based on crystal structure analyses. Substitutions at the thiophenesulfonamide increased binding through extensive contacts with a lipophilic protein patch. These metabolically stable compounds showed a further increase in potency toward the target and in biofilm inhibition assays. In general, we established the structure-activity relationship for these promising antibiofilm agents and showed that modification of the sulfonamide residue bears future optimization potential.
Collapse
Affiliation(s)
- Roman Sommer
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research , D-66123 Saarbrücken , Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover, D-38124 Braunschweig , Germany
| | - Katharina Rox
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover, D-38124 Braunschweig , Germany.,Chemical Biology , Helmholtz Centre for Infection Research , D-38124 Braunschweig , Germany
| | - Stefanie Wagner
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research , D-66123 Saarbrücken , Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover, D-38124 Braunschweig , Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research , D-66123 Saarbrücken , Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover, D-38124 Braunschweig , Germany
| | - Sarah S Henrikus
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research , D-66123 Saarbrücken , Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover, D-38124 Braunschweig , Germany.,Department of Pharmacy , Saarland University , D-66123 Saarbrücken , Germany
| | - Shelby Newsad
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research , D-66123 Saarbrücken , Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover, D-38124 Braunschweig , Germany
| | - Tatjana Arnold
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover, D-38124 Braunschweig , Germany.,Chemical Biology , Helmholtz Centre for Infection Research , D-38124 Braunschweig , Germany
| | - Thomas Ryckmans
- Roche Pharmaceutical Research and Early Development , Roche Innovation Center Basel , CH-4070 Basel , Switzerland
| | - Mark Brönstrup
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover, D-38124 Braunschweig , Germany.,Chemical Biology , Helmholtz Centre for Infection Research , D-38124 Braunschweig , Germany
| | - Anne Imberty
- Univ. Grenoble Alpes , CNRS, CERMAV , F-38000 Grenoble , France
| | | | - Rolf W Hartmann
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover, D-38124 Braunschweig , Germany.,Department of Pharmacy , Saarland University , D-66123 Saarbrücken , Germany.,Drug Design and Development , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research , D-66123 Saarbrücken , Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research , D-66123 Saarbrücken , Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover, D-38124 Braunschweig , Germany.,Department of Pharmacy , Saarland University , D-66123 Saarbrücken , Germany
| |
Collapse
|
11
|
Malhotra S, Hayes D, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev 2019; 32:e00138-18. [PMID: 31142499 PMCID: PMC6589863 DOI: 10.1128/cmr.00138-18] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span. Pseudomonas aeruginosa is an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly, P. aeruginosa exhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii) P. aeruginosa virulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel J Wozniak
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Sommer R, Wagner S, Rox K, Varrot A, Hauck D, Wamhoff EC, Schreiber J, Ryckmans T, Brunner T, Rademacher C, Hartmann RW, Brönstrup M, Imberty A, Titz A. Glycomimetic, Orally Bioavailable LecB Inhibitors Block Biofilm Formation of Pseudomonas aeruginosa. J Am Chem Soc 2018; 140:2537-2545. [PMID: 29272578 DOI: 10.1021/jacs.7b11133] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The opportunistic Gram-negative bacterium Pseudomonas aeruginosa is a leading pathogen for infections of immuno-compromised patients and those suffering from cystic fibrosis. Its ability to switch from planktonic life to aggregates, forming the so-called biofilms, is a front-line mechanism of antimicrobial resistance. The bacterial carbohydrate-binding protein LecB is an integral component and necessary for biofilm formation. Here, we report a new class of drug-like low molecular weight inhibitors of the lectin LecB with nanomolar affinities and excellent receptor binding kinetics and thermodynamics. This class of glycomimetic inhibitors efficiently blocked biofilm formation of P. aeruginosa in vitro while the natural monovalent carbohydrate ligands failed. Furthermore, excellent selectivity and pharmacokinetic properties were achieved. Notably, two compounds showed good oral bioavailability, and high compound concentrations in plasma and urine were achieved in vivo.
Collapse
Affiliation(s)
- Roman Sommer
- Chemical Biology of Carbohydrates and ‡Drug Design and Development, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Stefanie Wagner
- Chemical Biology of Carbohydrates and ‡Drug Design and Development, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Katharina Rox
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Annabelle Varrot
- Univ. Grenoble Alpes , CNRS, Centre de Recherche sur les Macromolécules Végétales (CERMAV), 38000 Grenoble, France
| | - Dirk Hauck
- Chemical Biology of Carbohydrates and ‡Drug Design and Development, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Eike-Christian Wamhoff
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , D-14195 Berlin, Germany
| | - Janine Schreiber
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Thomas Ryckmans
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel , CH-4070 Basel, Switzerland
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz , D-78457 Konstanz, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , D-14195 Berlin, Germany
| | - Rolf W Hartmann
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany.,Department of Pharmacy, Saarland University , D-66123 Saarbrücken, Germany
| | - Mark Brönstrup
- Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany
| | - Anne Imberty
- Univ. Grenoble Alpes , CNRS, Centre de Recherche sur les Macromolécules Végétales (CERMAV), 38000 Grenoble, France
| | - Alexander Titz
- Chemical Biology of Carbohydrates and ‡Drug Design and Development, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover-Braunschweig, Germany.,Department of Pharmacy, Saarland University , D-66123 Saarbrücken, Germany
| |
Collapse
|
13
|
Khosravi AD, Hoveizavi H, Mohammadian A, Farahani A, Jenabi A. Genotyping of multidrug-resistant strains of Pseudomonas aeruginosa isolated from burn and wound infections by ERIC-PCR. Acta Cir Bras 2016; 31:206-11. [PMID: 27050792 DOI: 10.1590/s0102-865020160030000009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To determine the genetic diversity of MDR P. aeruginosa strains isolated from burn and wound infections in Ahvaz, Iran, by ERIC-PCR. METHODS From total 99 strains of P. aeruginosa defined as MDR by using drug susceptibility testing, 66 were subjected to ERIC-PCR analysis, comprises 53 strains isolated from burn infection, and 13 randomly selected strains from wound infection with higher resistance to combinations of more numbers of drugs. RESULTS Eight clusters (I to VIII), and 50 single clones were generated for tested MDR isolates analyzed by ERIC-PCR. The high heterogeneity was observed among the isolates from burn infections including 16 isolates which were categorized in eight clusters and 37 single clones. The isolates in clusters II, III, VI, VIII showed 100% similarity. CONCLUSIONS The high level of genotypic heterogeneity in P. aeruginosa strains demonstrated no genetic correlation between them. Extremely high drug resistance in isolates from burn, suggests that efficient control measures and proper antibiotic policy should be observed.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hajar Hoveizavi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Mohammadian
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Farahani
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Jenabi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Khosravi AD, Mohammadian A. Efflux MexAB-Mediated Resistance in Multidrug and Pan-Drug Resistant Strains of Pseudomonas aeruginosa Isolated From Patients With Burn and Wound Infections. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-25352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Habibi A, Honarmand R. Profile of Virulence Factors in the Multi-Drug Resistant Pseudomonas aeruginosa Strains of Human Urinary Tract Infections (UTI). IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e26095. [PMID: 26756017 PMCID: PMC4706981 DOI: 10.5812/ircmj.26095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/22/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022]
Abstract
Background: Putative virulence factors are responsible for the pathogenicity of UTIs caused by Pseudomonas aeruginosa (P. aeruginosa). Resistance of P. aeruginosa to commonly used antibiotics is caused by the extreme overprescription of those antibiotics. Objectives: The goal of the present study was to investigate the prevalence of virulence factors and the antibiotic resistance patterns of P. aeruginosa isolates in UTI cases in Iran. Patients and Methods: Two hundred and fifty urine samples were collected from patients who suffered from UTIs. Samples were cultured immediately, and those that were P. aeruginosa-positive were analyzed for the presence of virulence genes using polymerase chain reaction (PCR) testing. Antimicrobial susceptibility testing (AST) was performed using the disk diffusion method. Results: Of the 250 urine samples analyzed, 8 samples (3.2%) were positive for P. aeruginosa. The prevalence of P. aeruginosa in male and female patients was 2.7% and 3.5%, respectively, (P = 0.035). In patients less than 10 years old, it was 4.2%, and in patients more than 55 years old, it was 4.2%. These were the most commonly infected groups. The highest levels of resistance were seen against ampicillin (87.5%), norfloxacin (62.5%), gentamycin (62.5%), amikacin (62.5%), and aztreonam (62.5%), while the lowest were seen for meropenem (0%), imipenem (12.5%), and polymyxin B (12.5%). LasB (87.5%), pclH (75%), pilB (75%), and exoS (75%) were the most commonly detected virulence factors in the P. aeruginosa isolates. Conclusions: It is logical to first prescribe meropenem, imipenem, and polymyxin B in cases of UTIs caused by P. aeruginosa. Medical practitioners should be aware of the presence of levels of antibiotic resistance in hospitalized UTI patients in Iran.
Collapse
Affiliation(s)
- Asghar Habibi
- Emam Reza Hospital, Birjand University of Medical Sciences, Birjand, IR Iran
| | - Ramin Honarmand
- Department of Urology, Emam Reza Hospital, Birjand University of Medical Sciences, Birjand, IR Iran
- Corresponding Author: Ramin Honarmand, Department of Urology, Emam Reza Hospital, Birjand University of Medical Sciences, Birjand, IR Iran. Tel: +98-5632226779, E-mail:
| |
Collapse
|
16
|
Zowawi HM, Harris PNA, Roberts MJ, Tambyah PA, Schembri MA, Pezzani MD, Williamson DA, Paterson DL. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat Rev Urol 2015; 12:570-84. [PMID: 26334085 DOI: 10.1038/nrurol.2015.199] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Antibiotic resistance in Gram-negative uropathogens is a major global concern. Worldwide, the prevalence of Enterobacteriaceae that produce extended-spectrum β-lactamase or carbapenemase enzymes continues to increase at alarming rates. Likewise, resistance to other antimicrobial agents including aminoglycosides, sulphonamides and fluoroquinolones is also escalating rapidly. Bacterial resistance has major implications for urological practice, particularly in relation to catheter-associated urinary tract infections (UTIs) and infectious complications following transrectal-ultrasonography-guided biopsy of the prostate or urological surgery. Although some new drugs with activity against Gram-negative bacteria with highly resistant phenotypes will become available in the near future, the existence of a single agent with activity against the great diversity of resistance is unlikely. Responding to the challenges of Gram-negative resistance will require a multifaceted approach including considered use of current antimicrobial agents, improved diagnostics (including the rapid detection of resistance) and surveillance, better adherence to basic measures of infection prevention, development of new antibiotics and research into non-antibiotic treatment and preventive strategies.
Collapse
Affiliation(s)
- Hosam M Zowawi
- The University of Queensland, UQ Centre for Clinical Research, Building 71/918 Royal Brisbane Hospital, Herston, QLD 4006, Australia
| | - Patrick N A Harris
- The University of Queensland, UQ Centre for Clinical Research, Building 71/918 Royal Brisbane Hospital, Herston, QLD 4006, Australia
| | - Matthew J Roberts
- The University of Queensland, UQ Centre for Clinical Research, Building 71/918 Royal Brisbane Hospital, Herston, QLD 4006, Australia
| | - Paul A Tambyah
- Division of Infectious Diseases, National University Health System, 1E Kent Ridge Road, 119228, Singapore
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - M Diletta Pezzani
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, G. B. Grassi 74, 20157 Milan, Italy
| | - Deborah A Williamson
- Department of Pathology, University of Otago, 23A Mein Street, Newtown, Wellington 6242, New Zealand
| | - David L Paterson
- The University of Queensland, UQ Centre for Clinical Research, Building 71/918 Royal Brisbane Hospital, Herston, QLD 4006, Australia
| |
Collapse
|
17
|
Akya A, Salimi A, Nomanpour B, Ahmadi K. Prevalence and Clonal Dissemination of Metallo-Beta-Lactamase-Producing Pseudomonas aeruginosa in Kermanshah. Jundishapur J Microbiol 2015; 8:e20980. [PMID: 26421137 PMCID: PMC4584137 DOI: 10.5812/jjm.20980v2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 08/16/2014] [Accepted: 08/28/2014] [Indexed: 11/27/2022] Open
Abstract
Background: Pseudomonas aeruginosa is an opportunistic pathogen associated with nosocomial infections. The emergence and dissemination of metallo-beta-lactamases (MBLs) has contributed to the high rate of resistance among P. aeruginosa isolates. Objectives: The purpose of this study was to describe the prevalence and the clonal dissemination of MBL- producing P. aeruginosa isolates collected from major hospitals in Kermanshah. Materials and Methods: Antibiotic susceptibility testing was performed using the minimal inhibitory concentrations. The MBLs were investigated using the Double-Disk Synergy Test (DDST) and Polymerase Chain Reaction. Molecular typing was performed by Pulsed-Field Gel Electrophoresis (PFGE). Results: Of the 60 P. aeruginosa isolates included in this study, 30 (50%) were resistant to Gentamicin, 38 (63.3%) to Piperacillin, 42 (70%) to Ceftazidime, and 45 (75%) to Cefepime. Twenty-nine (48.3%) isolates were MBL producers in the DDST test. Five (8.3%) isolates were positive for the VIM gene. PFGE analysis among the MBL producers revealed 12 distinct clonal patterns. Conclusions: The inter- and intra-hospital dissemination of resistant clones is a matter of concern and is an indicator of the level of the improvement and surveillance of standard hygiene, particularly disinfection and hand washing before and after contact with patients. Given the emergence of MBL-producing strains, surveillance has become an important procedure to control the transmission of resistant strains.
Collapse
Affiliation(s)
- Alisha Akya
- Nosocomial Infection Research Centre, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
- Corresponding author: Alisha Akya, Nosocomial Infection Research Centre, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran. Tel: +98-83134274618, Fax: +98-83134262252, E-mail:
| | - Afsaneh Salimi
- Student Research Committee, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Bizhan Nomanpour
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Kamal Ahmadi
- Student Research Committee, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| |
Collapse
|
18
|
Jerzsele Á, Pásztiné-Gere E. Evaluating synergy between marbofloxacin and gentamicin in Pseudomonas aeruginosa strains isolated from dogs with otitis externa. Acta Microbiol Immunol Hung 2015; 62:45-55. [PMID: 25823453 DOI: 10.1556/amicr.62.2015.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to determine antimicrobial susceptibility of Pseudomonas aeruginosa strains to marbofloxacin and gentamicin, and investigate the possible synergistic, additive, indifferent or antagonistic effects between the two agents. P. aeruginosa strains can develop resistance quickly against certain antibiotics if used alone, thus the need emerges to find synergistic combinations. A total of 68 P. aeruginosa strains isolated from dogs were examined. In order to describe interactions between marbofloxacin and gentamicin the checkerboard microdilution method was utilized. The MICs (minimum inhibitory concentrations) for marbofloxacin and gentamicin were in the range 0.25-64 mg/L and 0.25-32 mg/L, respectively. The combination of marbofloxacin and gentamicin was more effective with a MIC range of 0.031-8 mg/L and a MIC90 of 1 mg/L, compared to 16 mg/L for marbofloxacin alone and 8 mg/L for gentamicin alone. The FIC (fractional inhibitory concentration) indices ranged from 0.0945 (pronounced synergy) to 1.0625 (indifference). Synergy between marbofloxacin and gentamicin was found in 33 isolates. The mean FIC index is 0.546, which represents a partial synergistic/additive effect close to the full synergy threshold. In vitro results indicate that marbofloxacin and gentamicin as partially synergistic agents may prove clinically useful in combination therapy against P. aeruginosa infections. Although marbofloxacin is not used in the human practice, the interactions between fluoroquinolones and aminoglycosides may have importance outside the veterinary field.
Collapse
Affiliation(s)
- Ákos Jerzsele
- 1 Szent István University Department of Pharmacology and Toxicology, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| | - Erzsébet Pásztiné-Gere
- 1 Szent István University Department of Pharmacology and Toxicology, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| |
Collapse
|
19
|
Rajkumari N, John NV, Mathur P, Misra MC. Antimicrobial Resistance in Pseudomonas sp. Causing Infections in Trauma Patients: A 6 Year Experience from a South Asian Country. J Glob Infect Dis 2014; 6:182-5. [PMID: 25538457 PMCID: PMC4265834 DOI: 10.4103/0974-777x.145250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Drug resistance to Pseudomonas sp. has spread to such a level irrespective of the type of patients, that its pattern of distribution and antibiotic resistance needs to be studied in detail, especially in trauma patients and hence the study. A 6 year study was carried out among trauma patients to see the trend and type of resistance prevalent in the apex hospital for trauma care in India among nonduplicate isolates where multidrug-resistance (MDR), cross-resistance and pan-drug resistance in Pseudomonas sp. were analyzed. Of the total 2,269 isolates obtained, the species, which was maximally isolated was Pseudomonas aeruginosa (2,224, 98%). The highest level of resistance was seen in tetracycline (2,166, 95.5%, P < 0.001) and chloramphenicol (2,160, 95.2%, P < 0.001) and least in meropenem (1,739, 76.7%, P < 0.003). Of the total, 1,692 (74.6%) isolates were MDR in which P. aeruginosa (75%) were maximum. MDR Pseudomonas is slowing increasing since the beginning of the study period. Of 1,797 imipenem-resistant P. aeruginosa isolated during the study period, 1,763 (98%) showed resistance to ciprofloxacin or levofloxacin, suggesting that cross-resistance may have developed for imipenem due to prior use of fluoroquinolones. Antibiotic resistance in Pseudomonas sp. is fast becoming a problem in trauma patients, especially in those who requires prolong hospital stay, which calls for proper antimicrobial stewardship.
Collapse
Affiliation(s)
- Nonika Rajkumari
- Department of Laboratory Medicine, Microbiology Division, All India Institute of Medical Sciences, New Delhi, India
| | - Nibu Varghese John
- Hospital Infection Control Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Purva Mathur
- Department of Laboratory Medicine, Microbiology Division, All India Institute of Medical Sciences, New Delhi, India
| | - Mahesh Chandra Misra
- Department of Surgical Disciplines, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
20
|
Wright LL, Turton JF, Livermore DM, Hopkins KL, Woodford N. Dominance of international 'high-risk clones' among metallo-β-lactamase-producing Pseudomonas aeruginosa in the UK. J Antimicrob Chemother 2014; 70:103-10. [PMID: 25182064 DOI: 10.1093/jac/dku339] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Carbapenem-resistant isolates of Pseudomonas aeruginosa producing metallo-β-lactamases (MBLs) are increasingly reported worldwide and often belong to particular 'high-risk clones'. This study aimed to characterize a comprehensive collection of MBL-producing P. aeruginosa isolates referred to the UK national reference laboratory from multiple UK laboratories over a 10 year period. METHODS Isolates were referred to the UK national reference laboratory between 2003 and 2012 for investigation of resistance mechanisms and/or outbreaks. MBL genes were detected by PCR. Typing was carried out by nine-locus variable-number tandem repeat (VNTR) analysis and MLST. RESULTS MBL-producing P. aeruginosa isolates were referred from 267 source patients and 89 UK laboratories. The most common isolation sites were urine (24%), respiratory (18%), wounds (17%) and blood (13%). VIM-type MBLs predominated (91% of all MBLs found), but a few IMP- and NDM-type enzymes were also identified. Diverse VNTR types were seen, but 86% of isolates belonged to six major complexes. MLST of representative isolates from each complex showed that they corresponded to STs 111, 233, 235, 357, 654 and 773, respectively. Isolates belonging to these complexes were received from between 9 and 25 UK referring laboratories each. CONCLUSIONS The incidence of MBL-producing P. aeruginosa is increasing in the UK. The majority of these isolates belong to several 'high-risk clones', which have been previously reported internationally as host clones of MBLs.
Collapse
Affiliation(s)
- Laura L Wright
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, Colindale, London NW9 5EQ, UK Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Jane F Turton
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, Colindale, London NW9 5EQ, UK
| | - David M Livermore
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, Colindale, London NW9 5EQ, UK Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, Colindale, London NW9 5EQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, Colindale, London NW9 5EQ, UK
| |
Collapse
|
21
|
Suzuki Y, Kajii S, Nishiyama M, Iguchi A. Susceptibility of Pseudomonas aeruginosa isolates collected from river water in Japan to antipseudomonal agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 450-451:148-154. [PMID: 23474260 DOI: 10.1016/j.scitotenv.2013.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 02/06/2013] [Accepted: 02/06/2013] [Indexed: 06/01/2023]
Abstract
Pseudomonas aeruginosa is responsible for a number of opportunistic and nosocomial infections. However, very little information is available on the ecology of P. aeruginosa in water environments and its association with antimicrobial resistance. In this study, the distribution of P. aeruginosa and the resistance of P. aeruginosa isolates to various antibiotics were investigated from two rivers, Kiyotake and Yae that flow through Miyazaki City, Japan. P. aeruginosa was distributed widely along the river basins with counts ranging from 2-46 cfu/100 mL. The susceptibility of P. aeruginosa isolates collected from the rivers to various antibiotics was examined by minimum inhibitory concentration. Multidrug-resistant P. aeruginosa strains were not observed or isolated from either river. However, one piperacillin-resistant P. aeruginosa was detected among a total of 516 isolates, and this isolate was also resistant to cefotaxime and showed intermediate resistance to cefitazidime. Less than 1% of all isolates (n=5) were resistant to imipenem, which is the most effective antibiotic against both Gram-negative and Gram-positive bacteria. However, all P. aeruginosa isolates were completely resistant to tetracyclines, which are the most commonly prescribed antibiotics. In advanced nations such as Japan where the majority of the population is urban and where medical services are widespread, antibiotic-resistant bacteria such as P. aeruginosa are likely to be widely distributed, even in apparently pristine rivers.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan.
| | | | | | | |
Collapse
|
22
|
Mudau M, Jacobson R, Minenza N, Kuonza L, Morris V, Engelbrecht H, Nicol MP, Bamford C. Outbreak of multi-drug resistant Pseudomonas aeruginosa bloodstream infection in the haematology unit of a South African Academic Hospital. PLoS One 2013; 8:e55985. [PMID: 23516393 PMCID: PMC3597724 DOI: 10.1371/journal.pone.0055985] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 01/08/2013] [Indexed: 12/19/2022] Open
Abstract
Objective To describe an outbreak of multi-resistant Pseudomonas aeruginosa bloodstream infections (MRPA-BSI) that occurred in the haematology ward of a tertiary academic hospital in Cape Town, South Africa, and determine risk factors for acquisition of MRPA-BSI. Methods The outbreak investigation included a search for additional cases, review of patient records, environmental and staff screening, molecular typing using pulsed-field gel electrophoresis (PFGE) and Multi-locus sequencing (MLST) and a retrospective case-control study. Results Ten MRPA-BSI cases occurred in the haematology ward between January 2010 and January 2011. The case fatality rate was 80%. Staff screening specimens were negative for MRPA and an environmental source was not identified. PFGE showed that 9/10 isolates were related. MLST showed that 3 of these 9 isolates belonged to Sequence type (ST) 233 while the unrelated isolate belonged to ST260. Conclusion We have described an outbreak of MRPA-BSI occurring over an extended period of time among neutropenic haematology patients. Molecular typing confirms that the outbreak was predominantly due to a single strain. The source of the outbreak was not identified, but the outbreak appears to have been controlled following intensive infection control measures.
Collapse
Affiliation(s)
- Maanda Mudau
- Centre for Tropical, Opportunistic and Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Structural insights into the subclass B3 metallo-β-lactamase SMB-1 and the mode of inhibition by the common metallo-β-lactamase inhibitor mercaptoacetate. Antimicrob Agents Chemother 2012; 57:101-9. [PMID: 23070156 DOI: 10.1128/aac.01264-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel subclass B3 metallo-β-lactamase (MBL), SMB-1, recently identified from a Serratia marcescens clinical isolate, showed a higher hydrolytic activity against a wide range of β-lactams than did the other subclass B3 MBLs, i.e., BJP-1 and FEZ-1, from environmental bacteria. To identify the mechanism underlying the differences in substrate specificity among the subclass B3 MBLs, we determined the structure of SMB-1, using 1.6-Å diffraction data. Consequently, we found that SMB-1 reserves a space in the active site to accommodate β-lactam, even with a bulky R1 side chain, due to a loss of amino acid residues corresponding to F31 and L226 of BJP-1, which protrude into the active site to prevent β-lactam from binding. The protein also possesses a unique amino acid residue, Q157, which probably plays a role in recognition of β-lactams via the hydrogen bond interaction, which is missing in BJP-1 and FEZ-1, whose K(m) values for β-lactams are particularly high. In addition, we determined the mercaptoacetate (MCR)-complexed SMB-1 structure and revealed the mode of its inhibition by MCR: the thiolate group bridges to two zinc ions (Zn1 and Zn2). One of the carboxylate oxygen atoms of MCR makes contact with Zn2 and Ser221, and the other makes contact with T223 and a water molecule. Our results demonstrate the possibility that MCR could be a potent inhibitor for subclass B3 MBLs and that the screening technique using MCR as an inhibitor would be effective for detecting subclass B3 MBL producers.
Collapse
|
24
|
Polotto M, Casella T, de Lucca Oliveira MG, Rúbio FG, Nogueira ML, de Almeida MT, Nogueira MC. Detection of P. aeruginosa harboring bla CTX-M-2, bla GES-1 and bla GES-5, bla IMP-1 and bla SPM-1 causing infections in Brazilian tertiary-care hospital. BMC Infect Dis 2012; 12:176. [PMID: 22863113 PMCID: PMC3512492 DOI: 10.1186/1471-2334-12-176] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/24/2012] [Indexed: 12/27/2022] Open
Abstract
Background Nosocomial infections caused by Pseudomonas aeruginosa presenting resistance to beta-lactam drugs are one of the most challenging targets for antimicrobial therapy, leading to substantial increase in mortality rates in hospitals worldwide. In this context, P. aeruginosa harboring acquired mechanisms of resistance, such as production of metallo-beta-lactamase (MBLs) and extended-spectrum beta-lactamases (ESBLs) have the highest clinical impact. Hence, this study was designed to investigate the presence of genes codifying for MBLs and ESBLs among carbapenem resistant P. aeruginosa isolated in a Brazilian 720-bed teaching tertiary care hospital. Methods Fifty-six carbapenem-resistant P. aeruginosa strains were evaluated for the presence of MBL and ESBL genes. Strains presenting MBL and/or ESBL genes were submitted to pulsed-field gel electrophoresis for genetic similarity evaluation. Results Despite the carbapenem resistance, genes for MBLs (blaSPM-1 or blaIMP-1) were detected in only 26.7% of isolates. Genes encoding ESBLs were detected in 23.2% of isolates. The blaCTX-M-2 was the most prevalent ESBL gene (19.6%), followed by blaGES-1 and blaGES-5 detected in one isolate each. In all isolates presenting MBL phenotype by double-disc synergy test (DDST), the blaSPM-1 or blaIMP-1 genes were detected. In addition, blaIMP-1 was also detected in three isolates which did not display any MBL phenotype. These isolates also presented the blaCTX-M-2 gene. The co-existence of blaCTX-M-2 with blaIMP-1 is presently reported for the first time, as like as co-existence of blaGES-1 with blaIMP-1. Conclusions In this study MBLs production was not the major mechanism of resistance to carbapenems, suggesting the occurrence of multidrug efflux pumps, reduction in porin channels and production of other beta-lactamases. The detection of blaCTX-M-2,blaGES-1 and blaGES-5 reflects the recent emergence of ESBLs among antimicrobial resistant P. aeruginosa and the extraordinary ability presented by this pathogen to acquire multiple resistance mechanisms. These findings raise the concern about the future of antimicrobial therapy and the capability of clinical laboratories to detect resistant strains, since simultaneous production of MBLs and ESBLs is known to promote further complexity in phenotypic detection. Occurrence of intra-hospital clonal dissemination enhances the necessity of better observance of infection control practices.
Collapse
Affiliation(s)
- Milena Polotto
- Laboratório de Microbiologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|