1
|
Grome HN, Grass JE, Duffy N, Bulens SN, Ansari U, Campbell D, Lutgring JD, Gargis AS, Masters T, Kent AG, McKay SL, Smith G, Wilson LE, Vaeth E, Evenson B, Dumyati G, Tsay R, Phipps E, Flores K, Wilson CD, Czaja CA, Johnston H, Janelle SJ, Lynfield R, O'Malley S, Vagnone PS, Maloney M, Nadle J, Guh AY. Carbapenem-Resistant and Extended-Spectrum β-Lactamase-Producing Enterobacterales in Children, United States, 2016-2020. Emerg Infect Dis 2024; 30:1104-1114. [PMID: 38781979 PMCID: PMC11138972 DOI: 10.3201/eid3006.231734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
2019–2020 at 6 US sites. Among 159 CRE cases in children (median age 5 years), CRE was isolated from urine for 131 (82.4%) and blood from 20 (12.6%). Annual CRE incidence rate (cases/100,000 population) was 0.47–0.87. Among 207 ESBL-E cases in children (median age 6 years), ESBL-E was isolated from urine of 196 (94.7%) and blood of 8 (3.9%). Annual ESBL-E incidence rate was 26.5 in 2019 and 19.63 in 2020. CRE and ESBL-E rates were >2-fold higher among infants than other age groups. Most CRE and ESBL-E cases were healthcare-associated community-onset (68 [43.0%] for CRE vs. 40 [23.7%] for ESBL-E) or community-associated (43 [27.2%] for CRE vs. 109 [64.5%] for ESBL-E). Programs to detect, prevent, and treat multidrug-resistant infections must include pediatric populations (particularly the youngest) and outpatient settings.
Collapse
|
2
|
Hu Y, Yang Y, Feng Y, Fang Q, Wang C, Zhao F, McNally A, Zong Z. Prevalence and clonal diversity of carbapenem-resistant Klebsiella pneumoniae causing neonatal infections: A systematic review of 128 articles across 30 countries. PLoS Med 2023; 20:e1004233. [PMID: 37339120 DOI: 10.1371/journal.pmed.1004233] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/04/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is the most common pathogen causing neonatal infections, leading to high mortality worldwide. Along with increasing antimicrobial use in neonates, carbapenem-resistant K. pneumoniae (CRKP) has emerged as a severe challenge for infection control and treatment. However, no comprehensive systematic review is available to describe the global epidemiology of neonatal CRKP infections. We therefore performed a systematic review of available data worldwide and combined a genome-based analysis to address the prevalence, clonal diversity, and carbapenem resistance genes of CRKP causing neonatal infections. METHODS AND FINDINGS We performed a systematic review of studies reporting population-based neonatal infections caused by CRKP in combination with a genome-based analysis of all publicly available CRKP genomes with neonatal origins. We searched multiple databases (PubMed, Web of Science, Embase, Ovid MEDLINE, Cochrane, bioRxiv, and medRxiv) to identify studies that have reported data of neonatal CRKP infections up to June 30, 2022. We included studies addressing the prevalence of CRKP infections and colonization in neonates but excluded studies lacking the numbers of neonates, the geographical location, or independent data on Klebsiella or CRKP isolates. We used narrative synthesis for pooling data with JMP statistical software. We identified 8,558 articles and excluding those that did not meet inclusion criteria. We included 128 studies, none of which were preprints, comprising 127,583 neonates in 30 countries including 21 low- and middle-income countries (LMICs) for analysis. We found that bloodstream infection is the most common infection type in reported data. We estimated that the pooled global prevalence of CRKP infections in hospitalized neonates was 0.3% (95% confidence interval [CI], 0.2% to 0.3%). Based on 21 studies reporting patient outcomes, we found that the pooled mortality of neonatal CRKP infections was 22.9% (95% CI, 13.0% to 32.9%). A total of 535 neonatal CRKP genomes were identified from GenBank including Sequence Read Archive, of which 204 were not linked to any publications. We incorporated the 204 genomes with a literature review for understanding the species distribution, clonal diversity, and carbapenemase types. We identified 146 sequence types (STs) for neonatal CRKP strains and found that ST17, ST11, and ST15 were the 3 most common lineages. In particular, ST17 CRKP has been seen in neonates in 8 countries across 4 continents. The vast majority (75.3%) of the 1,592 neonatal CRKP strains available for analyzing carbapenemase have genes encoding metallo-β-lactamases and NDM (New Delhi metallo-β-lactamase) appeared to be the most common carbapenemase (64.3%). The main limitation of this study is the absence or scarcity of data from North America, South America, and Oceania. CONCLUSIONS CRKP contributes to a considerable number of neonatal infections and leads to significant neonatal mortality. Neonatal CRKP strains are highly diverse, while ST17 is globally prevalent and merits early detection for treatment and prevention. The dominance of blaNDM carbapenemase genes imposes challenges on therapeutic options in neonates and supports the continued inhibitor-related drug discovery.
Collapse
Affiliation(s)
- Ya Hu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yongqiang Yang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Qingqing Fang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Chengcheng Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Feifei Zhao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Xu Q, Pan F, Sun Y, Wang C, Shi Y, Zhang T, Yu F, Zhang H. Fecal Carriage and Molecular Epidemiology of Carbapenem-Resistant Enterobacteriaceae from Inpatient Children in a Pediatric Hospital of Shanghai. Infect Drug Resist 2020; 13:4405-4415. [PMID: 33328745 PMCID: PMC7735787 DOI: 10.2147/idr.s275549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose To determine the epidemiology characteristics of intestinal colonization of carbapenem-resistant Enterobacteriaceae (CRE) among inpatients in a pediatric hospital in China. Methods A retrospective study was conducted from April to December 2019. Medical records were reviewed to extract the clinical information. Antimicrobial susceptibility was performed by broth microdilution method. Drug resistance determinants and plasmid types were analyzed using polymerase chain reaction (PCR) assays. Multilocus sequence typing (MLST) and Enterobacterial repetitive intergenic consensus sequences PCR (ERIC-PCR) were employed to determine the genetic relationships between strains. Results A total of 90 CRE strains were isolated, with a fecal carriage rate of 8.6% (90/1052), and mainly distributed in E. aerogenes (n=30), K. pneumoniae (n=25) and E. coli (n=23). More than 50% of CRE colonizers had a history of invasive procedures and antibiotic exposures. As high as 91.1% (82/90) of CRE isolates carried carbapenemase genes, with blaNDM-5 (n=56) being the most common, and mainly found in E. aerogenes (51.8%, 29/56) and E. coli (32.1%, 18/56) isolates, which primarily belonged to ST4 (100%, 29/29) and ST692 (55.6%, 10/18), respectively. Followed by blaKPC-2 (n=12), and all found in K. pneumoniae ST11 isolates. Other carbapenemase genes including blaNDM-1, blaIMP-4 and blaIMP-26. Meanwhile, ESBL genes (blaCTX-M, blaTEM-1 and blaSHV) and AmpC genes (blaDHA-1 and blaEBC) were also detected. All CRE isolates showed high resistance to cephalosporins and carbapenemases (97.8%-100.0%) but remained susceptible to tigecycline (98.9%). IncX3 was a major plasmid type in NDM-containing strains (91.3%), and 91.7% of KPC-2-producing K. pneumoniae harboring IncFII and IncFIB plasmids. The ERIC-PCR revealed that several strains with identical STs were genetically similar. Conclusion This study revealed a major intestinal colonization of ST4 NDM-5 E. aerogenes, ST11 KPC-2 K. pneumoniae and ST692 NDM-5 E. coli strains among inpatients in a pediatric hospital. Infection control measures should be implemented immediately to prevent the spread of these strains in clinical settings.
Collapse
Affiliation(s)
- Qi Xu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yan Sun
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Chun Wang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yingying Shi
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Tiandong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fangyuan Yu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|