1
|
Davido B, Merrick B, Kuijper E, Benech N, Biehl LM, Corcione S. How can the gut microbiome be targeted to fight multidrug-resistant organisms? THE LANCET. MICROBE 2025:101063. [PMID: 39983749 DOI: 10.1016/j.lanmic.2024.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/23/2025]
Abstract
The rise of antimicrobial resistance presents a challenge to public health, undermines the efficacy of antibiotics, and compromises the management of infectious diseases. Gut colonisation by multidrug-resistant organisms, such as multidrug-resistant Enterobacterales and vancomycin-resistant enterococci, is associated with increased morbidity and mortality rates, as well as health-care costs. Of late, the role of the gut microbiome in combating colonisation by multidrug-resistant organisms, which could precede invasive infection, has garnered interest. Innovative interventions, including faecal microbiota transplantation, probiotics, phage therapy, and bacterial consortia, represent potential preventive or therapeutic options to counteract colonisation by multidrug-resistant organisms. In this Personal View, we have synthesised the current findings on these interventions and elucidated their potential as solutions to the crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- Benjamin Davido
- Infectious Diseases Department, Raymond-Poincaré University Hospital, AP-HP, Paris-Saclay University, Garches, France.
| | - Blair Merrick
- Clinical Infection and Diagnostics Research Group, Guy's and St Thomas' NHS Foundation Trust and King's College, London, UK
| | - Ed Kuijper
- Center for Microbiota Analysis and Therapeutics, Leiden University Center for Infectious Disease, Leiden University Medical Center, Leiden, Netherlands
| | - Nicolas Benech
- Hepato-Gastroenterology Department, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France; Lyon GEM Microbiota Study Group, Lyon, France; Claude Bernard Lyon 1 University, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Lena M Biehl
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Bonn-Cologne, Cologne, Germany
| | - Silvia Corcione
- Department of Medical Sciences, University of Turin, Torino, Italy; Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Almeida-Santos AC, Novais C, Peixe L, Freitas AR. Vancomycin-resistant Enterococcus faecium: A current perspective on resilience, adaptation, and the urgent need for novel strategies. J Glob Antimicrob Resist 2025; 41:233-252. [PMID: 39880121 DOI: 10.1016/j.jgar.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) has become a critical opportunistic pathogen, urgently requiring new antimicrobial strategies due to its rising prevalence and significant impact on patient safety and healthcare costs. VREfm continues to evolve through mutations and the acquisition of new genes via horizontal gene transfer, contributing to resistance against several last-resort antibiotics. Although primarily hospital-associated, VREfm are also detected in the community, food chain, livestock, and environmental sources like wastewater, indicating diverse transmission pathways and the need for a One Health approach. Advances in genomics have shed light on VREfm's persistence in hospital settings, particularly its adaptation to the gastrointestinal tract of hospitalized patients, recent clonal shifts, and the dominance of specific clonal lineages. Despite extensive research, significant gaps remain in understanding the molecular mechanisms behind VREfm's unique adaptation to clinical environments. In this review, we aim to present an overview of VREfm current prevalence, mechanisms of resistance, and unveil the adaptive traits that have facilitated VREfm's rise and global success. A particular focus is given to key plasmids, namely linear plasmids, virulence factors, and bacteriocins as potential drivers in the global emergence of the ST78 clonal lineage. We also address diagnostic challenges and the limited treatment options available for VREfm, as well as emerging antibiotic alternatives aimed at restoring gut microbiota balance and curbing VREfm proliferation. A multifaceted approach combining research, clinical practices, and public health policies is crucial to mitigate the impact of this superbug and preserve antimicrobial effectiveness for future generations.
Collapse
Affiliation(s)
- Ana C Almeida-Santos
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal.
| |
Collapse
|
3
|
Zhang HJ, Wang HW, Tian FY, Yang CZ, Zhao M, Ding YX, Wang XY, Cui XY. Decolonization strategies for ESBL-producing or carbapenem-resistant Enterobacterales carriage: a systematic review and meta-analysis. Sci Rep 2024; 14:24349. [PMID: 39420082 PMCID: PMC11487172 DOI: 10.1038/s41598-024-75791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
The prevalence of extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) and carbapenem-resistant Enterobacterales (CRE) has become a global public health problem. ESBL-E/CRE colonization can increase the risk of infection in patients and lead to poor disease prognosis. We conducted a systematic review and meta-analysis to evaluate current decolonization strategies regarding ESBL-E/CRE and their efficacy. A literature search was conducted until August 2023 on the five databases to review decolonization strategies associated with ESBL-E/CRE. A meta-analysis was conducted using RevMan 5.4 to compare differences in the decolonization strategy with placebo controls. The primary outcome was decolonization rates, with secondary outcomes of attributable death and adverse events. Quality of identified studies was determined using the Newcastle-Ottawa scale and cochrane risk assessment tool. Random and fixed effects meta-analyses were performed to calculate pooled value. A total of 25 studies were included. In five randomized controlled trial (RCT) studies, the decolonization effect of selective digestive decontamination(SDD) on ESBL-E/CRE at the end of treatment was significantly better in the experimental group than the controls [risk radio (RR): 3.30; 95% CI 1.78-6.14]. In three n-RCT studies, the decolonization effect in the experimental group was still better than the controls one month after SDD therapy [odds ratio (OR): 4.01; 95% CI 1.88-8.56]. The combined decolonization rates reported by six single-arm trial studies of SDD therapy ranged from 53.8 to 68.0%. Additionally, TSA analysis confirmed the effectiveness of SDD therapy. In studies on Faecal microbiota transplantation (FMT) therapy, the decolonization effect of the experimental group was significantly better than the controls 1 month after treatment (OR: 2.57; 95% CI 1.07-6.16). In studies without a control group and with varying follow-up times, the decolonization rates varied widely but indicated the effectiveness trend of FMT therapy (61.3-81.2%). Currently, research on the decolonization effect of probiotic therapy on ESBL-E/CRE is insufficient, and only a systematic review was conducted. SDD and FMT strategies have short-term benefits for ESBL-E/CRE decolonization, but long-term effects are unclear. The effect of probiotic therapy on ESBL-E/CRE decolonization is an interesting topic that still requires further investigation.
Collapse
Affiliation(s)
- Hai-Jiao Zhang
- Infection Management Department of the Second Hospital of Shanxi Medical University, No.382, Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Hong-Wei Wang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Fang-Ying Tian
- Infection Management Department of the Second Hospital of Shanxi Medical University, No.382, Wuyi Road, Taiyuan, 030000, Shanxi, China.
| | - Cai-Zheng Yang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Ming Zhao
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Yong-Xia Ding
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Xue-Yu Wang
- Department of Infectious Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xin-Yu Cui
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| |
Collapse
|
4
|
Naji A, Siskin D, Woodworth MH, Lee JR, Kraft CS, Mehta N. The Role of the Gut, Urine, and Vaginal Microbiomes in the Pathogenesis of Urinary Tract Infection in Women and Consideration of Microbiome Therapeutics. Open Forum Infect Dis 2024; 11:ofae471. [PMID: 39247802 PMCID: PMC11378400 DOI: 10.1093/ofid/ofae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
The gut, urine, and vaginal microbiomes play significant roles in the pathogenesis of recurrent urinary tract infections (rUTIs). Analysis of these microbiota has shown distinct associations with urinary tract infections. Encouraging data indicate that rUTIs may be responsive to microbiome treatments such as fecal microbiota transplantation, expanding potential treatments beyond antibiotics, hydration, and behavioral interventions. If successful, these nonantibiotic therapies have the potential to increase time between rUTI episodes and reduce the prevalence of multidrug-resistant organisms. In this review, we discuss the role of the 3 microbiomes in the pathogenesis of rUTI and utilization of live biotherapeutic products as therapy for rUTI.
Collapse
Affiliation(s)
- Amal Naji
- Piedmont Hospital, Atlanta, Georgia, USA
| | | | - Michael H Woodworth
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - John R Lee
- Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, New York, USA
| | - Colleen S Kraft
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Nirja Mehta
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Davido B, Watson AR, de Truchis P, Galazzo G, Dinh A, Batista R, Terveer EM, Lawrence C, Michelon H, Jobard M, Saleh-Mghir A, Kuijper EJ, Caballero S. Bacterial diversity and specific taxa are associated with decolonization of carbapenemase-producing enterobacterales after fecal microbiota transplantation. J Infect 2024; 89:106216. [PMID: 38964511 DOI: 10.1016/j.jinf.2024.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES We evaluated the effect of fecal microbiota transplantation (FMT) on the clearance of carbapenemase-producing Enterobacterales (CPE) carriage. METHODS We performed a prospective, multi-center study, conducted among patients who received a single dose of FMT from one of four healthy donors. The primary endpoint was complete clearance of CPE carriage two weeks after FMT with a secondary endpoint at three months. Shotgun metagenomic sequencing was performed to assess gut microbiota composition of donors and recipients before and after FMT. RESULTS Twenty CPE-colonized patients were included in the study, where post-FMT 20% (n = 4/20) of patients met the primary endpoint and 40% (n = 8/20) of patients met the secondary endpoint. Kaplan-Meier curves between patients with FMT intervention and the control group (n = 82) revealed a similar rate of decolonization between groups. Microbiota composition analyses revealed that response to FMT was not donor-dependent. Responders had a significantly lower relative abundance of CPE species pre-FMT than non-responders, and 14 days post-FMT responders had significantly higher bacterial species richness and alpha diversity compared to non-responders (p < 0.05). Responder fecal samples were also enriched in specific species, with significantly higher relative abundances of Faecalibacterium prausnitzii, Parabacteroides distasonis, Collinsella aerofaciens, Alistipes finegoldii and Blautia_A sp900066335 (q<0.01) compared to non-responders. CONCLUSION FMT administration using the proposed regimen did not achieve statistical significance for complete CPE decolonization but was correlated with the relative abundance of specific bacterial taxa, including CPE species.
Collapse
Affiliation(s)
- Benjamin Davido
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France; FHU PaCeMM, Hôpital Saint-Antoine, AP-HP Université Paris Centre, 75571 Paris Cedex 12, France.
| | | | - Pierre de Truchis
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France
| | | | - Aurelien Dinh
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France; FHU PaCeMM, Hôpital Saint-Antoine, AP-HP Université Paris Centre, 75571 Paris Cedex 12, France
| | - Rui Batista
- Pharmacie Hospitalière, Hôpital Universitaire Cochin, AP-HP, 75014 Paris, France
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Netherlands Donor Feces Bank (NDFB) at Leiden University Medical Center, Leiden, the Netherlands
| | - Christine Lawrence
- Laboratoire de Microbiologie, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France
| | - Hugues Michelon
- Pharmacie Hospitalière, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France
| | - Marion Jobard
- Pharmacie Hospitalière, Hôpital Universitaire Cochin, AP-HP, 75014 Paris, France
| | - Azzam Saleh-Mghir
- Maladies Infectieuses, Hôpital Universitaire Raymond-Poincaré, AP-HP Université Paris Saclay, 92380 Garches, France; UMR1173, Université Versailles Saint-Quentin, 78000 Versailles, France
| | - Ed J Kuijper
- Department of Medical Microbiology, Netherlands Donor Feces Bank (NDFB) at Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
6
|
Kriz J, Hysperska V, Bebrova E, Roznetinska M. Faecal microbiota transplantation for multidrug-resistant organism decolonization in spinal cord injury patients: a case series. Infect Prev Pract 2024; 6:100340. [PMID: 38357521 PMCID: PMC10865020 DOI: 10.1016/j.infpip.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction The increase of multidrug-resistant (MDR) bacteria in healthcare settings is a worldwide concern. Isolation precautions must be implemented to control the significant risk of transmitting these pathogens among patients. Antibiotic decolonization is not recommended because of the threat of increasing antibiotic resistance. However, restoring gut microflora through faecal microbiota transplantation (FMT) is a hopeful solution. Patients and method In 2019-2022, FMT was indicated in seven patients of the Spinal Cord Unit at University Hospital Motol who were colonized with MDR bacterial strains. Five patients tested positive for carriage of carbapenemase-producing Enterobacteriaceae, and two were carriers of vancomycin-resistant enterococci. Isolation measures were implemented in all patients. Donor faeces were obtained from healthy, young, screened volunteers. According to local protocol, 200-300 ml of suspension was applied through a nasoduodenal tube. Results The mean age of the patients was 43 years. The mean length of previous hospital stay was 93.2 days. All patients were treated with broad-spectrum antibiotics for infectious complications before detecting colonisation with MDR bacteria. MDR organism decolonization was achieved in five patients, and consequently, isolation measures could be removed. Colonization persisted in two patients, one of whom remained colonized even after a third FMT. No adverse events were reported after FMT. Conclusion FMT is a safe and effective strategy to eradicate MDR bacteria, even in spinal cord injured patients. FMT can allow relaxation of isolation facilitates, the participation of patients in a complete rehabilitation program, their social integration, and transfer to follow-up rehabilitation centres.
Collapse
Affiliation(s)
- Jiri Kriz
- Spinal Cord Unit, Department of Rehabilitation and Sports Medicine, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Orthopaedics and Traumatology, 3 Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Veronika Hysperska
- Spinal Cord Unit, Department of Rehabilitation and Sports Medicine, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Eliska Bebrova
- Department of Medical Microbiology, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marketa Roznetinska
- Department of Internal Medicine, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
7
|
Nooij S, Vendrik KEW, Zwittink RD, Ducarmon QR, Keller JJ, Kuijper EJ, Terveer EM. Long-term beneficial effect of faecal microbiota transplantation on colonisation of multidrug-resistant bacteria and resistome abundance in patients with recurrent Clostridioides difficile infection. Genome Med 2024; 16:37. [PMID: 38419010 PMCID: PMC10902993 DOI: 10.1186/s13073-024-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria are a growing global threat, especially in healthcare facilities. Faecal microbiota transplantation (FMT) is an effective prevention strategy for recurrences of Clostridioides difficile infections and can also be useful for other microbiota-related diseases. METHODS We study the effect of FMT in patients with multiple recurrent C. difficile infections on colonisation with MDR bacteria and antibiotic resistance genes (ARG) on the short (3 weeks) and long term (1-3 years), combining culture methods and faecal metagenomics. RESULTS Based on MDR culture (n = 87 patients), we notice a decrease of 11.5% in the colonisation rate of MDR bacteria after FMT (20/87 before FMT = 23%, 10/87 3 weeks after FMT). Metagenomic sequencing of patient stool samples (n = 63) shows a reduction in relative abundances of ARGs in faeces, while the number of different resistance genes in patients remained higher compared to stools of their corresponding healthy donors (n = 11). Furthermore, plasmid predictions in metagenomic data indicate that patients harboured increased levels of resistance plasmids, which appear unaffected by FMT. In the long term (n = 22 patients), the recipients' resistomes are still donor-like, suggesting the effect of FMT may last for years. CONCLUSIONS Taken together, we hypothesise that FMT restores the gut microbiota to a composition that is closer to the composition of healthy donors, and potential pathogens are either lost or decreased to very low abundances. This process, however, does not end in the days following FMT. It may take months for the gut microbiome to re-establish a balanced state. Even though a reservoir of resistance genes remains, a notable part of which on plasmids, FMT decreases the total load of resistance genes.
Collapse
Affiliation(s)
- Sam Nooij
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands.
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands.
| | - Karuna E W Vendrik
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
- Present address: Centre for Infectious Disease Control, Netherlands Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
- Present address: Centre for Infectious Disease Control, Netherlands Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Quinten R Ducarmon
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Department of Gastroenterology, Haaglanden Medical Center, The Hague, Netherlands
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| | - Elisabeth M Terveer
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Abstract
Antibiotics have benefitted human health since their introduction nearly a century ago. However, the rise of antibiotic resistance may portend the dawn of the "post-antibiotic age." With the narrow pipeline for novel antimicrobials, we need new approaches to deal with the rise of multidrug resistant organisms. In the last 2 decades, the role of the intestinal microbiota in human health has been acknowledged and studied widely. Of the various activities carried out by the gut microbiota, colonization resistance is a key function that helps maintain homeostasis. Therefore, re-establishing a healthy microbiota is a novel strategy for treating drug resistance organisms. Preliminary studies suggest that this is a viable approach. However, the extent of their success still needs to be examined. Herein, we will review work in this area and suggest where future studies can further investigate this method for dealing with the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Nguyen T Q Nhu
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Rubin IMC, Knudsen MJS, Halkjær SI, Ilsby CS, Pinholt M, Petersen AM. Lacticaseibacillus rhamnosus GG Versus Placebo for Eradication of Vancomycin-Resistant Enterococcus faecium in Intestinal Carriers: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:2804. [PMID: 38004815 PMCID: PMC10673360 DOI: 10.3390/microorganisms11112804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this review was to assess the efficacy and safety of Lacticaseibacillus rhamnosus GG (LGG) (previously known as Lactobacillus rhamnosus GG) for the eradication of vancomycin-resistant Enterococcus faecium (VREfm) in colonized carriers. We searched Cochrane Central, EMBASE, and the PubMed Library from inception to 21 August 2023, for randomized controlled trials (RCTs) investigating the effectiveness of LGG for the eradication of gastrointestinal carriage of VREfm. An initial screening was performed followed by a full-text evaluation of the papers. Out of 4076 articles in the original screening, six RCTs (167 participants) were included in the review. All were placebo-controlled RCTs. The meta-analysis was inconclusive with regard to the effect of LGG for clearing VREfm colonization. The overall quality of the evidence was low due to inconsistency and the small number of patients in the trials. We found insufficient evidence to support the use of LGG for the eradication of VREfm in colonized carriers. There is a need for larger RCTs with a standardized formulation and dosage of LGG in future trials.
Collapse
Affiliation(s)
- Ingrid Maria Cecilia Rubin
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (M.J.S.K.); (C.S.I.); (M.P.); (A.M.P.)
| | - Maja Johanne Søndergaard Knudsen
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (M.J.S.K.); (C.S.I.); (M.P.); (A.M.P.)
| | - Sofie Ingdam Halkjær
- Gastrounit, Medical Section, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark;
| | - Christian Schaadt Ilsby
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (M.J.S.K.); (C.S.I.); (M.P.); (A.M.P.)
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (M.J.S.K.); (C.S.I.); (M.P.); (A.M.P.)
| | - Andreas Munk Petersen
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (M.J.S.K.); (C.S.I.); (M.P.); (A.M.P.)
- Gastrounit, Medical Section, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 1172 Copenhagen, Denmark
| |
Collapse
|
10
|
Mansoor AER, O'Neil CA, Kwon JH. The role of microbiome-based therapeutics for the reduction and prevention of antimicrobial-resistant organism colonization. Anaerobe 2023; 83:102772. [PMID: 37572864 DOI: 10.1016/j.anaerobe.2023.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The gut is host to a diverse array of microbiota that constitute a complex ecological system crucial to human physiology. Disruptors to the normal host microbiota, such as antimicrobials, can cause a loss of species diversity in the gut, reducing its ability to resist colonization by invading pathogens and potentially leading to colonization with antimicrobial resistant organisms (AROs). ARO negatively impact gut health by disrupting the usual heterogeneity of gut microbiota and have the potential to cause systemic disease. In recent years, fecal microbiota transplantation (FMT) has been increasingly explored in the management of specific disease states such as Clostridioides difficile infection (CDI). Promising data from management of CDI has led to considerable interest in understanding the role of therapeutics to restore the gut microbiota to a healthy state. This review aims to discuss key studies that highlight the current landscape, and explore existing clinical evidence, for the use of FMT and microbiome-based therapeutics in combating intestinal colonization with ARO. We also explore potential future directions of such therapeutics and discuss unaddressed needs in this field that merit further investigation.
Collapse
Affiliation(s)
- Armaghan-E-Rehman Mansoor
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| | - Caroline A O'Neil
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| | - Jennie H Kwon
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Horrocks V, King OG, Yip AYG, Marques IM, McDonald JAK. Role of the gut microbiota in nutrient competition and protection against intestinal pathogen colonization. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001377. [PMID: 37540126 PMCID: PMC10482380 DOI: 10.1099/mic.0.001377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
The human gut microbiota can restrict the growth of pathogens to prevent them from colonizing the intestine ('colonization resistance'). However, antibiotic treatment can kill members of the gut microbiota ('gut commensals') and reduce competition for nutrients, making these nutrients available to support the growth of pathogens. This disturbance can lead to the growth and expansion of pathogens within the intestine (including antibiotic-resistant pathogens), where these pathogens can exploit the absence of competitors and the nutrient-enriched gut environment. In this review, we discuss nutrient competition between the gut microbiota and pathogens. We also provide an overview of how nutrient competition can be harnessed to support the design of next-generation microbiome therapeutics to restrict the growth of pathogens and prevent the development of invasive infections.
Collapse
Affiliation(s)
- Victoria Horrocks
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Olivia G. King
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Alexander Y. G. Yip
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Inês Melo Marques
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Julie A. K. McDonald
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
12
|
Merrick B, Sergaki C, Edwards L, Moyes DL, Kertanegara M, Prossomariti D, Shawcross DL, Goldenberg SD. Modulation of the Gut Microbiota to Control Antimicrobial Resistance (AMR)-A Narrative Review with a Focus on Faecal Microbiota Transplantation (FMT). Infect Dis Rep 2023; 15:238-254. [PMID: 37218816 DOI: 10.3390/idr15030025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and CPE). These pathogens have limited treatment options and are associated with poor clinical outcomes, including high mortality rates. The microbiota of the gastrointestinal tract acts as a major reservoir of antibiotic resistance genes (the resistome), and the environment facilitates intra and inter-species transfer of mobile genetic elements carrying these resistance genes. As colonisation often precedes infection, strategies to manipulate the resistome to limit endogenous infections with AMR organisms, as well as prevent transmission to others, is a worthwhile pursuit. This narrative review presents existing evidence on how manipulation of the gut microbiota can be exploited to therapeutically restore colonisation resistance using a number of methods, including diet, probiotics, bacteriophages and faecal microbiota transplantation (FMT).
Collapse
Affiliation(s)
- Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Chrysi Sergaki
- Diagnostics R&D, Medicines and Healthcare Products Regulatory Agency (MHRA), Potters Bar EN6 3QG, UK
| | - Lindsey Edwards
- School of Immunology and Microbial Sciences, Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London SE1 1UK, UK
| | - Michael Kertanegara
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Désirée Prossomariti
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Debbie L Shawcross
- School of Immunology and Microbial Sciences, Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| |
Collapse
|
13
|
Intestinal colonization with multidrug-resistant Enterobacterales: screening, epidemiology, clinical impact, and strategies to decolonize carriers. Eur J Clin Microbiol Infect Dis 2023; 42:229-254. [PMID: 36680641 PMCID: PMC9899200 DOI: 10.1007/s10096-023-04548-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
The clinical impact of infections due to extended-spectrum β-lactamase (ESBL)- and/or carbapenemase-producing Enterobacterales (Ent) has reached dramatic levels worldwide. Infections due to these multidrug-resistant (MDR) pathogens-especially Escherichia coli and Klebsiella pneumoniae-may originate from a prior asymptomatic intestinal colonization that could also favor transmission to other subjects. It is therefore desirable that gut carriers are rapidly identified to try preventing both the occurrence of serious endogenous infections and potential transmission. Together with the infection prevention and control countermeasures, any strategy capable of effectively eradicating the MDR-Ent from the intestinal tract would be desirable. In this narrative review, we present a summary of the different aspects linked to the intestinal colonization due to MDR-Ent. In particular, culture- and molecular-based screening techniques to identify carriers, data on prevalence and risk factors in different populations, clinical impact, length of colonization, and contribution to transmission in various settings will be overviewed. We will also discuss the standard strategies (selective digestive decontamination, fecal microbiota transplant) and those still in development (bacteriophages, probiotics, microcins, and CRISPR-Cas-based) that might be used to decolonize MDR-Ent carriers.
Collapse
|
14
|
Hyun J, Lee SK, Cheon JH, Yong DE, Koh H, Kang YK, Kim MH, Sohn Y, Cho Y, Baek YJ, Kim JH, Ahn JY, Jeong SJ, Yeom JS, Choi JY. Faecal microbiota transplantation reduces amounts of antibiotic resistance genes in patients with multidrug-resistant organisms. Antimicrob Resist Infect Control 2022; 11:20. [PMID: 35093183 PMCID: PMC8800327 DOI: 10.1186/s13756-022-01064-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Background Multidrug-resistant organisms (MDROs) such as vancomycin-resistant enterococci (VRE) and carbapenemase-producing Enterobacteriaceae (CPE) are associated with prolonged hospitalisation, increased medical costs, and severe infections. Faecal microbiota transplantation (FMT) has emerged as an important strategy for decolonisation. This study aimed to evaluate the genetic response of MDROs to FMT. Methods A single-centre prospective study was conducted on patients infected with VRE, CPE, or VRE/CPE who underwent FMT between May 2018 and April 2019. Genetic response was assessed as the change in the expression of the resistance genes VanA, blaKPC, blaNDM, and blaOXA on days 1, 7, 14, and 28 by real-time reverse-transcription polymerase chain reaction. Results Twenty-nine patients received FMT, of which 26 (59.3%) were infected with VRE, 5 (11.1%) with CPE, and 8 (29.6%) with VRE/CPE. The mean duration of MDRO carriage before FMT was 71 days. Seventeen patients (63.0%) used antibiotics within a week of FMT. In a culture-dependent method, the expression of VanA and overall genes significantly decreased (p = 0.011 and p = 0.003 respectively). In a culture-independent method, VanA, blaNDM, and overall gene expression significantly decreased over time after FMT (p = 0.047, p = 0.048, p = 0.002, respectively). Similar results were confirmed following comparison between each time point in both the culture-dependent and -independent methods. Regression analysis did not reveal important factors underlying the genetic response after FMT. No adverse events were observed. Conclusion FMT in patients infected with MDROs downregulates the expression of resistance genes, especially VanA, and facilitates MDRO decolonisation.
Collapse
|
15
|
Efficacy and Safety of Fecal Microbiota Transplantation for Clearance of Multidrug-Resistant Organisms under Multiple Comorbidities: A Prospective Comparative Trial. Biomedicines 2022; 10:biomedicines10102404. [PMID: 36289668 PMCID: PMC9598999 DOI: 10.3390/biomedicines10102404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Fecal microbiota transplantation (FMT) could decolonize multidrug-resistant organisms. We investigated FMT effectiveness and safety in the eradication of carbapenem-resistant Enterobacteriaceae (CRE) and vancomycin-resistant enterococci (VRE) intestinal colonization. A prospective non-randomized comparative study was performed with 48 patients. FMT material (60 g) was obtained from a healthy donor, frozen, and administered via endoscopy. The primary endpoint was 1-month decolonization, and secondary endpoints were 3-month decolonization and adverse events. Microbiota analysis of fecal samples was performed using 16S rRNA sequencing. Intention-to-treat analysis revealed overall negative conversion between the FMT and control groups at 1 (26% vs. 10%, p = 0.264) and 3 (52% vs. 24%, p = 0.049) months. The 1-month and 3-month CRE clearance did not differ significantly by group (36% vs. 10%, p = 0.341; and 71% vs. 30%, p = 0.095, respectively). Among patients with VRE, FMT was ineffective for 1-month or 3-month negative conversion (13% vs. 9%, p > 0.999; and 36% vs. 18%, p = 0.658, respectively) However, cumulative overall negative-conversion rate was significantly higher in the FMT group (p = 0.037). Enterococcus abundance in patients with VRE significantly decreased following FMT. FMT may be effective at decolonizing multidrug-resistant organisms in the intestinal tract.
Collapse
|
16
|
Sundaramoorthy NS, Shankaran P, Gopalan V, Nagarajan S. New tools to mitigate drug resistance in Enterobacteriaceae - Escherichia coli and Klebsiella pneumoniae. Crit Rev Microbiol 2022:1-20. [PMID: 35649163 DOI: 10.1080/1040841x.2022.2080525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Treatment to common bacterial infections are becoming ineffective of late, owing to the emergence and dissemination of antibiotic resistance globally. Escherichia coli and Klebsiella pneumoniae are the most notorious microorganisms and are among the critical priority pathogens listed by WHO in 2017. These pathogens are the predominant cause of sepsis, urinary tract infections (UTIs), pneumonia, meningitis and pyogenic liver abscess. Concern arises due to the resistance of bacteria to most of the beta lactam antibiotics like penicillin, cephalosporin, monobactams and carbapenems, even to the last resort antibiotics like colistin. Preventing influx by modulation of porins, extruding the antibiotics by overexpression of efflux pumps, mutations of drug targets/receptors, biofilm formation, altering the drug molecules and rendering them ineffective are few resistance mechanisms that are adapted by Enterobacteriaeceae upon exposure to antibiotics. The situation is exacerbated due to the process of horizontal gene transfer (HGT), wherein the genes encoding resistance mechanisms are transferred to the neighbouring bacteria through plasmids/phages/uptake of free DNA. Carbapenemases, other beta lactamases and mcr genes coding for colistin resistance are widely disseminated leading to limited/no therapeutic options against those infections. Development of new antibiotics can be viewed as a possible solution but it involves major investment, time and labour despite which, the bacteria can easily adapt to the new antibiotic and evolve resistance in a relatively short time. Targeting the resistance mechanisms can be one feasible alternative to tackle these multidrug resistant (MDR) pathogens. Removal of plasmid (plasmid curing) causing resistance, use of bacteriophages and bacteriotherapy can be other potential approaches to combat infections caused by MDR E. coli and K. pneumoniae. The present review discusses the efficacies of these therapies in mitigating these infections, which can be potentially used as an adjuvant therapy along with existing antibiotics.
Collapse
Affiliation(s)
- Niranjana Sri Sundaramoorthy
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| | - Prakash Shankaran
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| | - Vidhya Gopalan
- Department of Virology, Kings Institute of Preventative Medicine, Guindy, Chennai, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
17
|
Longitudinal Evaluation of Gut Bacteriomes and Viromes after Fecal Microbiota Transplantation for Eradication of Carbapenem-Resistant Enterobacteriaceae. mSystems 2022; 7:e0151021. [PMID: 35642928 PMCID: PMC9239097 DOI: 10.1128/msystems.01510-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the role of fecal microbiota transplantation (FMT) in the decolonization of multidrug-resistant organisms (MDRO) is critical. Specifically, little is known about virome changes in MDRO-infected subjects treated with FMT. Using shotgun metagenomic sequencing, we characterized longitudinal dynamics of the gut virome and bacteriome in three recipients who successfully decolonized carbapenem-resistant Enterobacteriaceae (CRE), including Klebsiella spp. and Escherichia coli, after FMT. We observed large shifts of the fecal bacterial microbiota resembling a donor-like community after transfer of a fecal microbiota dominated by the genus Ruminococcus. We found a substantial expansion of Klebsiella phages after FMT with a concordant decrease of Klebsiella spp. and striking increase of Escherichia phages in CRE E. coli carriers after FMT. We also observed the CRE elimination and similar evolution of Klebsiella phage in mice, which may play a role in the collapse of the Klebsiella population after FMT. In summary, our pilot study documented bacteriome and virome alterations after FMT which mediate many of the effects of FMT on the gut microbiome community. IMPORTANCE Fecal microbiota transplantation (FMT) is an effective treatment for multidrug-resistant organisms; however, introducing a complex mixture of microbes also has unknown consequences for landscape features of gut microbiome. We sought to understand bacteriome and virome alterations in patients undergoing FMT to treat infection with carbapenem-resistant Enterobacteriaceae. This finding indicates that transkingdom interactions between the virome and bacteriome communities may have evolved in part to support efficient FMT for treating CRE.
Collapse
|
18
|
Pérez-Nadales E, Cano Á, Recio M, Artacho MJ, Guzmán-Puche J, Doblas A, Vidal E, Natera C, Martínez-Martínez L, Torre-Cisneros J, Castón JJ. Randomised, double-blind, placebo-controlled, phase 2, superiority trial to demonstrate the effectiveness of faecal microbiota transplantation for selective intestinal decolonisation of patients colonised by carbapenemase-producing Klebsiella pneumoniae (KAPEDIS). BMJ Open 2022; 12:e058124. [PMID: 35387830 PMCID: PMC8987760 DOI: 10.1136/bmjopen-2021-058124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Infections caused by carbapenemase-producing Enterobacterales are frequent and associated with high rates of mortality. Intestinal carriers are at increased risk of infection by these microorganisms. Decolonisation strategies with antibiotics have not obtained conclusive results. Faecal microbiota transplantation (FMT) could be an effective and safe strategy to decolonise intestinal carriers of KPC-producing Klebsiella pneumoniae (KPC-Kp) but this hypothesis needs evaluation in appropriate clinical trials. METHODS AND ANALYSIS The KAPEDIS trial is a single-centre, randomised, double-blind, placebo-controlled, phase 2, superiority clinical trial of FMT for eradication of intestinal colonisation by KPC-Kp. One hundred and twenty patients with rectal colonisation by KPC-Kp will be randomised 1:1 to receive encapsulated lyophilised FMT or placebo. The primary outcome is KPC-Kp eradication at 30 days. Secondary outcomes are: (1) frequency of adverse events; (2) changes in KPC-Kp relative load within the intestinal microbiota at 7, 30 and 90 days, estimated by real-time quantitative PCR analysis of rectal swab samples and (3) rates of persistent eradication, KPC-Kp infection and crude mortality at 90 days. Participants will be monitored for adverse effects throughout the intervention. ETHICS AND DISSEMINATION Ethical approval was obtained from Reina Sofía University Hospital Institutional Review Board (approval reference number: 2019-003808-13). Trial results will be published in peer-reviewed journals and disseminated at national and international conferences. TRIAL REGISTRATION NUMBER NCT04760665.
Collapse
Grants
- Plan Estatal de I+D+I 2013-2016, co-financed by the ISCIII-Subdirección General de Evaluación y Fomento de la Investigación and the Fondo Europeo de Desarrollo Regional (FEDER)
- Grant to EPN from Consejería de Salud y Familias, Junta de Andalucía
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- Plan Nacional de I+D+i 2013‐2016 and Instituto de Salud Carlos III (ISCIII), Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, Spanish Network for Research in Infectious Diseases (RD16/0016/0008) ‐ co‐financed by European Development Regional Fund “A way to achieve Europe”, Operative program Intelligent Growth 2014‐2020.
Collapse
Affiliation(s)
- Elena Pérez-Nadales
- Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofía/Universidad de Córdoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Red Española de Investigación en Patologías Infecciosas (REIPI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Química Agrícola, Edafología y Microbiología, Universidad de Cordoba, Cordoba, Spain
- CIBER de Enfermedades Infecciosas-CIBERINFEC (CB21/13/00049)), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángela Cano
- Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofía/Universidad de Córdoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Red Española de Investigación en Patologías Infecciosas (REIPI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CIBER de Enfermedades Infecciosas-CIBERINFEC (CB21/13/00049)), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Cordoba, Spain
| | - Manuel Recio
- Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofía/Universidad de Córdoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Red Española de Investigación en Patologías Infecciosas (REIPI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Gestión Clínica de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Cordoba, Spain
| | - María José Artacho
- Unidad de Gestión Clínica de Microbiología, Hospital Santa Ana, Motril, Granada, Spain
| | - Julia Guzmán-Puche
- Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofía/Universidad de Córdoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Red Española de Investigación en Patologías Infecciosas (REIPI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CIBER de Enfermedades Infecciosas-CIBERINFEC (CB21/13/00049)), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Microbiología, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain
| | - Antonio Doblas
- Unidad de Gestión Clínica de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Cordoba, Spain
| | - Elisa Vidal
- Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofía/Universidad de Córdoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Red Española de Investigación en Patologías Infecciosas (REIPI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CIBER de Enfermedades Infecciosas-CIBERINFEC (CB21/13/00049)), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Cordoba, Spain
| | - Clara Natera
- Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofía/Universidad de Córdoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Red Española de Investigación en Patologías Infecciosas (REIPI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Gestión Clínica de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Cordoba, Spain
| | - Luis Martínez-Martínez
- Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofía/Universidad de Córdoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Red Española de Investigación en Patologías Infecciosas (REIPI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Química Agrícola, Edafología y Microbiología, Universidad de Cordoba, Cordoba, Spain
- CIBER de Enfermedades Infecciosas-CIBERINFEC (CB21/13/00049)), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Microbiología, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain
| | - Julian Torre-Cisneros
- Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofía/Universidad de Córdoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Red Española de Investigación en Patologías Infecciosas (REIPI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CIBER de Enfermedades Infecciosas-CIBERINFEC (CB21/13/00049)), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Cordoba, Spain
- Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba, Cordoba, Spain
| | - Juan José Castón
- Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofía/Universidad de Córdoba (IMIBIC/HURS/UCO), Cordoba, Spain
- Red Española de Investigación en Patologías Infecciosas (REIPI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CIBER de Enfermedades Infecciosas-CIBERINFEC (CB21/13/00049)), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Enfermedades Infecciosas, Hospital Universitario Reina Sofía de Córdoba, Cordoba, Spain
| |
Collapse
|
19
|
Fecal microbiota transplantation for Carbapenem-Resistant Enterobacteriaceae: A systematic review. J Infect 2022; 84:749-759. [PMID: 35461908 DOI: 10.1016/j.jinf.2022.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023]
|
20
|
Gebrayel P, Nicco C, Al Khodor S, Bilinski J, Caselli E, Comelli EM, Egert M, Giaroni C, Karpinski TM, Loniewski I, Mulak A, Reygner J, Samczuk P, Serino M, Sikora M, Terranegra A, Ufnal M, Villeger R, Pichon C, Konturek P, Edeas M. Microbiota medicine: towards clinical revolution. J Transl Med 2022; 20:111. [PMID: 35255932 PMCID: PMC8900094 DOI: 10.1186/s12967-022-03296-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.
Collapse
|
21
|
Fecal Microbiota Transplant for Hematologic and Oncologic Diseases: Principle and Practice. Cancers (Basel) 2022; 14:cancers14030691. [PMID: 35158960 PMCID: PMC8833574 DOI: 10.3390/cancers14030691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary The transfer of a normal intestinal microbial community from healthy donors by way of their fecal material into patients with various diseases is an emerging therapeutic approach, particularly to treat patients with recurrent or refractory C. difficile infections (CDI). This approach, called fecal microbiota transplant (FMT), is increasingly being applied to patients with hematologic and oncologic diseases to treat recurrent CDI, modulate treatment-related complications, and improve cancer treatment outcome. In this review paper, we discussed the principles and methods of FMT. We examined the results obtained thus far from its use in hematologic and oncologic patients. We also propose novel uses for the therapeutic approach and appraised the challenges associated with its use, especially in this group of patients. Abstract Understanding of the importance of the normal intestinal microbial community in regulating microbial homeostasis, host metabolism, adaptive immune responses, and gut barrier functions has opened up the possibility of manipulating the microbial composition to modulate the activity of various intestinal and systemic diseases using fecal microbiota transplant (FMT). It is therefore not surprising that use of FMT, especially for treating relapsed/refractory Clostridioides difficile infections (CDI), has increased over the last decade. Due to the complexity associated with and treatment for these diseases, patients with hematologic and oncologic diseases are particularly susceptible to complications related to altered intestinal microbial composition. Therefore, they are an ideal population for exploring FMT as a therapeutic approach. However, there are inherent factors presenting as obstacles for the use of FMT in these patients. In this review paper, we discussed the principles and biologic effects of FMT, examined the factors rendering patients with hematologic and oncologic conditions to increased risks for relapsed/refractory CDI, explored ongoing FMT studies, and proposed novel uses for FMT in these groups of patients. Finally, we also addressed the challenges of applying FMT to these groups of patients and proposed ways to overcome these challenges.
Collapse
|
22
|
Uno S, Takano Y, Iketani O, Abiko T, Miwa T, Nanki K, Kurihara T, Tamura Y, Ara M, Uwamino Y, Shinjoh M, Mori T, Hasegawa N. Digestive Decolonization of Colorectal Carriage of Vancomycin-resistant Enterococcus faecium in a Japanese Adult. Intern Med 2022; 61:249-252. [PMID: 34176828 PMCID: PMC8851193 DOI: 10.2169/internalmedicine.6088-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Patients with vancomycin-resistant Enterococcus (VRE) colonization should be managed in an isolation room with contact precautions. We herein report a patient whose colorectal carriage of VRE was successfully decolonized using concomitant bowel irrigation with polyethylene glycol, probiotics, and oral antimicrobials, linezolid and orally-administered daptomycin, for release from isolation and contact precautions. We therefore would like to suggest a potential strategy for managing patients with VRE colonization.
Collapse
Affiliation(s)
- Shunsuke Uno
- Department of Infectious Diseases, Keio University School of Medicine, Japan
- Division of Infectious Diseases and Infection Control, Keio University Hospital, Japan
| | - Yaoko Takano
- Division of Infectious Diseases and Infection Control, Keio University Hospital, Japan
| | - Osamu Iketani
- Division of Infectious Diseases and Infection Control, Keio University Hospital, Japan
| | - Tomohiro Abiko
- Department of Neurosurgery, Keio University School of Medicine, Japan
| | - Tomoru Miwa
- Department of Neurosurgery, Keio University School of Medicine, Japan
| | - Kosaku Nanki
- Division of Gastroenterology, Department of Internal Medicine, Keio University School of Medicine, Japan
| | - Tomohiro Kurihara
- Division of Infectious Diseases and Infection Control, Keio University Hospital, Japan
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Japan
| | - Yuko Tamura
- Division of Infectious Diseases and Infection Control, Keio University Hospital, Japan
| | - Miyuki Ara
- Division of Infectious Diseases and Infection Control, Keio University Hospital, Japan
| | - Yoshifumi Uwamino
- Division of Infectious Diseases and Infection Control, Keio University Hospital, Japan
- Department of Laboratory Medicine, Keio University School of Medicine, Japan
| | - Masayoshi Shinjoh
- Division of Infectious Diseases and Infection Control, Keio University Hospital, Japan
- Department of Pediatrics, Keio University School of Medicine, Japan
| | - Takehiko Mori
- Division of Infectious Diseases and Infection Control, Keio University Hospital, Japan
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Japan
- Division of Infectious Diseases and Infection Control, Keio University Hospital, Japan
| |
Collapse
|
23
|
Ghani R, Mullish BH, Roberts LA, Davies FJ, Marchesi JR. The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases. Gut Microbes 2022; 14:2038856. [PMID: 35230889 PMCID: PMC8890388 DOI: 10.1080/19490976.2022.2038856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal microbiota is recognized to play a role in the defense against infection, but conversely also acts as a reservoir for potentially pathogenic organisms. Disruption to the microbiome can increase the risk of invasive infection from these organisms; therefore, strategies to restore the composition of the gut microbiota are a potential strategy of key interest to mitigate this risk. Fecal (or Intestinal) Microbiota Transplantation (FMT/IMT), is the administration of minimally manipulated screened healthy donor stool to an affected recipient, and remains the major 'whole microbiome' therapeutic approach at present. Driven by the marked success of using FMT in the treatment of recurrent Clostridioides difficile infection, the potential use of FMT in treating other infectious diseases is an area of active research. In this review, we discuss key examples of this treatment based on recent findings relating to the interplay between microbiota and infection, and potential further exploitations of FMT/IMT.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lauren A. Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Frances J. Davies
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
24
|
Dharmaratne P, Rahman N, Leung A, Ip M. Is there a role of faecal microbiota transplantation in reducing antibiotic resistance burden in gut? A systematic review and Meta-analysis. Ann Med 2021; 53:662-681. [PMID: 34170204 PMCID: PMC8238059 DOI: 10.1080/07853890.2021.1927170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The aim of current systematic review and meta-analysis is to provide insight into the therapeutic efficacy of fecal microbiota transplantation (FMT) for the decolonization of antimicrobial-resistant (AMR) bacteria from the gut. METHODS The protocol for this Systematic Review was prospectively registered with PROSPERO (CRD42020203634). Four databases (EMBASE, MEDLINE, SCOPUS, and WEB of SCIENCE) were consulted up until September 2020. A total of fourteen studies [in vivo (n = 2), case reports (n = 7), case series without control arm (n = 3), randomized clinical trials (RCT, n = 2)], were reviewed. Data were synthesized narratively for the case reports, along with a proportion meta-analysis for the case series studies (n = 102 subjects) without a control arm followed by another meta-analysis for case series studies with a defined control arm (n = 111 subjects) for their primary outcomes. RESULTS Overall, seven non-duplicate case reports (n = 9 participants) were narratively reviewed and found to have broad AMR remission events at the 1-month time point. Proportion meta-analysis of case series studies showed an overall 0.58 (95% CI: 0.42-0.74) AMR remission. Additionally, a significant difference in AMR remission was observed in FMT vs treatment naïve (RR = 0.44; 95% CI: 0.20-0.99) and moderate heterogeneity (I2=65%). A subgroup analysis of RCTs (n = 2) revealed FMT with further benefits of AMR remission with low statistical heterogeneity (RR = 0.37; 95% CI: 0.18-0.79; I2 =23%). CONCLUSION More rigorous RCTs with larger sample size and standardized protocols on FMTs for gut decolonization of AMR organisms are warranted.KEY MESSAGEExisting studies in this subject are limited and of low quality with moderate heterogeneity, and do not allow definitive conclusions to be drawn.More rigorous RCTs with larger sample size and standardized protocols on FMTs for gut decolonization of AMR organisms are warranted.
Collapse
Affiliation(s)
- Priyanga Dharmaratne
- Faculty of Medicine, Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, China
| | - Nannur Rahman
- Faculty of Medicine, Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, China
| | - Anthony Leung
- Faculty of Medicine, Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, China
| | - Margaret Ip
- Faculty of Medicine, Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
25
|
Seo HS, Chin HS, Kim YH, Moon HS, Kim K, Nguyen LP, Yong D. Laboratory Aspects of Donor Screening for Fecal Microbiota Transplantation at a Korean Fecal Microbiota Bank. Ann Lab Med 2021; 41:424-428. [PMID: 33536363 PMCID: PMC7884192 DOI: 10.3343/alm.2021.41.4.424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a widely accepted alternative therapy for Clostridioides difficile infection and other gastrointestinal disorders. Thorough donor screening is required as a safety control measure to minimize transmission of infectious agents in FMT. We report the donor screening process and outcomes at a fecal microbiota bank in Korea. From August 2017 to June 2020, the qualification of 62 individuals as FMT donors was evaluated using clinical assessment and laboratory tests. Forty-six (74%) candidates were excluded after clinical assessment; high body mass index (>25) was the most common reason for exclusion, followed by atopy, asthma, and allergy history. Four of the remaining 16 (25%) candidates failed to meet laboratory test criteria, resulting in a 19% qualification rate. FMT donor re-qualification was conducted monthly as an additional safety control measure, and only three (5%) candidates were eligible for repeated donation. As high prevalence of multidrug-resistant organisms (55%) and Helicobacter pylori (44%) were detected in qualified donors during the screening, a urea breath test was added to the existing protocol. The present results emphasize the importance of implementing a donor re-qualification system to minimize risk factors not identified during initial donor screening.
Collapse
Affiliation(s)
- Hyun Soo Seo
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Microbiotix Corporation, Seoul, Korea
| | - Hyung Sun Chin
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Microbiotix Corporation, Seoul, Korea
| | - Yeon-Hee Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Microbiotix Corporation, Seoul, Korea
| | - Hye Su Moon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Microbiotix Corporation, Seoul, Korea
| | - Kyungnam Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Microbiotix Corporation, Seoul, Korea
| | - Le Phuong Nguyen
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Microbiotix Corporation, Seoul, Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Sun Y, Yu L, Gao W, Cai J, Jiang W, Lu W, Liu Y, Zheng H. Investigation and Analysis of the Colonization and Prevalence of Carbapenem-Resistant Enterobacteriaceae in Pediatric Liver Transplant Recipients. Infect Drug Resist 2021; 14:1957-1966. [PMID: 34079305 PMCID: PMC8164869 DOI: 10.2147/idr.s304998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/24/2021] [Indexed: 12/31/2022] Open
Abstract
Objective This study aimed to investigate the colonization and prevalence of carbapenem-resistant Enterobacteriaceae (CRE) in pediatric liver transplant recipients and analyze the high-risk factors and prognosis of CRE infection. Methods A prospective study involving 152 pediatric patients undergoing liver transplantation was carried out. Anal swab bacteria cultures were collected when the patients entered the intensive care unit (ICU) and when they left in order to screen for intestinal CRE colonization. The results were grouped according to the occurrence of CRE infection following surgery, and the patients were divided into two groups: a CRE infection group and a non-CRE infection group. Univariate analysis and multiple logistic regression analysis were conducted to determine the independent risk factors of CRE infection and analyze the survival rate. Results Of the 152 pediatric liver transplant recipients enrolled in the study, there were 13 cases of postoperative CRE infection and 139 cases of non-CRE infection. The incidence of preoperative CRE infection, preoperative cytomegalovirus (CMV) infection, and preoperative sepsis in the CRE infection group was significantly higher than in the non-CRE infection group (P < 0.005). Intraoperative bleeding volume and operation times in the CRE infection group were also significantly higher than in the non-CRE infection group (P < 0.05). Furthermore, postoperative ICU treatment time, postoperative occurrence of unplanned surgery, postoperative mechanical ventilation of more than 24 hours, and the incidence of pre-ICU CRE colonization in the CRE infection group were significantly higher than in the non-CRE infection group (P < 0.05). Finally, the difference between the CRE infection group and the non-CRE infection group in six-month survival rate following surgery was significant (P < 0.001). Conclusion The independent risk factors of CRE infection following pediatric liver transplantation include preoperative CRE infection and pre-ICU CRE colonization. CRE infection progresses quickly, with a poor prognosis and a high mortality rate. The CRE screening of anal swabs is crucial for the early detection of CRE infection.
Collapse
Affiliation(s)
- Yan Sun
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin, People's Republic of China
| | - Lixin Yu
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin, People's Republic of China
| | - Wei Gao
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin, People's Republic of China
| | - Jinzhen Cai
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin, People's Republic of China
| | - Wentao Jiang
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin, People's Republic of China
| | - Wei Lu
- Liver Cancer Treatment Centre, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yihe Liu
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin, People's Republic of China
| | - Hong Zheng
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin, People's Republic of China
| |
Collapse
|
27
|
Su F, Luo Y, Yu J, Shi J, Zhao Y, Yan M, Huang H, Tan Y. Tandem fecal microbiota transplantation cycles in an allogeneic hematopoietic stem cell transplant recipient targeting carbapenem-resistant Enterobacteriaceae colonization: a case report and literature review. Eur J Med Res 2021; 26:37. [PMID: 33910622 PMCID: PMC8080403 DOI: 10.1186/s40001-021-00508-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Due to limited antibiotic options, carbapenem-resistant Enterobacteriaceae (CRE) infections are associated with high non-relapse mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Also, intestinal CRE colonization is a risk factor for subsequent CRE infection. Several clinical studies have reported successful fecal microbiota transplantation (FMT) for the gut decontamination of a variety of multidrug-resistant bacteria (MDRB), even in immunosuppressed patients. Similarly, other studies have also indicated that multiple FMTs may increase or lead to successful therapeutic outcomes. CASE PRESENTATION We report CRE colonization in an allo-HSCT patient with recurrent CRE infections, and its successful eradication using tandem FMT cycles at 488 days after allo-HSCT. We also performed a comprehensive microbiota analysis. No acute or delayed adverse events (AEs) were observed. The patient remained clinically stable with CRE-negative stool culture at 26-month follow-up. Our analyses also showed some gut microbiota reconstruction. We also reviewed the current literature on decolonization strategies for CRE. CONCLUSIONS CRE colonization led to a high no-relapse mortality after allo-HSCT; however, well-established decolonization strategies are currently lacking. The successful decolonization of this patient suggests that multiple FMT cycles may be potential options for CRE decolonization.
Collapse
Affiliation(s)
- Fengqin Su
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Mengni Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yamin Tan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China. .,Hematology Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
28
|
Biernat MM, Urbaniak-Kujda D, Dybko J, Kapelko-Słowik K, Prajs I, Wróbel T. Fecal microbiota transplantation in the treatment of intestinal steroid-resistant graft-versus-host disease: two case reports and a review of the literature. J Int Med Res 2021; 48:300060520925693. [PMID: 32527171 PMCID: PMC7294377 DOI: 10.1177/0300060520925693] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute graft-versus-host disease (aGvHD) reduces the efficiency and safety of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In recent years, attempts have been made to transplant fecal microbiota from healthy donors to treat intestinal GvHD. This study presented two cases of patients undergoing allo-HSCT who were later selected for fecal microbiota transplantation (FMT). In the first patient, FMT resulted in the complete resolution of symptoms, whereas therapeutic efficacy was not achieved in the second patient. FMT eliminated drug-resistant pathogens, namely very drug-resistant Enterococcus spp., but not multidrug-resistant Acinetobacter baumannii or Candida spp. Further research is needed, particularly on the safety of FMT in patients with intestinal steroid-resistant GvHD and on the distant impact of transplanted microflora on the outcomes of allo-HSCT. FMT appears promising for the treatment of patients with steroid-resistant GvHD.
Collapse
Affiliation(s)
- Monika Maria Biernat
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Donata Urbaniak-Kujda
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Jarosław Dybko
- Department and Clinic of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Kapelko-Słowik
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Prajs
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Wróbel
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
29
|
Colonization Dynamics of Multidrug-Resistant Klebsiella pneumoniae Are Dictated by Microbiota-Cluster Group Behavior over Individual Antibiotic Susceptibility: A Metataxonomic Analysis. Antibiotics (Basel) 2021; 10:antibiotics10030268. [PMID: 33800048 PMCID: PMC8001907 DOI: 10.3390/antibiotics10030268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal carriage of multidrug-resistant (MDR) bacteria is one of the main risk factors for developing serious, difficult-to-treat infections. Given that there is currently no all-round solution to eliminate colonization with MDR bacteria, it is particularly important to understand the dynamic process of colonization to aid the development of novel decolonization strategies. The aim of our present study was to perform metataxonomic analyses of gut microbiota dynamics during colonization with an extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing Klebsiella pneumoniae (ECKP) strain in mice; additionally, to ascertain the effects of antibiotic administration (ampicillin, ceftazidime, and ciprofloxacin) on the establishment and elimination of ECKP intestinal colonization. We have found that the phyla Bacteroidetes and Firmicutes were most dominant in all of the treatment groups; however, Bacteroidetes was more common in the groups treated with antibiotics compared to the control group. Significant differences were observed among the different antibiotic-treated groups in beta but not alpha diversity, implying that the difference is the relative abundance of some bacterial community members. Bacteria from the Lachnospiraceae family (including Agathobacter, Anaerostipes, Lachnoclostridium 11308, Lachnospiraceae UCG-004, Lachnospiraceae NK3A20 group 11318, Lachnospiraceae NK4A136 group 11319, Roseburia, and Tyzzerella) showed an inverse relationship with the carriage rate of the ECKP strain, whereas members of Enterobacteriaceae and the ECKP strain have shown a correlational relationship. Our results suggest that the composition of the microbial community plays a primary role in the MDR-colonization rate, whereas the antibiotic susceptibility of individual MDR strains affects this process to a lesser extent. Distinct bacterial families have associated into microbial clusters, collecting taxonomically close species to produce survival benefits in the gut. These associations do not develop at random, as they may be attributed to the presence of specific metabolomic networks. A new concept should be introduced in designing future endeavors for MDR decolonization, supplemented by knowledge of the composition of the host bacterial community and the identification of bacterial clusters capable of suppressing or enhancing the invader species.
Collapse
|
30
|
Levast B, Benech N, Gasc C, Batailler C, Senneville E, Lustig S, Pouderoux C, Boutoille D, Boucinha L, Dauchy FA, Zeller V, Maynard M, Cazanave C, Le Thi TT, Josse J, Doré J, Laurent F, Ferry T. Impact on the Gut Microbiota of Intensive and Prolonged Antimicrobial Therapy in Patients With Bone and Joint Infection. Front Med (Lausanne) 2021; 8:586875. [PMID: 33748154 PMCID: PMC7977441 DOI: 10.3389/fmed.2021.586875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023] Open
Abstract
There is a growing interest in the potentially deleterious impact of antibiotics on gut microbiota. Patients with bone and joint infection (BJI) require prolonged treatment that may impact significantly the gut microbiota. We collected samples from patients with BJI at baseline, end of antibiotics (EOT), and 2 weeks after antibiotic withdrawal (follow-up, FU) in a multicenter prospective cohort in France. Microbiota composition was determined by shotgun metagenomic sequencing. Fecal markers of gut permeability and inflammation as well as multi-drug-resistant bacteria (MDRB) and Clostridioides difficile carriage were assessed at each time point. Sixty-two patients were enrolled: 27 native BJI, 14 osteosynthesis-related BJI, and 21 prosthetic joint infections (PJI). At EOT, there was a significant loss of alpha-diversity that recovered at FU in patients with native BJI and PJI, but not in patients with osteosynthesis-related BJI. At EOT, we observed an increase of Proteobacteria and Bacteroidetes that partially recovered at FU. The principal component analysis (PCoA) of the Bray–Curtis distance showed a significant change of the gut microbiota at the end of treatment compared to baseline that only partially recover at FU. Microbiota composition at FU does not differ significantly at the genus level when comparing patients treated for 6 weeks vs. those treated for 12 weeks. The use of fluoroquinolones was not associated with a lower Shannon index at the end of treatment; however, the PCoA of the Bray–Curtis distance showed a significant change at EOT, compared to baseline, that fully recovered at FU. Levels of fecal neopterin were negatively correlated with the Shannon index along with the follow-up (r2 = 0.17; p < 0.0001). The PCoA analysis of the Bray–Curtis distance shows that patients with an elevated plasma level of C-reactive protein (≥5 mg/L) at EOT had a distinct gut microbial composition compared to others. MDRB and C. difficile acquisition at EOT and FU represented 20% (7/35) and 37.1% (13/35) of all MDRB/C. difficile-free patients at the beginning of the study, respectively. In patients with BJI, antibiotics altered the gut microbiota diversity and composition with only partial recovery, mucosal inflammation, and permeability and acquisition of MDRB carriage. Microbiome interventions should be explored in patients with BJI to address these issues.
Collapse
Affiliation(s)
| | - Nicolas Benech
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,TGF-ß Immune Evasion, Tumor Escape Resistance Immunity Department, Cancer Research Center of Lyon, Inserm 1052, CNRS 5286, Lyon, France
| | | | - Cécile Batailler
- Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Eric Senneville
- Service de Maladies Infectieuses et du Voyageur, Centre Hospitaliser Gustave Dron, Tourcoing, France.,Université de Lille, Lille, France.,Centre de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lille-tourcoing), Tourcoing, France
| | - Sébastien Lustig
- Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Cécile Pouderoux
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Centre de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - David Boutoille
- Service de Maladies Infectieuses et Tropicales, Hôpital de l'Hôtel-Dieu, CHU de Nantes, Nantes, France.,Université de Nantes, Nantes, France.,Centre de Référence des Infections Ostéo-Articulaires Grand-Ouest, Nantes, France
| | | | - Frederic-Antoine Dauchy
- Centre Hospitalier Universitaire de Bordeaux, Service des Maladies Infectieuses et Tropicales, Hôpital Pellegrin, CHU de Bordeaux, Centre de référence des Infections Ostéoarticulaires Complexes du Grand Sud-Ouest (CRIOAc GSO), Bordeaux, France
| | - Valérie Zeller
- Service de Médecine Interne et Rhumatologie, GH Diaconesses-Croix Saint-Simon, Paris, France.,Centre de Référence Infections Ostéoarticulaires Complexes de Paris (CRIOAc Paris), Paris, France
| | - Marianne Maynard
- Centre de Recherche Clinique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Charles Cazanave
- Centre Hospitalier Universitaire de Bordeaux, Service des Maladies Infectieuses et Tropicales, Hôpital Pellegrin, CHU de Bordeaux, Centre de référence des Infections Ostéoarticulaires Complexes du Grand Sud-Ouest (CRIOAc GSO), Bordeaux, France.,Univ. Bordeaux, USC EA 3671, Infections Humaines à Mycoplasmes et à Chlamydiae, Bordeaux, France
| | - Thanh-Thuy Le Thi
- Centre de Ressource Biologique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Frederic Laurent
- Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Tristan Ferry
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| |
Collapse
|
31
|
Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol 2021; 14:547-554. [PMID: 33299088 PMCID: PMC7724625 DOI: 10.1038/s41385-020-00365-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
Humans share a core intestinal microbiome and yet human microbiome differs by genes, species, enterotypes (ecology), and gene count (microbial diversity). Achievement of microbiota metagenomic analysis has revealed that the microbiome gene count is a key stratifier of health in several immune disorders and clinical conditions. We review here the progress of the metagenomic pipeline analysis, and how this has allowed us to define the host-microbe symbiosis associated with a healthy status. The link between host-microbe symbiosis disruption, the so-called dysbiosis and chronic diseases or iatrogenic conditions is highlighted. Finally, opportunities to use microbiota modulation, with specific nutrients and/or live microbes, as a target for personalized nutrition and therapy for the maintenance, preservation, or restoration of host-microbe symbiosis are discussed.
Collapse
|
32
|
Tan GSE, Tay HL, Tan SH, Lee TH, Ng TM, Lye DC. Gut Microbiota Modulation: Implications for Infection Control and Antimicrobial Stewardship. Adv Ther 2020; 37:4054-4067. [PMID: 32767183 PMCID: PMC7412295 DOI: 10.1007/s12325-020-01458-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 02/07/2023]
Abstract
The human microbiome comprises a complex ecosystem of microbial communities that exist within the human body, the largest and most diverse of which are found within the human intestine. It has been increasingly implicated in human health and diseases, demonstrably playing a critical role in influencing host immune response, protection against pathogen overgrowth, biosynthesis, and metabolism. As our understanding of the links between the gut microbiota with host immunity and infectious diseases deepens, there is a greater need to incorporate methods of modulating it as a means of therapy or infection prevention in daily clinical practice. Traditional antimicrobial stewardship principles have been evaluated to assess their impact on the gut microbiota diversity and the consequent repercussions, taking into consideration antibiotic pharmacokinetic and pharmacodynamic properties. Novel strategies of selective digestive decontamination and fecal microbiota transplantation to regulate the gut microbiota have also been tested in different conditions with variable results. This review seeks to provide an overview of the available literature on the modulation of the gut microbiota and its implications for infection control and antimicrobial stewardship. With increased understanding, gut microbiota profiling through metataxonomic analysis may provide further insight into modulating microbial communities in the context of infection prevention and control.
Collapse
Affiliation(s)
- Glorijoy Shi En Tan
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Hui Lin Tay
- Department of Pharmacy, Tan Tock Seng Hospital, Singapore, Singapore
| | - Sock Hoon Tan
- Department of Pharmacy, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tau Hong Lee
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Singapore, Singapore
- Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Tat Ming Ng
- Department of Pharmacy, Tan Tock Seng Hospital, Singapore, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore, Singapore.
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Singapore, Singapore.
- Yong Loo Lin School of Medicine, Singapore, Singapore.
| |
Collapse
|
33
|
Fecal Microbiota Transplantation for multidrug-resistant organism: Efficacy and Response prediction. J Infect 2020; 81:719-725. [PMID: 32920061 DOI: 10.1016/j.jinf.2020.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The increasing prevalence of multidrug-resistant microorganisms (MDRO) is increasing the frequency of poor clinical outcomes, prolonging hospitalizations, and raising healthcare costs. This study evaluated the eradication efficacy of fecal microbiota transplantation (FMT) and identified microbial and functional biomarkers of MDRO decolonization. METHODS Fecal solution obtained from healthy unrelated donors was infused in the participants' guts which had been colonized with carbapenemase-producing enterobacteriacea (CPE), vancomycin-resistant enterococci (VRE), or both CPE and VRE. Fecal samples from recipients were collected and microbiome changes before and after FMT were assessed. RESULTS Twenty-four (68.6%) out of 35 patients were decolonized within one year of receiving FMT. Multivariate analysis showed that FMT (FMT: hazard ratio (HR) = 5.343, 95% confidence interval (CI) = 1.877-15.212, p = 0.002) and MDRO types (CPE: HR = 11.146, 95% CI = 2.420-51.340, p = 0.002; CPE/VRE: HR = 2.948, 95% CI = 1.200-7.246, p = 0.018; VRE served as the reference) were significant independent factors associated with time to decolonization. Microbiota analysis showed higher richness and biodiversity before FMT resulted in VRE decolonization. The species Clostridium ramosum and the genuses Anaerostipes and Eisenbergiella could serve as taxonomic biomarkers and K02017 could serve as a functional biomarker for VRE clearance. CONCLUSION FMT is an effective way to decolonize MDRO and its effectiveness may be predicted by microbiome analysis.
Collapse
|
34
|
Alagna L, Palomba E, Mangioni D, Bozzi G, Lombardi A, Ungaro R, Castelli V, Prati D, Vecchi M, Muscatello A, Bandera A, Gori A. Multidrug-Resistant Gram-Negative Bacteria Decolonization in Immunocompromised Patients: A Focus on Fecal Microbiota Transplantation. Int J Mol Sci 2020; 21:ijms21165619. [PMID: 32764526 PMCID: PMC7460658 DOI: 10.3390/ijms21165619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is an important issue for global health; in immunocompromised patients, such as solid organ and hematological transplant recipients, it poses an even bigger threat. Colonization by multidrug-resistant (MDR) bacteria was acknowledged as a strong risk factor to subsequent infections, especially in individuals with a compromised immune system. A growing pile of studies has linked the imbalance caused by the dominance of certain taxa populating the gut, also known as intestinal microbiota dysbiosis, to an increased risk of MDR bacteria colonization. Several attempts were proposed to modulate the gut microbiota. Particularly, fecal microbiota transplantation (FMT) was successfully applied to treat conditions like Clostridioides difficile infection and other diseases linked to gut microbiota dysbiosis. In this review we aimed to provide a look at the data gathered so far on FMT, focusing on its possible role in treating MDR colonization in the setting of immunocompromised patients and analyzing its efficacy and safety.
Collapse
Affiliation(s)
- Laura Alagna
- Infectious Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.A.); (D.M.); (G.B.); (A.L.); (R.U.); (V.C.); (A.M.); (A.B.); (A.G.)
| | - Emanuele Palomba
- Infectious Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.A.); (D.M.); (G.B.); (A.L.); (R.U.); (V.C.); (A.M.); (A.B.); (A.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Centre for Multidisciplinary Research in Health Science, University of Milan, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-3494073517
| | - Davide Mangioni
- Infectious Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.A.); (D.M.); (G.B.); (A.L.); (R.U.); (V.C.); (A.M.); (A.B.); (A.G.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
| | - Giorgio Bozzi
- Infectious Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.A.); (D.M.); (G.B.); (A.L.); (R.U.); (V.C.); (A.M.); (A.B.); (A.G.)
| | - Andrea Lombardi
- Infectious Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.A.); (D.M.); (G.B.); (A.L.); (R.U.); (V.C.); (A.M.); (A.B.); (A.G.)
| | - Riccardo Ungaro
- Infectious Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.A.); (D.M.); (G.B.); (A.L.); (R.U.); (V.C.); (A.M.); (A.B.); (A.G.)
| | - Valeria Castelli
- Infectious Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.A.); (D.M.); (G.B.); (A.L.); (R.U.); (V.C.); (A.M.); (A.B.); (A.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Centre for Multidisciplinary Research in Health Science, University of Milan, 20122 Milan, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Maurizio Vecchi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Antonio Muscatello
- Infectious Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.A.); (D.M.); (G.B.); (A.L.); (R.U.); (V.C.); (A.M.); (A.B.); (A.G.)
| | - Alessandra Bandera
- Infectious Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.A.); (D.M.); (G.B.); (A.L.); (R.U.); (V.C.); (A.M.); (A.B.); (A.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Centre for Multidisciplinary Research in Health Science, University of Milan, 20122 Milan, Italy
| | - Andrea Gori
- Infectious Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.A.); (D.M.); (G.B.); (A.L.); (R.U.); (V.C.); (A.M.); (A.B.); (A.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Centre for Multidisciplinary Research in Health Science, University of Milan, 20122 Milan, Italy
| |
Collapse
|
35
|
Khodamoradi Y, Kessel J, Vehreschild JJ, Vehreschild MJGT. The Role of Microbiota in Preventing Multidrug-Resistant Bacterial Infections. DEUTSCHES ARZTEBLATT INTERNATIONAL 2020; 116:670-676. [PMID: 31658936 DOI: 10.3238/arztebl.2019.0670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/11/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The introduction of industrially produced antibiotics was a milestone in the history of medicine. Now, almost a century later, the adverse consequences of these highly effective drugs have become evident in the form of antibiotic-resistant infections, which are on the rise around the world. The search for solutions to this problem has involved both the introduction of newer types of antibiotics and, increasingly, the development of alternative strategies to prevent infections due to multidrug-resistant bacteria. In this article, we review the pathophysiological connection between the use of antibiotics and the occurrence of such infections. We also discuss some alternative strategies that are currently under development. METHODS This review is based on pertinent articles that appeared from January 2000 to April 2019 and were retrieved by a selective search in the PubMed database employing the search term "(microbiota OR microbiome) AND infection." Further suggestions by our author team regarding relevant literature were considered as well. RESULTS The spectrum of preventive strategies encompasses measures for the protection of the intestinal microbiota (antimicrobial stewardship, neutralization of antibiotic residues in the bowel, use of phages and species-specific antibiotics) as well as measures for its reconstitution (prebiotics, probiotics, and fecal microbiota transfer). CONCLUSION In view of the major problem that multidrug-resistant bacteria pose for the world's population and the resources now being spent on the search for a solution, derived both from public funding and from the pharmaceutical industry, we hope to see new, clinically useful approaches being developed and implemented in the near future.
Collapse
Affiliation(s)
- Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Johann Wolfgang Goethe University, Frankfurt am Main; Department of Internal Medicine, Hematology/Oncology, University Hospital Frankfurt, Johann Wolfgang Goethe University, Frankfurt am Main; Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Aachen, Bonn, Köln, Düsseldorf; German Center for Infection Research (DZIF), Bonn-Cologne
| | | | | | | |
Collapse
|
36
|
Dong LT, Espinoza HV, Espinoza JL. Emerging superbugs: The threat of Carbapenem Resistant Enterobacteriaceae. AIMS Microbiol 2020; 6:176-182. [PMID: 33134739 PMCID: PMC7595834 DOI: 10.3934/microbiol.2020012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 01/29/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are gram-negative bacteria that are resistant to carbapenems, a group of antibiotics considered as the last-resource for the treatment of infections caused by multidrug-resistant bacteria. CRE constitutes a major threat to health care systems because infections caused by these pathogens are difficult to treat and are commonly associated with high mortality due to the limited availability of effective antibiotics. While infection prevention and timely detection are of vital importance to control CRE infections, developing new and effective anti-CRE therapies is also crucial. Accumulating evidence indicates that gut microbiota alteration (dysbiosis) is associated with an increased intestinal colonization with CRE and consequently with higher risk of developing CRE infections. Importantly, therapeutic interventions aimed to modify the gut microbiota composition via fecal microbiota transplantation (FMT) have been explored in various clinical settings with some of them showing promising results, although larger clinical trials are needed to confirm the efficacy of this strategy. Here, we highlight the challenges associated with the emergence of CRE infections.
Collapse
Affiliation(s)
- Le Thanh Dong
- Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam
| | - Helen V Espinoza
- Faculty of Environmental Health, University of Washington, Seattle, WA, USA
| | - J Luis Espinoza
- Faculty of Health Sciences, Kanazawa University, Kodatsuno 5-11-80, Kanazawa, 920-0942, Ishikawa, Japan
| |
Collapse
|
37
|
Ramos-Ramos JC, Lázaro-Perona F, Arribas JR, García-Rodríguez J, Mingorance J, Ruiz-Carrascoso G, Borobia AM, Paño-Pardo JR, Herruzo R, Arnalich F. Proof-of-concept trial of the combination of lactitol with Bifidobacterium bifidum and Lactobacillus acidophilus for the eradication of intestinal OXA-48-producing Enterobacteriaceae. Gut Pathog 2020; 12:15. [PMID: 32280375 PMCID: PMC7137496 DOI: 10.1186/s13099-020-00354-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/31/2020] [Indexed: 11/29/2023] Open
Abstract
Background The major reservoir of carbapenemase-producing Enterobacteriaceae (CPE) is the gastrointestinal tract of colonized patients. Colonization is silent and may last for months, but the risk of infection by CPE in colonized patients is significant. Methods Eight long-term intestinal carriers of OXA-48-producing Enterobacteriaceae (OXA-PE) were treated during 3 weeks with daily oral lactitol (Emportal®), Bifidobacterium bifidum and Lactobacillus acidophilus (Infloran®). Weekly stool samples were collected during the treatment period and 6 weeks later. The presence of OXA-PE was investigated by microbiological cultures and qPCR. Results At the end of treatment (EoT, secondary endpoint 1), four of the subjects had negative OXA-PE cultures. Three weeks later (secondary endpoint 2), six subjects were negative. Six weeks after the EoT (primary endpoint), three subjects had negative OXA-PE cultures. The relative intestinal load of OXA-PE decreased in all the patients during treatment. Conclusions The combination of prebiotics and probiotics was well tolerated. A rapid reduction on the OXA-PE intestinal loads was observed. At the EoT, decolonization was achieved in three patients. Clinical Trials Registration: NCT02307383. EudraCT Number: 2014-000449-65.
Collapse
Affiliation(s)
- Juan Carlos Ramos-Ramos
- 1Unidad de Microbiología Clínica y Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario La Paz, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Fernando Lázaro-Perona
- 2Servicio de Microbiología, Hospital Universitario La Paz, IdiPaz, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - José Ramón Arribas
- 1Unidad de Microbiología Clínica y Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario La Paz, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Julio García-Rodríguez
- 2Servicio de Microbiología, Hospital Universitario La Paz, IdiPaz, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Jesús Mingorance
- 2Servicio de Microbiología, Hospital Universitario La Paz, IdiPaz, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Guillermo Ruiz-Carrascoso
- 2Servicio de Microbiología, Hospital Universitario La Paz, IdiPaz, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Alberto M Borobia
- 3Departamento de Farmacología Clínica, Hospital Universitario La Paz, Paseo de La Catellana 261, 28046 Madrid, Spain
| | - José Ramón Paño-Pardo
- 1Unidad de Microbiología Clínica y Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario La Paz, Paseo de La Castellana 261, 28046 Madrid, Spain.,6Present Address: Division of Infectious Diseases, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain.,Present Address: Instituto de Investigaciones Sanitarias (IIS) de Aragón, Zaragoza, Spain
| | - Rafael Herruzo
- 4Servicio de Medicina Preventiva, Hospital Universitario La Paz, Paseo de La Castellana 261, 28046 Madrid, Spain
| | - Francisco Arnalich
- 5Servicio de Medicina Interna, Hospital Universitario La Paz, Paseo de La Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
38
|
DuPont HL, Jiang ZD, DuPont AW, Utay NS. Abnormal Intestinal Microbiome in Medical Disorders and Potential Reversibility by Fecal Microbiota Transplantation. Dig Dis Sci 2020; 65:741-756. [PMID: 32008133 DOI: 10.1007/s10620-020-06102-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reduction in diversity of the intestinal microbiome (dysbiosis) is being identified in many disease states, and studies are showing important biologic contributions of microbiome to health and disease. Fecal microbiota transplantation (FMT) is being evaluated as a way to reverse dysbiosis in diseases and disorders in an attempt to improve health. The published literature was reviewed to determine the value of FMT in the treatment of medical disorders for which clinical trials have recently been conducted. FMT is effective in treating recurrent C. difficile infection in one or two doses, with many healthy donors providing efficacious fecal-derived products. In inflammatory bowel disease (IBD), FMT may lead to remission in approximately one-third of moderate-to-severe illnesses with one study suggesting that more durable FMT responses may be seen when used once medical remissions have been achieved. Donor products differ in their efficacy in treatment of IBD. Combining donor products has been one way to increase the potential value of FMT in treating chronic disorders. FMT is being explored in a variety of clinical settings affecting different organ systems outside CDI, with positive preliminary signals, in treatment of functional constipation, immunotherapy-induced colitis, neurodegenerative disease, as well as prevention of cancer-related disorders like graft versus host disease and decolonization of patients with recurrent urinary tract infection due to antibiotic-resistant bacteria. Currently, intense research is underway to see how the microbiome products like FMT can be harnessed for health benefits.
Collapse
Affiliation(s)
- Herbert L DuPont
- Kelsey Research Foundation, Houston, TX, USA. .,University of Texas School of Public Health, 1200 Pressler St, Houston, TX, 77030, USA. .,University of Texas McGovern Medical School, Houston, USA. .,Baylor College of Medicine, Houston, USA. .,MD Anderson Cancer Center, Houston, USA.
| | - Zhi-Dong Jiang
- University of Texas School of Public Health, 1200 Pressler St, Houston, TX, 77030, USA
| | | | - Netanya S Utay
- Kelsey Research Foundation, Houston, TX, USA.,University of Texas McGovern Medical School, Houston, USA
| |
Collapse
|
39
|
Feehan A, Garcia-Diaz J. Bacterial, Gut Microbiome-Modifying Therapies to Defend against Multidrug Resistant Organisms. Microorganisms 2020; 8:microorganisms8020166. [PMID: 31991615 PMCID: PMC7074682 DOI: 10.3390/microorganisms8020166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Antibiotics have revolutionized human and animal healthcare, but their utility is reduced as bacteria evolve resistance mechanisms over time. Thankfully, there are novel antibiotics in the pipeline to overcome resistance, which are mentioned elsewhere in this special issue, but eventually bacteria are expected to evolve resistance to most new compounds as well. Multidrug resistant organisms (MDROs) that cause infections increase morbidity, mortality, and readmissions as compared with susceptible organisms. Consequently, many research and development pipelines are focused on non-antibiotic strategies, including fecal microbiota transplantation (FMT), probiotics and prebiotics, and a range of therapies in between. Studies reviewed here focus on efforts to directly treat or prevent MDRO infections or colonization. The studies were collected through clinicaltrials.gov, PubMed, and the International Conference on the Harmonisation Good Clinical Practice website (ichgcp.net). While the gold standard of clinical research is randomized controlled trials (RCTs), several pilot studies are included because the field is so young. Although a vast preclinical body of research has led to studies in humans, animal and in vitro studies are not within the scope of this review. This narrative review discusses microbiome-modifying therapies targeting MDROs in the gut and includes current results, ongoing clinical trials, companies with therapies in the pipeline specifically for MDROs, and commentary on clinical implementation and challenges.
Collapse
Affiliation(s)
- Amy Feehan
- Infectious Disease Department, Ochsner Clinic Foundation, New Orleans, LA 70121, USA;
| | - Julia Garcia-Diaz
- Infectious Disease Department, Ochsner Clinic Foundation, New Orleans, LA 70121, USA;
- The University of Queensland Faculty of Medicine, Ochsner Clinical School, New Orleans, LA 70121, USA
- Correspondence: ; Tel.: +1-504-842-4005
| |
Collapse
|
40
|
Yoon YK, Suh JW, Kang EJ, Kim JY. Efficacy and safety of fecal microbiota transplantation for decolonization of intestinal multidrug-resistant microorganism carriage: beyond Clostridioides difficile infection. Ann Med 2019; 51:379-389. [PMID: 31468999 PMCID: PMC7877873 DOI: 10.1080/07853890.2019.1662477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Persistent reservoirs of multidrug-resistant microorganisms (MDRO) that are prevalent in hospital settings and communities can lead to the spread of MDRO. Currently, there are no effective decolonization strategies, especially non-pharmacological strategies without antibiotic regimens. Our aim was to evaluate the efficacy and safety of fecal microbiota transplantation (FMT) for the eradication of MDRO. A systematic literature search was performed to identify studies on the use of FMT for the decolonization of MDRO. PubMed, EMBASE, Web of Science, and Cochrane Library were searched from inception through January 2019. Of the 1395 articles identified, 20 studies met the inclusion and exclusion criteria. Overall, the efficacy of FMT for the eradication of each MDRO was 70.3% (102/146) in 121 patients from the 20 articles. The efficacy rates were 68.2% (30/44) for gram-positive bacteria and 70.6% (72/102) for gram-negative bacteria. Minor adverse events, including vomiting, diarrhea, abdominal pain, and ileus, were reported in patients who received FMT. FMT could be a promising strategy to eradicate MDRO in patients. Further studies are needed to confirm these findings and establish a comprehensive FMT protocol for standardized treatment.Key messagesThe development of new antibiotics lags behind the emergence of multidrug-resistant microorganisms (MDRO). New strategies are needed.Theoretically, fecal microbiota transplantation (FMT) might recover the diversity and function of commensal microbiota from dysbiosis in MDRO carriers and help restore colonization resistance to pathogens.A literature review indicated that FMT could be a promising strategy to eradicate MDRO in patients.
Collapse
Affiliation(s)
- Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jin Woong Suh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eun-Ji Kang
- Korea University Medical Library, Seoul, Korea
| | - Jeong Yeon Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Dai M, Liu Y, Chen W, Buch H, Shan Y, Chang L, Bai Y, Shen C, Zhang X, Huo Y, Huang D, Yang Z, Hu Z, He X, Pan J, Hu L, Pan X, Wu X, Deng B, Li Z, Cui B, Zhang F. Rescue fecal microbiota transplantation for antibiotic-associated diarrhea in critically ill patients. Crit Care 2019; 23:324. [PMID: 31639033 PMCID: PMC6805332 DOI: 10.1186/s13054-019-2604-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Antibiotic-associated diarrhea (AAD) is a risk factor for exacerbating the outcome of critically ill patients. Dysbiosis induced by the exposure to antibiotics reveals the potential therapeutic role of fecal microbiota transplantation (FMT) in these patients. Herein, we aimed to evaluate the safety and potential benefit of rescue FMT for AAD in critically ill patients. METHODS A series of critically ill patients with AAD received rescue FMT from Chinese fmtBank, from September 2015 to February 2019. Adverse events (AEs) and rescue FMT success which focused on the improvement of abdominal symptoms and post-ICU survival rate during a minimum of 12 weeks follow-up were assessed. RESULTS Twenty critically ill patients with AAD underwent rescue FMT, and 18 of them were included for analysis. The mean of Acute Physiology and Chronic Health Evaluation (APACHE) II scores at intensive care unit (ICU) admission was 21.7 ± 8.3 (range 11-37). Thirteen patients received FMT through nasojejunal tube, four through gastroscopy, and one through enema. Patients were treated with four (4.2 ± 2.1, range 2-9) types of antibiotics before and during the onset of AAD. 38.9% (7/18) of patients had FMT-related AEs during follow-up, including increased diarrhea frequency, abdominal pain, increased serum amylase, and fever. Eight deaths unrelated to FMT occurred during follow-up. One hundred percent (2/2) of abdominal pain, 86.7% (13/15) of diarrhea, 69.2% (9/13) of abdominal distention, and 50% (1/2) of hematochezia were improved after FMT. 44.4% (8/18) of patients recovered from abdominal symptoms without recurrence and survived for a minimum of 12 weeks after being discharged from ICU. CONCLUSION In this case series studying the use of FMT in critically ill patients with AAD, good clinical outcomes without infectious complications were observed. These findings could potentially encourage researchers to set up new clinical trials that will provide more insight into the potential benefit and safety of the procedure in the ICU. TRIAL REGISTRATION ClinicalTrials.gov, Number NCT03895593 . Registered 29 March 2019 (retrospectively registered).
Collapse
Affiliation(s)
- Min Dai
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China
| | - Yafei Liu
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China
| | - Wei Chen
- Department of Critical Care Medicine, NO.971 Hospital of Chinese People's Liberation Army Navy, Qingdao, 266000, China
| | - Heena Buch
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China
| | - Yi Shan
- Department of Critical Care Medicine, the Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, China
| | - Liuhui Chang
- Department of Anesthesiology, the Second Affiliated Hospital of Suzhou University, Suzhou, 215000, China
| | - Yong Bai
- Department of Intensive Care Unit, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Chen Shen
- Department of Cardiovascular Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China
| | - Xiaoyin Zhang
- Department of Holistic Integrative Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, China
| | - Yufeng Huo
- Department of Pediatric Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dian Huang
- Department of Critical Care Medicine, Liuzhou General Hospital, Liuzhou, 545006, China
| | - Zhou Yang
- Department of Emergency, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhihang Hu
- Department of Critical Care Medicine, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230000, China
| | - Xuwei He
- Department of Critical Care Medicine, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Junyu Pan
- Department of Intensive Care Unit, Qiandongnan People's Hospital, Kaili, 556000, China
| | - Lili Hu
- Department of Critical Care Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China
| | - Xinfang Pan
- Department of Anesthesiology, the Second Affiliated Hospital of Suzhou University, Suzhou, 215000, China
| | - Xiangtao Wu
- Department of Pediatric Intensive Care Unit, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Bin Deng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhifeng Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bota Cui
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China.
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 211100, China.
| | - Faming Zhang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China.
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 211100, China.
| |
Collapse
|
42
|
Rosenbaum JT. Just another crappy commentary: the future of fecal microbiota transplantation. Expert Rev Clin Immunol 2019; 15:987-989. [PMID: 31414930 DOI: 10.1080/1744666x.2019.1656528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- James T Rosenbaum
- Departments of Ophthalmology, Medicine, and Cell Biology, Oregon Health & Science University , Portland , OR , USA.,Legacy Devers Eye Institute , Portland , OR , USA
| |
Collapse
|
43
|
Drewes JL, Corona A, Sanchez U, Fan Y, Hourigan SK, Weidner M, Sidhu SD, Simner PJ, Wang H, Timp W, Oliva-Hemker M, Sears CL. Transmission and clearance of potential procarcinogenic bacteria during fecal microbiota transplantation for recurrent Clostridioides difficile. JCI Insight 2019; 4:130848. [PMID: 31578306 DOI: 10.1172/jci.insight.130848] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUNDFecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridioides difficile infection (rCDI) in adults and children, but donor stool samples are currently screened for only a limited number of potential pathogens. We sought to determine whether putative procarcinogenic bacteria (enterotoxigenic Bacteroides fragilis, Fusobacterium nucleatum, and Escherichia coli harboring the colibactin toxin) could be durably transmitted from donors to patients during FMT.METHODSStool samples were collected from 11 pediatric rCDI patients and their respective FMT donors prior to FMT as well as from the patients at 2-10 weeks, 10-20 weeks, and 6 months after FMT. Bacterial virulence factors in stool DNA extracts and stool cultures were measured by quantitative PCR: Bacteroides fragilis toxin (bft), Fusobacterium adhesin A (fadA), and Escherichia coli colibactin (clbB).RESULTSFour of 11 patients demonstrated sustained acquisition of a procarcinogenic bacteria. Whole genome sequencing was performed on colony isolates from one of these donor/recipient pairs and demonstrated that clbB+ E. coli strains present in the recipient after FMT were identical to a strain present in the donor, confirming strain transmission. Conversely, 2 patients exhibited clearance of procarcinogenic bacteria following FMT from a negative donor.CONCLUSIONBoth durable transmission and clearance of procarcinogenic bacteria occurred following FMT, suggesting that additional studies on appropriate screening measures for FMT donors and the long-term consequences and/or benefits of FMT are warranted.FUNDINGCrohn's & Colitis Foundation, the Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, the National Cancer Institute, and the Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Julia L Drewes
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alina Corona
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Uriel Sanchez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yunfan Fan
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Suchitra K Hourigan
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa Weidner
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah D Sidhu
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Hao Wang
- Department of Oncology, Bioinformatics and Biostatistics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Winston Timp
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Maria Oliva-Hemker
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Administration of fecal material into the gastrointestinal tract, termed fecal microbiota transplantation (FMT), is increasingly recognized as an effective treatment option for recurrent Clostridium difficile infection (RCDI). The impact of FMT on host microbial communities and subsequent disease states has also been explored in recent years for conditions as varied as inflammatory bowel disease especially ulcerative colitis, metabolic diseases, such as diabetes, graft-versus-host disease in hematopoietic stem cell transplant recipients, and autism and autism spectrum disorders. The purpose of this article is to review the evidence for FMT as a treatment option in various pediatric illnesses. RECENT FINDINGS The rate of C. difficile infection is rising among children, and is associated with significant morbidity and disease, with recurrence in up to 20% of pediatric patients. Several randomized controlled trials evaluating the utility of FMT in RCDI in comparison to vancomycin have been published and demonstrate high rates of efficacy between 70 and 100%. In addition, the safety of FMT in the treatment of RCDI has been well described in the adult population, with several pediatric case series demonstrating similar rates of tolerability and adverse events. FMT in ulcerative colitis appears promising, especially with multiple infusions administered via the lower gastrointestinal tract. However, there are several limitations, including the lack of uniformity of protocols used, source of FMT, route of administration and the lack of standardization of concomitant therapies. The data on usage of FMT for other indications are preliminary and limited. SUMMARY FMT is recognized as an effective treatment option for RCDI and is increasing sought by parents. Although limited, pediatric studies to date on the use of FMT for RCDI demonstrate similar efficacy rates as in the adult population. FMT has been proposed as a treatment option for an increasing number of pediatric conditions, and additional studies are needed to delineate the efficacy of FMT outside of RCDI, as well as its short and long-term impacts on human health.
Collapse
|
45
|
Ravi A, Halstead FD, Bamford A, Casey A, Thomson NM, van Schaik W, Snelson C, Goulden R, Foster-Nyarko E, Savva GM, Whitehouse T, Pallen MJ, Oppenheim BA. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microb Genom 2019; 5. [PMID: 31526447 PMCID: PMC6807385 DOI: 10.1099/mgen.0.000293] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among long-stay critically ill patients in the adult intensive care unit (ICU), there are often marked changes in the complexity of the gut microbiota. However, it remains unclear whether such patients might benefit from enhanced surveillance or from interventions targeting the gut microbiota or the pathogens therein. We therefore undertook a prospective observational study of 24 ICU patients, in which serial faecal samples were subjected to shotgun metagenomic sequencing, phylogenetic profiling and microbial genome analyses. Two-thirds of the patients experienced a marked drop in gut microbial diversity (to an inverse Simpson’s index of <4) at some stage during their stay in the ICU, often accompanied by the absence or loss of potentially beneficial bacteria. Intravenous administration of the broad-spectrum antimicrobial agent meropenem was significantly associated with loss of gut microbial diversity, but the administration of other antibiotics, including piperacillin/tazobactam, failed to trigger statistically detectable changes in microbial diversity. In three-quarters of ICU patients, we documented episodes of gut domination by pathogenic strains, with evidence of cryptic nosocomial transmission of Enterococcus faecium. In some patients, we also saw an increase in the relative abundance of apparent commensal organisms in the gut microbiome, including the archaeal species Methanobrevibacter smithii. In conclusion, we have documented a dramatic absence of microbial diversity and pathogen domination of the gut microbiota in a high proportion of critically ill patients using shotgun metagenomics.
Collapse
Affiliation(s)
- Anuradha Ravi
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Fenella D Halstead
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Amy Bamford
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Anna Casey
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Nicholas M Thomson
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Catherine Snelson
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | | | | | - George M Savva
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Tony Whitehouse
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK.,Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Mark J Pallen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK.,Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK.,School of Veterinary Medicine, University of Surrey, Daphne Jackson Rd, Guildford GU2 7AL, UK
| | - Beryl A Oppenheim
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| |
Collapse
|
46
|
Catho G, Huttner BD. Strategies for the eradication of extended-spectrum beta-lactamase or carbapenemase-producing Enterobacteriaceae intestinal carriage. Expert Rev Anti Infect Ther 2019; 17:557-569. [PMID: 31313610 DOI: 10.1080/14787210.2019.1645007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Among the multidrug resistant pathogens, extended-spectrum beta-lactamase (ESBL-E) or carbapenemase-producing Enterobacteriaceae (CPE) are currently considered the main threat due to the scarcity of therapeutic options and their rapid spread around the globe. In addition to developing new antibiotics and stopping transmission, recent research has focused on 'decolonization' strategies to eradicate the carriage of ESBL-E/CPE before infection occurs. Areas covered: In this narrative review, we aim to describe the current evidence of decolonization strategies for ESBL-E or CPE intestinal carriage. We first define decolonization and highlight the issues related to the lack of standardized definitions, then we summarize the available data on the natural history of colonization. Finally, we review the strategies assessed over the past 10 years for ESBL and CPE decolonization: oral antibiotics, probiotics and more recently fecal microbiota transplantation. We conclude by presenting the risks and uncertainties associated with these strategies. Expert opinion: The evidence available today is too low to recommend decolonization strategies for ESBL-E or CPE in routine clinical practice. The potential increase of resistance and the impact of microbiome manipulation should not be underestimated. Some of these decolonization strategies may nevertheless be effective, at least in temporarily suppressing colonization, which could be useful for specific populations such as high-risk patients. Effectiveness and long-term effects must be properly assessed through well-designed randomized controlled trials.
Collapse
Affiliation(s)
- Gaud Catho
- a Division of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva , Geneva , Switzerland
| | - Benedikt D Huttner
- a Division of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva , Geneva , Switzerland
| |
Collapse
|
47
|
Gargiullo L, Del Chierico F, D’Argenio P, Putignani L. Gut Microbiota Modulation for Multidrug-Resistant Organism Decolonization: Present and Future Perspectives. Front Microbiol 2019; 10:1704. [PMID: 31402904 PMCID: PMC6671974 DOI: 10.3389/fmicb.2019.01704] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is of great concern to global public health. Treatment of multi-drug resistant (MDR) infections is a major clinical challenge: the increase in antibiotic resistance leads to a greater risk of therapeutic failure, relapses, longer hospitalizations, and worse clinical outcomes. Currently, there are no validated treatments for many MDR or pandrug-resistant (PDR) infections, and preventing the spread of these pathogens through hospital infection control procedures and antimicrobial stewardship programs is often the only tool available to healthcare providers. Therefore, new solutions to control the colonization of MDR pathogens are urgently needed. In this narrative review, we discuss current knowledge of microbiota-mediated mechanisms of AMR and strategies for MDR colonization control. We focus particularly on fecal microbiota transplantation for MDR intestinal decolonization and report updated literature on its current clinical use.
Collapse
Affiliation(s)
- Livia Gargiullo
- Division of Immunology and Infectious Diseases, University-Hospital Pediatric Department, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | | | - Patrizia D’Argenio
- Division of Immunology and Infectious Diseases, University-Hospital Pediatric Department, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit and Parasitology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
48
|
Woodworth MH, Hayden MK, Young VB, Kwon JH. The Role of Fecal Microbiota Transplantation in Reducing Intestinal Colonization With Antibiotic-Resistant Organisms: The Current Landscape and Future Directions. Open Forum Infect Dis 2019; 6:ofz288. [PMID: 31363779 PMCID: PMC6667716 DOI: 10.1093/ofid/ofz288] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
The intestinal tract is a recognized reservoir of antibiotic-resistant organisms (ARO), and a potential target for strategies to reduce ARO colonization. Microbiome therapies such as fecal microbiota transplantation (FMT) have been established as an effective treatment for recurrent Clostridioides difficile infection and may be an effective approach for reducing intestinal ARO colonization. In this article, we review the current published literature on the role of FMT for eradication of intestinal ARO colonization, review the potential benefit and limitations of the use of FMT in this setting, and outline a research agenda for the future study of FMT for intestinal ARO colonization.
Collapse
Affiliation(s)
- Michael H Woodworth
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Mary K Hayden
- Division of Infectious Diseases, Department of Internal Medicine, Rush Medical College, Chicago, Illinois
| | - Vincent B Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Jennie H Kwon
- Division of Infectious Diseases, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
49
|
Wortelboer K, Nieuwdorp M, Herrema H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine 2019; 44:716-729. [PMID: 31201141 PMCID: PMC6606746 DOI: 10.1016/j.ebiom.2019.05.066] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 10/28/2022] Open
Abstract
The importance of the commensal microbiota to human health and well-being has become increasingly evident over the past decades. From a therapeutic perspective, the popularity of fecal microbiota transplantation (FMT) to restore a disrupted microbiota and amend imbalances has increased. To date, most clinical experience with FMT originates from the treatment of recurrent or refractory Clostridioides difficile infections (rCDI), with resolution rates up to 90%. In addition to CDI, a role for the intestinal microbiome has been implicated in several disorders. FMT has been tested in several randomized controlled trials for the treatment of inflammatory bowel disease, irritable bowel disease and constipation with mixed results. FMT has also been explored for extra-gastrointestinal disorders such as metabolic syndrome, hepatic encephalopathy and graft-versus-host disease. With the exception of recurrent CDI, FMT is currently used in experimental settings only and should not yet be offered as standard care. In addition, it is critical to further standardize and optimize procedures for FMT preparation. This includes determination of active components of FMT to develop (personalized) approaches to treat disease.
Collapse
Affiliation(s)
- Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands.
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Amsterdam Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Belga S, Chiang D, Kabbani D, Abraldes JG, Cervera C. The direct and indirect effects of vancomycin-resistant enterococci colonization in liver transplant candidates and recipients. Expert Rev Anti Infect Ther 2019; 17:363-373. [PMID: 30977692 DOI: 10.1080/14787210.2019.1607297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Vancomycin-resistant enterococci (VRE) colonization and subsequent infection results in increased morbidity, mortality and use of health-care resources. The burden of VRE colonization in liver transplant candidates and recipients is significant. VRE colonization is a marker of gut dysbiosis and its impact on the microbiota-liver axis, may negatively affect graft function and result in negative outcomes pre- and post-transplantation. Areas covered: In this article we describe the epidemiology of VRE colonization, risk factors for VRE infection, health-care costs associated with VRE, with a focus on the impact of VRE colonization on liver transplant recipients' fecal microbiota, the therapeutic strategies for VRE decolonization and proposed pathophysiologic mechanisms of VRE colonization in liver transplant recipients. Expert opinion: VRE colonization results in a significant loss of bacterial microbiome diversity. This may have metabolic consequences, with low production of short-chain fatty acids which may, in turn, result in immune dysregulation. As antibiotics have failed to decolonize the gut, alternative strategies such as fecal microbiota transplantation (FMT), stimulation of intestinal antimicrobial peptides and phage therapy warrants future studies.
Collapse
Affiliation(s)
- Sara Belga
- a Department of Medicine, Division of Infectious Diseases , University of Alberta , Edmonton , Alberta , Canada
| | - Diana Chiang
- a Department of Medicine, Division of Infectious Diseases , University of Alberta , Edmonton , Alberta , Canada
| | - Dima Kabbani
- a Department of Medicine, Division of Infectious Diseases , University of Alberta , Edmonton , Alberta , Canada
| | - Juan G Abraldes
- b Department of Medicine, Division of Gastroenterology and Hepatology , University of Alberta , Edmonton , Alberta , Canada
| | - Carlos Cervera
- a Department of Medicine, Division of Infectious Diseases , University of Alberta , Edmonton , Alberta , Canada
| |
Collapse
|