1
|
Mammano F, Paller AS, White TW. Connexin Hemichannel Inhibition and Human Genodermatoses. J Invest Dermatol 2024:S0022-202X(24)02053-0. [PMID: 39269388 DOI: 10.1016/j.jid.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Pathogenic variants in genes encoding connexins that cause skin diseases, such as keratitis-ichthyosis-deafness (KID) syndrome and hidrotic ectodermal dysplasia (HED) or Clouston syndrome, display increased hemichannel activity. Mechanistic insights derived from biophysical studies of the variant connexins support the hypothesis that inhibition of the acquired hemichannel activity could alleviate epidermal pathology. Use of pharmacological blockers and engineered mAbs in mouse models of HED and KID confirm that hemichannel inhibition is a promising target for new therapeutic approaches to KID and HED. Insights from this work could apply to other connexin-based genetic skin diseases in which hemichannel activity is elevated.
Collapse
Affiliation(s)
- Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, USA.
| |
Collapse
|
2
|
Bayraktar E, Lopez-Pigozzi D, Bortolozzi M. Calcium Regulation of Connexin Hemichannels. Int J Mol Sci 2024; 25:6594. [PMID: 38928300 PMCID: PMC11204158 DOI: 10.3390/ijms25126594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells are of paramount importance for intercellular communication. In physiological conditions, HCs can form gap junction (GJ) channels, providing a direct diffusive path between neighbouring cells. In addition, unpaired HCs provide conduits for the exchange of solutes between the cytoplasm and the extracellular milieu, including messenger molecules involved in paracrine signalling. The synergistic action of membrane potential and Ca2+ ions controls the gating of the large and relatively unselective pore of connexin HCs. The four orders of magnitude difference in gating sensitivity to the extracellular ([Ca2+]e) and the cytosolic ([Ca2+]c) Ca2+ concentrations suggests that at least two different Ca2+ sensors may exist. While [Ca2+]e acts as a spatial modulator of the HC opening, which is most likely dependent on the cell layer, compartment, and organ, [Ca2+]c triggers HC opening and the release of extracellular bursts of messenger molecules. Such molecules include ATP, cAMP, glutamate, NAD+, glutathione, D-serine, and prostaglandins. Lost or abnormal HC regulation by Ca2+ has been associated with several diseases, including deafness, keratitis ichthyosis, palmoplantar keratoderma, Charcot-Marie-Tooth neuropathy, oculodentodigital dysplasia, and congenital cataracts. The fact that both an increased and a decreased Ca2+ sensitivity has been linked to pathological conditions suggests that Ca2+ in healthy cells finely tunes the normal HC function. Overall, further investigation is needed to clarify the structural and chemical modifications of connexin HCs during [Ca2+]e and [Ca2+]c variations. A molecular model that accounts for changes in both Ca2+ and the transmembrane voltage will undoubtedly enhance our interpretation of the experimental results and pave the way for developing therapeutic compounds targeting specific HC dysfunctions.
Collapse
Affiliation(s)
- Erva Bayraktar
- Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Via Marzolo 8, 35131 Padova, Italy
| | - Diego Lopez-Pigozzi
- Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Via Marzolo 8, 35131 Padova, Italy
| | - Mario Bortolozzi
- Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Via Marzolo 8, 35131 Padova, Italy
- Institute of Endocrinology and Oncology “Gaetano Salvatore” (IEOS-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
3
|
Ishida Y, Murata T, Kakiuchi N, Ogawa S, Kabashima K. Emergence of multiple revertant keratinocyte clones in a patient with KID syndrome. J Eur Acad Dermatol Venereol 2024; 38:e285-e287. [PMID: 37907277 DOI: 10.1111/jdv.19595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Affiliation(s)
- Y Ishida
- Department of Dermatology, Kyoto University, Kyoto, Japan
| | - T Murata
- Department of Dermatology, Hyogo Medical University, Hyogo, Japan
| | - N Kakiuchi
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - S Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - K Kabashima
- Department of Dermatology, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Nardin C, Mammano F. Measurement of Ca 2+ Uptake Through Connexin Hemichannels. Methods Mol Biol 2024; 2801:97-109. [PMID: 38578416 DOI: 10.1007/978-1-0716-3842-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Increasing evidence points to deregulated flux of ionized calcium (Ca2+) mediated by hyperactive mutant connexin (Cx) hemichannels (HCs) as a common gain-of-function etiopathogenetic mechanism for several diseases, ranging from skin disorders to nervous system defects. Furthermore, the opening of nonmutated Cx HCs is associated with an impressive list of widespread diseases including, but not limited to, ischemia/stroke, Alzheimer's disease, and epilepsy. HC inhibitors are attracting a growing attention due to their therapeutic potential for numerous pathologies. This chapter describes a quantitative method to measure Ca2+ uptake though HCs expressed in cultured cells. The assay we developed can be used to probe HC activity as wells as to test HC inhibitors. Furthermore, with minor changes it can be easily adapted to high-throughput high-content platforms and/or primary cells and microtissues.
Collapse
Affiliation(s)
- Chiara Nardin
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
- , Genoa, Italy
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy.
| |
Collapse
|
5
|
Peres C, Mammano F. A Protocol for the Automated Assessment of Cutaneous Pathology in a Mouse Model of Hemichannel Dysfunction. Methods Mol Biol 2024; 2801:177-187. [PMID: 38578421 DOI: 10.1007/978-1-0716-3842-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In this chapter, we provide detailed instructions to perform quantitative reflectance imaging in a mouse model of a rare epidermal disorder caused by hyperactive connexin 26 hemichannels. Reflectance imaging is a versatile and powerful tool in dermatology, offering noninvasive, high-resolution insights into skin pathology, which is essential for both clinical practice and research. This approach offers several advantages and applications. Unlike traditional biopsy, reflectance imaging is noninvasive, allowing for real-time, in vivo examination of the skin. This is particularly valuable for monitoring chronic conditions or assessing the efficacy of treatments over time, enabling the detailed examination of skin morphology. This is crucial for identifying features of skin diseases such as cancers, inflammatory conditions, and infections. In therapeutic applications, reflectance imaging can be used to monitor the response of skin lesions to treatments. It can help in identifying the most representative area of a lesion for biopsy, thereby increasing the diagnostic accuracy. Reflectance imaging can also be used to diagnose and monitor inflammatory skin diseases, like psoriasis and eczema, by visualizing changes in skin structure and cellular infiltration. As the technology becomes more accessible, it has potential in telemedicine, allowing for remote diagnosis and monitoring of skin conditions. In academic settings, reflectance imaging can be a powerful research tool, enabling the study of skin pathology and the effects of novel treatments, including the development of monoclonal antibodies for therapeutic applications.
Collapse
Affiliation(s)
- Chiara Peres
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
- , Bologna, Italy
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy.
| |
Collapse
|
6
|
Peres C, Sellitto C, Nardin C, Putti S, Orsini T, Di Pietro C, Marazziti D, Vitiello A, Calistri A, Rigamonti M, Scavizzi F, Raspa M, Zonta F, Yang G, White TW, Mammano F. Antibody gene transfer treatment drastically improves epidermal pathology in a keratitis ichthyosis deafness syndrome model using male mice. EBioMedicine 2023; 89:104453. [PMID: 36736132 PMCID: PMC9926223 DOI: 10.1016/j.ebiom.2023.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Keratitis ichthyosis deafness (KID) syndrome is a rare disorder caused by hemichannel (HC) activating gain-of-function mutations in the GJB2 gene encoding connexin (Cx) 26, for which there is no cure, or current treatments based upon the mechanism of disease causation. METHODS We applied Adeno Associated Virus (AAV) mediated mAb gene transfer (AAVmAb) to treat the epidermal features of KID syndrome with a well-characterized HC blocking antibody using male mice of a murine model that replicates the skin pathology of the human disease. FINDINGS We demonstrate that in vivo AAVmAb treatment significantly reduced the size and thickness of KID lesions, in addition to blocking activity of mutant HCs in the epidermis in vivo. We also show that AAVmAb treatment eliminated abnormal keratinocyte proliferation and enlarged cell size, decreased apoptosis, and restored the normal distribution of keratin expression. INTERPRETATION Our findings reinforce the critical role played by increased HC activity in the skin pathology associated with KID syndrome. They also underscore the clinical potential of anti-HC mAbs coupled with genetic based delivery systems for treating the underlying mechanistic basis of this disorder. Inhibition of HC activity is an ideal therapeutic target in KID syndrome, and the genetic delivery of mAbs targeted against mutant HCs could form the basis of new therapeutic interventions to treat this incurable disease. FUNDING Fondazione Telethon grant GGP19148 and University of Padova grant Prot. BIRD187130 to FM; Foundation for Ichthyosis and Related Skin Types (FIRST) and National Institutes of Health grant EY 026911 to TWW.
Collapse
Affiliation(s)
- Chiara Peres
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Caterina Sellitto
- Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower; Stony Brook, NY, 11794-8661, USA
| | - Chiara Nardin
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Sabrina Putti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | | | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower; Stony Brook, NY, 11794-8661, USA.
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131, Padova, Italy.
| |
Collapse
|
7
|
Increased Hemichannel Activity Displayed by a Connexin43 Mutation Causing a Familial Connexinopathy Exhibiting Hypotrichosis with Follicular Keratosis and Hyperostosis. Int J Mol Sci 2023; 24:ijms24032222. [PMID: 36768546 PMCID: PMC9916973 DOI: 10.3390/ijms24032222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Mutations in the GJA1 gene that encodes connexin43 (Cx43) cause several rare genetic disorders, including diseases affecting the epidermis. Here, we examined the in vitro functional consequences of a Cx43 mutation, Cx43-G38E, linked to a novel human phenotype of hypotrichosis, follicular keratosis and hyperostosis. We found that Cx43-G38E was efficiently translated in Xenopus oocytes and localized to gap junction plaques in transfected HeLa cells. Cx43-G38E formed functional gap junction channels with the same efficiency as wild-type Cx43 in Xenopus oocytes, although voltage gating of the gap junction channels was altered. Notably, Cx43-G38E significantly increased membrane current flow through the formation of active hemichannels when compared to wild-type Cx43. These data demonstrate the association of increased hemichannel activity to a connexin mutation linked to a skeletal-cutaneous phenotype, suggesting that augmented hemichannel activity could play a role in skin and skeletal disorders caused by human Cx43 mutations.
Collapse
|
8
|
Abbott AC, García IE, Villanelo F, Flores-Muñoz C, Ceriani R, Maripillán J, Novoa-Molina J, Figueroa-Cares C, Pérez-Acle T, Sáez JC, Sánchez HA, Martínez AD. Expression of KID syndromic mutation Cx26S17F produces hyperactive hemichannels in supporting cells of the organ of Corti. Front Cell Dev Biol 2023; 10:1071202. [PMID: 36699003 PMCID: PMC9868548 DOI: 10.3389/fcell.2022.1071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Some mutations in gap junction protein Connexin 26 (Cx26) lead to syndromic deafness, where hearing impairment is associated with skin disease, like in Keratitis Ichthyosis Deafness (KID) syndrome. This condition has been linked to hyperactivity of connexin hemichannels but this has never been demonstrated in cochlear tissue. Moreover, some KID mutants, like Cx26S17F, form hyperactive HCs only when co-expressed with other wild-type connexins. In this work, we evaluated the functional consequences of expressing a KID syndromic mutation, Cx26S17F, in the transgenic mouse cochlea and whether co-expression of Cx26S17F and Cx30 leads to the formation of hyperactive HCs. Indeed, we found that cochlear explants from a constitutive knock-in Cx26S17F mouse or conditional in vitro cochlear expression of Cx26S17F produces hyperactive HCs in supporting cells of the organ of Corti. These conditions also produce loss of hair cells stereocilia. In supporting cells, we found high co-localization between Cx26S17F and Cx30. The functional properties of HCs formed in cells co-expressing Cx26S17F and Cx30 were also studied in oocytes and HeLa cells. Under the recording conditions used in this study Cx26S17F did not form functional HCs and GJCs, but cells co-expressing Cx26S17F and Cx30 present hyperactive HCs insensitive to HCs blockers, Ca2+ and La3+, resulting in more Ca2+ influx and cellular damage. Molecular dynamic analysis of putative heteromeric HC formed by Cx26S17F and Cx30 presents alterations in extracellular Ca2+ binding sites. These results support that in KID syndrome, hyperactive HCs are formed by the interaction between Cx26S17F and Cx30 in supporting cells probably causing damage to hair cells associated to deafness.
Collapse
Affiliation(s)
- Ana C. Abbott
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Viña del Mar, Chile
| | - Isaac E. García
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile,Centro de Investigaciones en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Villanelo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Joel Novoa-Molina
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Cindel Figueroa-Cares
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tomas Pérez-Acle
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Helmuth A. Sánchez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| |
Collapse
|
9
|
López-Sundh AE, Escribano-Palomino E, Feito-Rodríguez M, Tenorio J, Brizzi ME, Krasnovska Zayets K, Servera-Negra G, de Lucas-Laguna R. Keratitis-ichthyosis-deafness syndrome with lethal p.Ala88Val variant and severe hypercalcemia. Am J Med Genet A 2023; 191:253-258. [PMID: 36286624 DOI: 10.1002/ajmg.a.63005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/03/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
Keratitis-ichthyosis-deafness (KID) syndrome is a rare genetic disease caused by pathogenic variants in connexin 26 (gene GJB2), which is part of the transmembrane channels of the epithelia. Connexin 26 is expressed mainly in the cornea, the sensory epithelium of the inner ear, and in the skin keratinocytes, which are the three main target organs in KID syndrome. Approximately a dozen pathogenic variants have been described to date, including some lethal forms. Patients with lethal pathogenic variants present with severe symptoms from birth and die from sepsis during the first year of life. We present a premature female patient with KID syndrome carrying the lethal p.Ala88Val pathogenic variant in GJB2. In addition to the respiratory distress associated with this variant, our patient presented severe hypercalcemia of unexplained origin refractory to treatment. This abnormality has not been reported earlier in other patients with KID syndrome with the same variant.
Collapse
Affiliation(s)
| | | | | | - Jair Tenorio
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAMs, Madrid, Spain.,ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Paris, France
| | | | | | | | | |
Collapse
|
10
|
Zhao M, Rolandi M, Isseroff RR. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041236. [PMID: 36041786 PMCID: PMC9524286 DOI: 10.1101/cshperspect.a041236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In wound healing, individual cells' behaviors coordinate movement toward the wound center to restore small or large barrier defects. The migration of epithelial cells as a continuous sheet structure is one of the most important processes by which the skin barrier is restored. How such multicellular and tissue level movement is initiated upon injury, coordinated during healing, and stopped when wounds healed has been a research focus for decades. When skin is wounded, the compromised epithelial barrier generates endogenous electric fields (EFs), produced by ion channels and maintained by cell junctions. These EFs are present across wounds, with the cathodal pole at the wound center. Epithelial cells detect minute EFs and migrate directionally in response to electrical signals. It has long been postulated that the naturally occurring EFs facilitate wound healing by guiding cell migration. It is not until recently that experimental evidence has shown that large epithelial sheets of keratinocytes or corneal epithelial cells respond to applied EFs by collective directional migration. Although some of the mechanisms of the collective cell migration are similar to those used by isolated cells, there are unique mechanisms that govern the coordinated movement of the cohesive sheet. We will review the understanding of wound EFs and how epithelial cells and other cells important to wound healing respond to the electric signals individually as well as collectively. Mounting evidence suggests that wound bioelectrical signaling is an important mechanism in healing. Critical understanding and proper exploitation of this mechanism will be important for better wound healing and regeneration.
Collapse
Affiliation(s)
- Min Zhao
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California 95817, USA
- Department of Dermatology, University of California, Davis, California 95616, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, California 95616, USA
| |
Collapse
|
11
|
Gap junctions mediate discrete regulatory steps during fly spermatogenesis. PLoS Genet 2022; 18:e1010417. [PMID: 36174062 PMCID: PMC9578636 DOI: 10.1371/journal.pgen.1010417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Gametogenesis requires coordinated signaling between germ cells and somatic cells. We previously showed that Gap junction (GJ)-mediated soma-germline communication is essential for fly spermatogenesis. Specifically, the GJ protein Innexin4/Zero population growth (Zpg) is necessary for somatic and germline stem cell maintenance and differentiation. It remains unknown how GJ-mediated signals regulate spermatogenesis or whether the function of these signals is restricted to the earliest stages of spermatogenesis. Here we carried out comprehensive structure/function analysis of Zpg using insights obtained from the protein structure of innexins to design mutations aimed at selectively perturbing different regulatory regions as well as the channel pore of Zpg. We identify the roles of various regulatory sites in Zpg in the assembly and maintenance of GJs at the plasma membrane. Moreover, mutations designed to selectively disrupt, based on size and charge, the passage of cargos through the Zpg channel pore, blocked different stages of spermatogenesis. Mutations were identified that progressed through early germline and soma development, but exhibited defects in entry to meiosis or sperm individualisation, resulting in reduced fertility or sterility. Our work shows that specific signals that pass through GJs regulate the transition between different stages of gametogenesis.
Collapse
|
12
|
A Quantitative Assay for Ca2+ Uptake through Normal and Pathological Hemichannels. Int J Mol Sci 2022; 23:ijms23137337. [PMID: 35806342 PMCID: PMC9266989 DOI: 10.3390/ijms23137337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/25/2022] Open
Abstract
Connexin (Cx) hemichannels (HCs) are large pore hexameric structures that allow the exchange of ions, metabolites and a variety of other molecules between the cell cytoplasm and extracellular milieu. HC inhibitors are attracting growing interest as drug candidates because deregulated fluxes through HCs have been implicated in a plethora of genetic conditions and other diseases. HC activity has been mainly investigated by electrophysiological methods and/or using HC-permeable dye uptake measurements. Here, we present an all-optical assay based on fluorometric measurements of ionized calcium (Ca2+) uptake with a Ca2+-selective genetically encoded indicator (GCaMP6s) that permits the optical tracking of cytosolic Ca2+ concentration ([Ca2+]cyt) changes with high sensitivity. We exemplify use of the assay in stable pools of HaCaT cells overexpressing human Cx26, Cx46, or the pathological mutant Cx26G45E, under control of a tetracycline (Tet) responsive element (TRE) promoter (Tet-on). We demonstrate the usefulness of the assay for the characterization of new monoclonal antibodies (mAbs) targeting the extracellular domain of the HCs. Although we developed the assay on a spinning disk confocal fluorescence microscope, the same methodology can be extended seamlessly to high-throughput high-content platforms to screen other kinds of inhibitors and/or to probe HCs expressed in primary cells and microtissues.
Collapse
|
13
|
Waissbluth S, Maass JC, Sanchez HA, Martínez AD. Supporting Cells and Their Potential Roles in Cisplatin-Induced Ototoxicity. Front Neurosci 2022; 16:867034. [PMID: 35573297 PMCID: PMC9104564 DOI: 10.3389/fnins.2022.867034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cisplatin is a known ototoxic chemotherapy drug, causing irreversible hearing loss. Evidence has shown that cisplatin causes inner ear damage as a result of adduct formation, a proinflammatory environment and the generation of reactive oxygen species within the inner ear. The main cochlear targets for cisplatin are commonly known to be the outer hair cells, the stria vascularis and the spiral ganglion neurons. Further evidence has shown that certain transporters can mediate cisplatin influx into the inner ear cells including organic cation transporter 2 (OCT2) and the copper transporter Ctr1. However, the expression profiles for these transporters within inner ear cells are not consistent in the literature, and expression of OCT2 and Ctr1 has also been observed in supporting cells. Organ of Corti supporting cells are essential for hair cell activity and survival. Special interest has been devoted to gap junction expression by these cells as certain mutations have been linked to hearing loss. Interestingly, cisplatin appears to affect connexin expression in the inner ear. While investigations regarding cisplatin-induced hearing loss have been focused mainly on the known targets previously mentioned, the role of supporting cells for cisplatin-induced ototoxicity has been overlooked. In this mini review, we discuss the implications of supporting cells expressing OCT2 and Ctr1 as well as the potential role of gap junctions in cisplatin-induced cytotoxicity.
Collapse
Affiliation(s)
- Sofia Waissbluth
- Department of Otolaryngology, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Sofia Waissbluth, ;
| | - Juan Cristóbal Maass
- Department of Otolaryngology, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Helmuth A. Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
14
|
Murata T, Honda T, Mostafa A, Kabashima K. Stratum corneum as polymer sheet: concept and cornification processes. Trends Mol Med 2022; 28:350-359. [PMID: 35337733 DOI: 10.1016/j.molmed.2022.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
The skin barrier protects our body from external insults and water loss through a specialized layer, the stratum corneum. The stratum corneum, an accumulation of dead keratinocytes (corneocytes), comprises lipids and supporting cell bodies. We propose a framework of lipid-filled polymer sheet of corneocytes, a unique structure that achieves flexibility and robustness, updating the rigid image of the historical bricks-and-mortar model. The polymerization of polymer sheet (cornification) by cell death of keratinocytes (corneoptosis) is delicately and dynamically controlled by cytoplasmic calcium ion and pH. Understanding the structure and formation of the stratum corneum can lead to better treatments for skin diseases and a better understanding of the evolution of the stratum corneum.
Collapse
Affiliation(s)
- Teruasa Murata
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Alshimaa Mostafa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| |
Collapse
|
15
|
Laird DW, Lampe PD. Cellular mechanisms of connexin-based inherited diseases. Trends Cell Biol 2022; 32:58-69. [PMID: 34429228 PMCID: PMC8688313 DOI: 10.1016/j.tcb.2021.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023]
Abstract
The 21-member connexin gene family exhibits distinct tissue expression patterns that can cause a diverse array of over 30 inherited connexin-linked diseases ranging from deafness to skin defects and blindness. Intriguingly, germline mutations can cause disease in one tissue while other tissues that abundantly express the mutant connexin remain disease free, highlighting the importance of the cellular context of mutant expression. Modeling connexin pathologies in genetically modified mice and tissue-relevant cells has informed extensively on no less than a dozen gain- and loss-of-function mechanisms that underpin disease. This review focuses on how a deeper molecular understanding of the over 930 mutations in 11 connexin-encoding genes is foundational for creating a framework for therapeutic interventions.
Collapse
Affiliation(s)
- Dale W. Laird
- Departments of Anatomy and Cell Biology, and Physiology and Pharmacology, University of Western Ontario, London, ON, CANADA
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
16
|
Sellitto C, Li L, White TW. Connexin hemichannel inhibition ameliorates epidermal pathology in a mouse model of keratitis ichthyosis deafness syndrome. Sci Rep 2021; 11:24118. [PMID: 34916582 PMCID: PMC8677806 DOI: 10.1038/s41598-021-03627-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
AbstractMutations in five different genes encoding connexin channels cause eleven clinically defined human skin diseases. Keratitis ichthyosis deafness (KID) syndrome is caused by point mutations in the GJB2 gene encoding Connexin 26 (Cx26) which result in aberrant activation of connexin hemichannels. KID syndrome has no cure and is associated with bilateral hearing loss, blinding keratitis, palmoplantar keratoderma, ichthyosiform erythroderma and a high incidence of childhood mortality. Here, we have tested whether a topically applied hemichhanel inhibitor (flufenamic acid, FFA) could ameliorate the skin pathology associated with KID syndrome in a transgenic mouse model expressing the lethal Cx26-G45E mutation. We found that FFA blocked the hemichannel activity of Cx26-G45E in vitro, and substantially reduced epidermal pathology in vivo, compared to untreated, or vehicle treated control animals. FFA did not reduce the expression of mutant connexin hemichannel protein, and cessation of FFA treatment allowed disease progression to continue. These results suggested that aberrant hemichannel activity is a major driver of skin disease in KID syndrome, and that the inhibition of mutant hemichannel activity could provide an attractive target to develop novel therapeutic interventions to treat this incurable disease.
Collapse
|
17
|
Abstract
BACKGROUND Keratitis-ichthyosis-deafness (KID) syndrome is characterized by a congenital triad of keratitis, ichthyosis, and deafness, and is most commonly associated with mutations in the gap junction protein beta 2 gene (GJB2) on chromosome 13q11-q12. METHODS Multimodal anterior segment imaging and genetic testing were used to supplement clinical examination findings in the diagnosis and management of a 12-year-old boy with suspected KID syndrome. RESULTS The patient presented with hearing loss, ichthyosis of the face and extremities, and corneal scarring and keratinization. The corneal limbal stem cell population was found to be normal on in vivo confocal microscopy, whereas the basal epithelium of the cornea demonstrated scarring and areas of cellular loss. Screening of GJB2 revealed a presumed pathogenic heterozygous missense mutation, c.148G>A, confirming the diagnosis of KID syndrome. CONCLUSIONS Multimodal imaging including in vivo confocal microscopy suggests that dysfunctional corneal basal epithelium maturation might contribute to the pathophysiology of keratopathy in KID syndrome.
Collapse
|
18
|
O’Shaughnessy EM, Duffy W, Garcia-Vega L, Hussey K, Burden AD, Zamiri M, Martin PE. Dysregulation of Connexin Expression Plays a Pivotal Role in Psoriasis. Int J Mol Sci 2021; 22:ijms22116060. [PMID: 34199748 PMCID: PMC8200029 DOI: 10.3390/ijms22116060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Psoriasis, a chronic inflammatory disease affecting 2–3% of the population, is characterised by epidermal hyperplasia, a sustained pro-inflammatory immune response and is primarily a T-cell driven disease. Previous work determined that Connexin26 is upregulated in psoriatic tissue. This study extends these findings. Methods: Biopsies spanning psoriatic plaque (PP) and non-involved tissue (PN) were compared to normal controls (NN). RNA was isolated and subject to real-time PCR to determine gene expression profiles, including GJB2/CX26, GJB6/CX30 and GJA1/CX43. Protein expression was assessed by immunohistochemistry. Keratinocytes and fibroblasts were isolated and used in 3D organotypic models. The pro-inflammatory status of fibroblasts and 3D cultures was assessed via ELISA and RnD cytokine arrays in the presence or absence of the connexin channel blocker Gap27. Results: Connexin26 expression is dramatically enhanced at both transcriptional and translational level in PP and PN tissue compared to NN (>100x). In contrast, CX43 gene expression is not affected, but the protein is post-translationally modified and accumulates in psoriatic tissue. Fibroblasts isolated from psoriatic patients had a higher inflammatory index than normal fibroblasts and drove normal keratinocytes to adopt a “psoriatic phenotype” in a 3D-organotypic model. Exposure of normal fibroblasts to the pro-inflammatory mediator peptidoglycan, isolated from Staphylococcus aureus enhanced cytokine release, an event protected by Gap27. Conclusion: dysregulation of the connexin26:43 expression profile in psoriatic tissue contributes to an imbalance of cellular events. Inhibition of connexin signalling reduces pro-inflammatory events and may hold therapeutic benefit.
Collapse
Affiliation(s)
- Erin M. O’Shaughnessy
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (E.M.O.); (L.G.-V.)
| | - William Duffy
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock KA2 0BE, UK; (W.D.); (M.Z.)
| | - Laura Garcia-Vega
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (E.M.O.); (L.G.-V.)
| | - Keith Hussey
- Department of Vascular Surgery, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK;
| | - A. David Burden
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK;
| | - Mozheh Zamiri
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock KA2 0BE, UK; (W.D.); (M.Z.)
- Department of Dermatology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Patricia E. Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (E.M.O.); (L.G.-V.)
- Correspondence: ; Tel.: +44-141-331-3726
| |
Collapse
|
19
|
Miao H, Dong R, Zhang S, Yang L, Liu Y, Wang T. Hereditäre Ichthyose und Pilzinfektion: aktuelle Daten zu Pathogenese und Behandlungsstrategien. J Dtsch Dermatol Ges 2021; 19:341-351. [PMID: 33709589 DOI: 10.1111/ddg.14389_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Huilei Miao
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruijia Dong
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiyu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Yang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
The Complex and Critical Role of Glycine 12 (G12) in Beta-Connexins of Human Skin. Int J Mol Sci 2021; 22:ijms22052615. [PMID: 33807656 PMCID: PMC7961983 DOI: 10.3390/ijms22052615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
Glycine is an amino acid with unique properties because its side chain is composed of a single hydrogen atom. It confers conformational flexibility to proteins and conserved glycines are often indicative of protein domains involving tight turns or bends. All six beta-type connexins expressed in human epidermis (Cx26, Cx30, Cx30.3, Cx31, Cx31.1 and Cx32) contain a glycine at position 12 (G12). G12 is located about halfway through the cytoplasmic amino terminus and substitutions alter connexin function in a variety of ways, in some cases altering protein interactions and leading to cell death. There is also evidence that alteration of G12 changes the structure of the amino terminus in connexin- and amino acid- specific ways. This review integrates structural, functional and physiological information about the role of G12 in connexins, focusing on beta-connexins expressed in human epidermis. The importance of G12 substitutions in these beta-connexins is revealed in two hereditary skin disorders, keratitis ichthyosis and erythrokeratodermia variabilis, both of which result from missense mutations affecting G12.
Collapse
|
21
|
Miao H, Dong R, Zhang S, Yang L, Liu Y, Wang T. Inherited ichthyosis and fungal infection: an update on pathogenesis and treatment strategies. J Dtsch Dermatol Ges 2021; 19:341-350. [PMID: 33448147 DOI: 10.1111/ddg.14389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022]
Abstract
Inherited ichthyoses are a group of genodermatoses classified as either nonsyndromic or syndromic. Nonsyndromic ichthyoses and keratitis, ichthyosis and deafness (KID) syndrome predispose to fungal infection. The diagnosis and treatment of fungal infections underlying ichthyoses are challenging. In this review, we summarize reported cases of ichthyosis with fungal infection over the past 50 years. Atypical manifestations such as alopecia, papules and brittle nails occurred in patients with ichthyosis combined with fungal infection. Various pathogenic mechanisms have been implicated, including mutations of ichthyosis-related genes leading to disruption of the skin barrier via multiple pathways. Host immune disorders, including atopy and abnormal innate immunity also contribute to susceptibility. Specific fungi may escape the immune response. Extensive and recurrent fungal infections are not uncommon in patients with ichthyosis, making a cure more difficult and increasing the need for systemic antifungal therapy. Traditional and new ichthyosis treatments aiming to improve skin barrier function could help prevent fungal infection. In conclusion, the close relationship between ichthyosis and fungal infection is of vital importance in clinical practice and requires more attention from physicians. More studies are required to investigate the mechanisms and explore useful treatment strategies.
Collapse
Affiliation(s)
- Huilei Miao
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruijia Dong
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiyu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Yang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Garcia-Vega L, O’Shaughnessy EM, Albuloushi A, Martin PE. Connexins and the Epithelial Tissue Barrier: A Focus on Connexin 26. BIOLOGY 2021; 10:biology10010059. [PMID: 33466954 PMCID: PMC7829877 DOI: 10.3390/biology10010059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Tissues that face the external environment are known as ‘epithelial tissue’ and form barriers between different body compartments. This includes the outer layer of the skin, linings of the intestine and airways that project into the lumen connecting with the external environment, and the cornea of the eye. These tissues do not have a direct blood supply and are dependent on exchange of regulatory molecules between cells to ensure co-ordination of tissue events. Proteins known as connexins form channels linking cells directly and permit exchange of small regulatory signals. A range of environmental stimuli can dysregulate the level of connexin proteins and or protein function within the epithelia, leading to pathologies including non-healing wounds. Mutations in these proteins are linked with hearing loss, skin and eye disorders of differing severity. As such, connexins emerge as prime therapeutic targets with several agents currently in clinical trials. This review outlines the role of connexins in epithelial tissue and how their dysregulation contributes to pathological pathways. Abstract Epithelial tissue responds rapidly to environmental triggers and is constantly renewed. This tissue is also highly accessible for therapeutic targeting. This review highlights the role of connexin mediated communication in avascular epithelial tissue. These proteins form communication conduits with the extracellular space (hemichannels) and between neighboring cells (gap junctions). Regulated exchange of small metabolites less than 1kDa aide the co-ordination of cellular activities and in spatial communication compartments segregating tissue networks. Dysregulation of connexin expression and function has profound impact on physiological processes in epithelial tissue including wound healing. Connexin 26, one of the smallest connexins, is expressed in diverse epithelial tissue and mutations in this protein are associated with hearing loss, skin and eye conditions of differing severity. The functional consequences of dysregulated connexin activity is discussed and the development of connexin targeted therapeutic strategies highlighted.
Collapse
|
23
|
Harnessing the therapeutic potential of antibodies targeting connexin hemichannels. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166047. [PMID: 33418036 DOI: 10.1016/j.bbadis.2020.166047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Connexin hemichannels have been implicated in pathology-promoting conditions, including inflammation, numerous widespread human diseases, including cancer and diabetes, and several rare diseases linked to pathological point mutations. METHODS We analysed the literature focusing on antibodies capable of modulating hemichannel function, highlighting generation methods, applications to basic biomedical research and translational potential. RESULTS Anti-hemichannel antibodies generated over the past 3 decades targeted mostly connexin 43, with a focus on cancer treatment. A slow transition from relatively unselective polyclonal antibodies to more selective monoclonal antibodies resulted in few products with interesting characteristics that are under evaluation for clinical trials. Selection of antibodies from combinatorial phage-display libraries, has permitted to engineer a monoclonal antibody that binds to and blocks pathological hemichannels formed by connexin 26, 30 and 32. CONCLUSIONS All known antibodies that modulate connexin hemichannels target the two small extracellular loops of the connexin proteins. The extracellular region of different connexins is highly conserved, and few residues of each connexins are exposed. The search for new antibodies may develop an unprecedented potential for therapeutic applications, as it may benefit tremendously from novel whole-cell screening platforms that permit in situ selection of antibodies against membrane proteins in native state. The demonstrated efficacy of mAbs in reaching and modulating hemichannels in vivo, together with their relative specificity for connexins overlapping epitopes, should hopefully stimulate an interest for widening the scope of anti-hemichannel antibodies. There is no shortage of currently incurable diseases for which therapeutic intervention may benefit from anti-hemichannel antibodies capable of modulating hemichannel function selectively and specifically.
Collapse
|
24
|
Albuloushi A, Lovgren ML, Steel A, Yeoh Y, Waters A, Zamiri M, Martin PE. A heterozygous mutation in GJB2 (Cx26F142L) associated with deafness and recurrent skin rashes results in connexin assembly deficiencies. Exp Dermatol 2020; 29:970-979. [PMID: 32866991 DOI: 10.1111/exd.14187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Mutations in GJB2 encoding Connexin 26 (CX26) are associated with hearing loss and hyperproliferative skin disorders of differing severity including keratitis-ichthyosis-deafness (KID) and Vohwinkel syndrome. A 6-year-old Caucasian girl who presented with recurrent skin rashes and sensorineural hearing loss harboured a heterozygous point mutation in GJB2 (c.424T > C; p.F142L). To characterize the impact of CX26F142L on cellular events. Plasmids CX26WT, CX26F142L, CX26G12R (KID) or CX26D66H (Vohwinkel) were transfected into HeLa cells expressing Cx26 or Cx43 or into HaCaT cells, a model keratinocyte cell line. Confocal microscopy determined protein localization. MTT assays assessed cell viability in the presence or absence of carbenoxolone, a connexin-channel blocker. Co-immunoprecipitation/Western blot analysis determined Cx43:Cx26 interactions. Quantitative real-time polymerase chain reaction assessed changes in gene expression of ER stress markers. Dye uptake assays determined Connexin-channel functionality. F142L and G12R were restricted to perinuclear areas. Collapse of the microtubule network, rescued by co-treatment with paclitaxel, occurred. ER stress was not involved. Cell viability was reduced in cells expressing F142L and G12R but not D66H. Unlike G12R that forms "leaky" hemichannels, F142L had restricted permeability. Cell viability of F142L and G12R transfected cells was greater in HeLa cells expressing Cx43 than in native Cx-free HeLa cells. Co-immunoprecipitation suggested a possible interaction between Cx43 and the three mutations. Expression of CX26F142L and G12R results in microtubule collapse, rescued by interaction with Cx43. The GJB2 mutations interacted with Cx43 suggesting that unique Cx43:Cx26 channels are central to the diverse phenotype of CX26 skin-related channelopathies.
Collapse
Affiliation(s)
- Ahmad Albuloushi
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Marie-Louise Lovgren
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock, UK.,Department of Dermatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ainsley Steel
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Yeelon Yeoh
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Alex Waters
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock, UK
| | - Mozheh Zamiri
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock, UK.,Department of Dermatology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Patricia E Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
25
|
Bruzzone R, White TW. Connexin hemichannel inhibition improves skin pathology in Clouston syndrome mice. EBioMedicine 2020; 57:102856. [PMID: 32629388 PMCID: PMC7334806 DOI: 10.1016/j.ebiom.2020.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 10/25/2022] Open
Affiliation(s)
- Roberto Bruzzone
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, SAR
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, United States.
| |
Collapse
|
26
|
Kuang Y, Zorzi V, Buratto D, Ziraldo G, Mazzarda F, Peres C, Nardin C, Salvatore AM, Chiani F, Scavizzi F, Raspa M, Qiang M, Chu Y, Shi X, Li Y, Liu L, Shi Y, Zonta F, Yang G, Lerner RA, Mammano F. A potent antagonist antibody targeting connexin hemichannels alleviates Clouston syndrome symptoms in mutant mice. EBioMedicine 2020; 57:102825. [PMID: 32553574 PMCID: PMC7378960 DOI: 10.1016/j.ebiom.2020.102825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels. METHODS We employed the antibody to treat Cx30A88V/A88V adult mutant mice, the only available animal model of Clouston syndrome, a rare orphan disease caused by Cx30 p.A88V leaky hemichannels. To gain mechanistic insight into antibody action, we also performed patch clamp recordings, Ca2+ imaging and ATP release assay in vitro. FINDINGS Two weeks of antibody treatment sufficed to repress cell hyperproliferation in skin and reduce hypertrophic sebaceous glands (SGs) to wild type (wt) levels. These effects were obtained whether mutant mice were treated topically, by application of an antibody cream formulation, or systemically, by intraperitoneal antibody injection. Experiments with mouse primary keratinocytes and HaCaT cells revealed the antibody blocked Ca2+ influx and diminished ATP release through leaky Cx30 p.A88V hemichannels. INTERPRETATION Our results show anti-Cx antibody treatment was effective in vivo and sufficient to counteract the effects of pathological connexin expression in Cx30A88V/A88V mice. In vitro experiments suggest antibodies gained control over leaky hemichannels and contributed to restoring epidermal homeostasis. Therefore, regulating cell physiology by antibodies targeting the extracellular domain of Cxs may enforce an entirely new therapeutic strategy. These findings support the further development of antibodies as drugs to address unmet medical needs for Cx-related diseases. FUND: Fondazione Telethon, GGP19148; University of Padova, SID/BIRD187130; Consiglio Nazionale delle Ricerche, DSB.AD008.370.003\TERABIO-IBCN; National Science Foundation of China, 31770776; Science and Technology Commission of Shanghai Municipality, 16DZ1910200.
Collapse
Affiliation(s)
- Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Science, Roma3 University, 00146 Rome, Italy
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | | | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | - Min Qiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yaru Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Richard A Lerner
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, U.S.A..
| | - Fabio Mammano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy.
| |
Collapse
|
27
|
Rozas-Villanueva MF, Casanello P, Retamal MA. Role of ROS/RNS in Preeclampsia: Are Connexins the Missing Piece? Int J Mol Sci 2020; 21:ijms21134698. [PMID: 32630161 PMCID: PMC7369723 DOI: 10.3390/ijms21134698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia is a pregnancy complication that appears after 20 weeks of gestation and is characterized by hypertension and proteinuria, affecting both mother and offspring. The cellular and molecular mechanisms that cause the development of preeclampsia are poorly understood. An important feature of preeclampsia is an increase in oxygen and nitrogen derived free radicals (reactive oxygen species/reactive nitrogen species (ROS/RNS), which seem to be central players setting the development and progression of preeclampsia. Cell-to-cell communication may be disrupted as well. Connexins (Cxs), a family of transmembrane proteins that form hemichannels and gap junction channels (GJCs), are essential in paracrine and autocrine cell communication, allowing the movement of signaling molecules between cells as well as between the cytoplasm and the extracellular media. GJCs and hemichannels are fundamental for communication between endothelial and smooth muscle cells and, therefore, in the control of vascular contraction and relaxation. In systemic vasculature, the activity of GJCs and hemichannels is modulated by ROS and RNS. Cxs participate in the development of the placenta and are expressed in placental vasculature. However, it is unknown whether Cxs are modulated by ROS/RNS in the placenta, or whether this potential modulation contributes to the pathogenesis of preeclampsia. Our review addresses the possible role of Cxs in preeclampsia, and the plausible modulation of Cxs-formed channels by ROS and RNS. We suggest these factors may contribute to the development of preeclampsia.
Collapse
Affiliation(s)
- María F. Rozas-Villanueva
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile;
- Programa de Doctorado en Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7690000, Chile
| | - Paola Casanello
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7690000, Chile;
- Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7690000, Chile
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile;
- Programa de Comunicación Celular de Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile
- Correspondence:
| |
Collapse
|
28
|
Molecular Mechanism of Epidermal Barrier Dysfunction as Primary Abnormalities. Int J Mol Sci 2020; 21:ijms21041194. [PMID: 32054030 PMCID: PMC7072774 DOI: 10.3390/ijms21041194] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
Epidermal barrier integrity could be influenced by various factors involved in epidermal cell differentiation and proliferation, cell–cell adhesion, and skin lipids. Dysfunction of this barrier can cause skin disorders, including eczema. Inversely, eczema can also damage the epidermal barrier. These interactions through vicious cycles make the mechanism complicated in connection with other mechanisms, particularly immunologic responses. In this article, the molecular mechanisms concerning epidermal barrier abnormalities are reviewed in terms of the following categories: epidermal calcium gradients, filaggrin, cornified envelopes, desquamation, and skin lipids. Mechanisms linked to ichthyoses, atopic dermatitis without exacerbation or lesion, and early time of experimental irritation were included. On the other hand, the mechanism associated with epidermal barrier abnormalities resulting from preceding skin disorders was excluded. The molecular mechanism involved in epidermal barrier dysfunction has been mostly episodic. Some mechanisms have been identified in cultured cells or animal models. Nonetheless, research into the relationship between the causative molecules has been gradually increasing. Further evidence-based systematic data of target molecules and their interactions would probably be helpful for a better understanding of the molecular mechanism underlying the dysfunction of the epidermal barrier.
Collapse
|
29
|
Lee MY, Wang HZ, White TW, Brooks T, Pittman A, Halai H, Petrova A, Xu D, Hart SL, Kinsler VA, Di WL. Allele-Specific Small Interfering RNA Corrects Aberrant Cellular Phenotype in Keratitis-Ichthyosis-Deafness Syndrome Keratinocytes. J Invest Dermatol 2019; 140:1035-1044.e7. [PMID: 31705875 DOI: 10.1016/j.jid.2019.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022]
Abstract
Keratitis-ichthyosis-deafness (KID) syndrome is a severe, untreatable condition characterized by ocular, auditory, and cutaneous abnormalities, with major complications of infection and skin cancer. Most cases of KID syndrome (86%) are caused by a heterozygous missense mutation (c.148G>A, p.D50N) in the GJB2 gene, encoding gap junction protein Cx26, which alters gating properties of Cx26 channels in a dominant manner. We hypothesized that a mutant allele-specific small interfering RNA could rescue the cellular phenotype in patient keratinocytes (KCs). A KID syndrome cell line (KID-KC) was established from primary patient KCs with a heterozygous p.D50N mutation. This cell line displayed impaired gap junction communication and hyperactive hemichannels, confirmed by dye transfer, patch clamp, and neurobiotin uptake assays. A human-murine chimeric skin graft model constructed with KID-KCs mimicked patient skin in vivo, further confirming the validity of these cells as a model. In vitro treatment with allele-specific small interfering RNA led to robust inhibition of the mutant GJB2 allele without altering expression of the wild-type allele. This corrected both gap junction and hemichannel activity. Notably, allele-specific small interfering RNA treatment caused only low-level off-target effects in KID-KCs, as detected by genome-wide RNA sequencing. Our data provide an important proof-of-concept and model system for the potential use of allele-specific small interfering RNA in treating KID syndrome and other dominant genetic conditions.
Collapse
Affiliation(s)
- Ming Yang Lee
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Hong-Zhan Wang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Tony Brooks
- UCL Genomics, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alan Pittman
- Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom; Genetics Research Centre, St George's, University of London, London, United Kingdom
| | - Heerni Halai
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anastasia Petrova
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Diane Xu
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stephen L Hart
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Veronica A Kinsler
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Paediatric Dermatology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Wei-Li Di
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.
| |
Collapse
|
30
|
García-Vega L, O'Shaughnessy EM, Jan A, Bartholomew C, Martin PE. Connexin 26 and 43 play a role in regulating proinflammatory events in the epidermis. J Cell Physiol 2019; 234:15594-15606. [PMID: 30710344 DOI: 10.1002/jcp.28206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Dysregulation of Connexin (CX) expression and function is associated with a range of chronic inflammatory conditions including psoriasis and nonhealing wounds. To mimic a proinflammatory environment, HaCaT cells, a model human keratinocyte cell line, were challenged with 10 µg/ml peptidoglycan (PGN) isolated from Staphylococcus aureus for 15 min to 24 hr in the presence or absence of CX blockers and/or following CX26, CX43, PANX1 and TLR2 small interfering RNA (siRNA) knockdown (KD). Expression levels of IL-6, IL-8, CX26, CX43, PANX1, TLR2 and Ki67 were assessed by quantitative real-time polymerase chain reaction, western blot analysis and/or immunocytochemistry. Nuclear factor kappa β (NF-κβ) was blocked with BAY 11-7082, CX-channel function was determined by adenosine 5'-triphosphate (ATP) release assays. Enzyme-linked immunosorbent assay monitored IL6 release following PGN challenge in the presence or absence of siRNA or blockers of CX or purinergic signalling. Exposure to PGN induced IL-6, IL-8, CX26 and TLR2 gene expression but it did not influence CX43, PANX1 or Ki67 messenger RNA expression levels. CX43 protein levels were reduced following 24 hr PGN exposure. PGN-induced CX26 and IL-6 expression were also aborted by TLR2-KD and inhibition of NF-κβ. ATP and IL-6 release were stimulated following 15 min and 1-24 hr challenge with PGN, respectively. Release of both agents was inhibited by coincubation with CX-channel blockers, CX26-, CX43- and TLR2-KD. The IL-6 response was also reduced by purinergic blockers. CX-signalling plays a role in the innate immune response in the epidermis. PGN is detected by TLR2, which via NF-κβ, directly activates CX26 and IL-6 expression. CX43 and CX26 maintain proinflammatory signalling by permitting ATP release, however, PANX1 does not participate.
Collapse
Affiliation(s)
- Laura García-Vega
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Erin M O'Shaughnessy
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Afnan Jan
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Chris Bartholomew
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Patricia E Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| |
Collapse
|
31
|
Cook J, de Wolf E, Dale N. Cx26 keratitis ichthyosis deafness syndrome mutations trigger alternative splicing of Cx26 to prevent expression and cause toxicity in vitro. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191128. [PMID: 31598268 PMCID: PMC6731697 DOI: 10.1098/rsos.191128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The Cx26 mRNA has not been reported to undergo alternative splicing. In expressing a series of human keratitis ichthyosis deafness (KID) syndrome mutations of Cx26 (A88V, N14K and A40V), we found the production of a truncated mRNA product. These mutations, although not creating a cryptic splice site, appeared to activate a pre-existing cryptic splice site. The alternative splicing of the mutant Cx26 mRNA could be prevented by mutating the predicted 3', 5' splice sites and the branch point. The presence of a C-terminal fluorescent protein tag (mCherry or Clover) was necessary for this alternative splicing to occur. Strangely, Cx26A88V could cause the alternative splicing of co-expressed WT Cx26-suggesting a trans effect. The alternative splicing of Cx26A88V caused cell death, and this could be prevented by the 3', 5' and branch point mutations. Expression of the KID syndrome mutants could be rescued by combining them with removal of the 5' splice site. We used this strategy to enable expression of Cx26A40V-5' and demonstrate that this KID syndrome mutation removed CO2 sensitivity from the Cx26 hemichannel. This is the fourth KID syndrome mutation found to abolish the CO2-sensitivity of the Cx26 hemichannel, and suggests that the altered CO-2-sensitivity could contribute to the pathology of this mutation. Future research on KID syndrome mutations should take care to avoid using a C-terminal tag to track cellular localization and expression or if this is unavoidable, combine this mutation with removal of the 5' splice site.
Collapse
|
32
|
Mammano F. Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harb Perspect Med 2019; 9:a033233. [PMID: 30181354 PMCID: PMC6601451 DOI: 10.1101/cshperspect.a033233] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Connexin 26 and connexin 30 are the prevailing isoforms in the epithelial and connective tissue gap junction systems of the developing and mature cochlea. The most frequently encountered variants of the genes that encode these connexins, which are transcriptionally coregulated, determine complete loss of protein function and are the predominant cause of prelingual hereditary deafness. Reducing connexin 26 expression by Cre/loxP recombination in the inner ear of adult mice results in a decreased endocochlear potential, increased hearing thresholds, and loss of >90% of outer hair cells, indicating that this connexin is essential for maintenance of cochlear function. In the developing cochlea, connexins are necessary for intercellular calcium signaling activity. Ribbon synapses and basolateral membrane currents fail to mature in inner hair cells of mice that are born with reduced connexin expression, even though hair cells do not express any connexin. In contrast, pannexin 1, an alternative mediator of intercellular signaling, is dispensable for hearing acquisition and auditory function.
Collapse
Affiliation(s)
- Fabio Mammano
- University of Padova, Department of Physics and Astronomy "G. Galilei," Padova 35129, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
33
|
Lee YI, Kim TG, Lee ST, Lee SH, Lee MG. A Somatic p.Phe29del Mutation of Connexin 26 (GJB2) Manifesting as Acantholytic Dyskeratotic Epidermal Nevus. JAMA Dermatol 2019; 155:633-635. [PMID: 30916736 DOI: 10.1001/jamadermatol.2018.5852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Young In Lee
- Cutaneous Biology Research Institute, Department of Dermatology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Gyun Kim
- Cutaneous Biology Research Institute, Department of Dermatology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Si-Hyung Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min-Geol Lee
- Cutaneous Biology Research Institute, Department of Dermatology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
34
|
Connexin43 mutations linked to skin disease have augmented hemichannel activity. Sci Rep 2019; 9:19. [PMID: 30631135 PMCID: PMC6328547 DOI: 10.1038/s41598-018-37221-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/04/2018] [Indexed: 01/22/2023] Open
Abstract
Mutations in the gene (GJA1) encoding connexin43 (Cx43) are responsible for several rare genetic disorders, including non-syndromic skin-limited diseases. Here we used two different functional expression systems to characterize three Cx43 mutations linked to palmoplantar keratoderma and congenital alopecia-1, erythrokeratodermia variabilis et progressiva, or inflammatory linear verrucous epidermal nevus. In HeLa cells and Xenopus oocytes, we show that Cx43-G8V, Cx43-A44V and Cx43-E227D all formed functional gap junction channels with the same efficiency as wild-type Cx43, with normal voltage gating and a unitary conductance of ~110 pS. In HeLa cells, all three mutations also localized to regions of cell-cell contact and displayed a punctate staining pattern. In addition, we show that Cx43-G8V, Cx43-A44V and Cx43-E227D significantly increase membrane current flow through formation of active hemichannels, a novel activity that was not displayed by wild-type Cx43. The increased membrane current was inhibited by either 2 mM calcium, or 5 µM gadolinium, mediated by hemichannels with a unitary conductance of ~250 pS, and was not due to elevated mutant protein expression. The three Cx43 mutations all showed the same gain of function activity, suggesting that augmented hemichannel activity could play a role in skin-limited diseases caused by human Cx43 mutations.
Collapse
|
35
|
Easton JA, Albuloushi AK, Kamps MAF, Brouns GHMR, Broers JLV, Coull BJ, Oji V, van Geel M, van Steensel MAM, Martin PE. A rare missense mutation in GJB3
(Cx31G45E) is associated with a unique cellular phenotype resulting in necrotic cell death. Exp Dermatol 2018; 28:1106-1113. [DOI: 10.1111/exd.13542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Jennifer A. Easton
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
| | - Ahmad K. Albuloushi
- Department of Life Sciences; School of Health and Life Sciences; Glasgow Caledonian University; Glasgow UK
| | - Miriam A. F. Kamps
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Department of Genetics and Cell Biology; Maastricht University; Maastricht The Netherlands
| | - Gladys H. M. R. Brouns
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
| | - Jos L. V. Broers
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Department of Genetics and Cell Biology; Maastricht University; Maastricht The Netherlands
| | - Barry J. Coull
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- Division of Biological Chemistry and Drug Discovery; College of Life Sciences; University of Dundee; Dundee UK
| | - Vincent Oji
- Department of Dermatology; University Hospital Münster; Münster Germany
| | - Michel van Geel
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
| | - Maurice A. M. van Steensel
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Skin Research Institute of Singapore; Institute of Medical Biology, Immunos; Singapore
| | - Patricia E. Martin
- Department of Life Sciences; School of Health and Life Sciences; Glasgow Caledonian University; Glasgow UK
| |
Collapse
|
36
|
García IE, Villanelo F, Contreras GF, Pupo A, Pinto BI, Contreras JE, Pérez-Acle T, Alvarez O, Latorre R, Martínez AD, González C. The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels. J Gen Physiol 2018; 150:697-711. [PMID: 29643172 PMCID: PMC5940247 DOI: 10.1085/jgp.201711782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/13/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022] Open
Abstract
Mutations in connexin 26 hemichannels that cause syndromic deafness have a gain-of-function phenotype that is poorly understood. García et al. show that one such mutation impairs fast and slow gating in these hemichannels because of an interaction between the N terminus and intracellular loop. Mutations in connexin 26 (Cx26) hemichannels can lead to syndromic deafness that affects the cochlea and skin. These mutations lead to gain-of-function hemichannel phenotypes by unknown molecular mechanisms. In this study, we investigate the biophysical properties of the syndromic mutant Cx26G12R (G12R). Unlike wild-type Cx26, G12R macroscopic hemichannel currents do not saturate upon depolarization, and deactivation is faster during hyperpolarization, suggesting that these channels have impaired fast and slow gating. Single G12R hemichannels show a large increase in open probability, and transitions to the subconductance state are rare and short-lived, demonstrating an inoperative fast gating mechanism. Molecular dynamics simulations indicate that G12R causes a displacement of the N terminus toward the cytoplasm, favoring an interaction between R12 in the N terminus and R99 in the intracellular loop. Disruption of this interaction recovers the fast and slow voltage-dependent gating mechanisms. These results suggest that the mechanisms of fast and slow gating in connexin hemichannels are coupled and provide a molecular mechanism for the gain-of-function phenotype displayed by the syndromic G12R mutation.
Collapse
Affiliation(s)
- Isaac E García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Laboratory of Molecular Physiology and Biophysics, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Villanelo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Computational Biology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Gustavo F Contreras
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Amaury Pupo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Bernardo I Pinto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jorge E Contreras
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Tomás Pérez-Acle
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Computational Biology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
37
|
Mittal R, Patel AP, Nguyen D, Pan DR, Jhaveri VM, Rudman JR, Dharmaraja A, Yan D, Feng Y, Chapagain P, Lee DJ, Blanton SH, Liu XZ. Genetic basis of hearing loss in Spanish, Hispanic and Latino populations. Gene 2018; 647:297-305. [PMID: 29331482 PMCID: PMC5806531 DOI: 10.1016/j.gene.2018.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 12/13/2022]
Abstract
Hearing loss (HL) is the most common neurosensory disorder affecting humans. The screening, prevention and treatment of HL require a better understanding of the underlying molecular mechanisms. Genetic predisposition is one of the most common factors that leads to HL. Most HL studies include few Spanish, Hispanic and Latino participants, leaving a critical gap in our understanding about the prevalence, impact, unmet health care needs, and genetic factors associated with hearing impairment among Spanish, Hispanic and Latino populations. The few studies which have been performed show that the gene variants commonly associated with HL in non-Spanish and non-Hispanic populations are infrequently responsible for hearing impairment in Spanish as well as Hispanic and Latino populations (hereafter referred to as Hispanic). To design effective screening tools to detect HL in Spanish and Hispanic populations, studies must be conducted to determine the gene variants that are most commonly associated with hearing impairment in this racial/ethnic group. In this review article, we summarize gene variants and loci associated with HL in Spanish and Hispanic populations. Identifying new genetic variants associated with HL in Spanish and Hispanic populations will pave the way to develop effective screening tools and therapeutic strategies for HL.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Debbie R Pan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vasanti M Jhaveri
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason R Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Arjuna Dharmaraja
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China
| | - Prem Chapagain
- Department of Physics and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - David J Lee
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China; Tsinghua University School of Medicine, Beijing 10084, China; Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
38
|
Redox-mediated regulation of connexin proteins; focus on nitric oxide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:91-95. [DOI: 10.1016/j.bbamem.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/25/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022]
|
39
|
Wolfe CM, Davis A, Shaath TS, Cohen GF. Visual impairment reversal with oral acitretin therapy in keratitis-ichthyosis-deafness (KID) syndrome. JAAD Case Rep 2017; 3:556-558. [PMID: 29159249 PMCID: PMC5683742 DOI: 10.1016/j.jdcr.2017.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Christopher M Wolfe
- Division of Dermatology, Florida State University College of Medicine, Tallahassee, Florida
| | - Alexander Davis
- Division of Dermatology, Florida State University College of Medicine, Tallahassee, Florida
| | - Tarek S Shaath
- Division of Dermatology, Florida State University College of Medicine, Tallahassee, Florida
| | - George F Cohen
- Division of Dermatology, Florida State University College of Medicine, Tallahassee, Florida
| |
Collapse
|
40
|
Xu L, Carrer A, Zonta F, Qu Z, Ma P, Li S, Ceriani F, Buratto D, Crispino G, Zorzi V, Ziraldo G, Bruno F, Nardin C, Peres C, Mazzarda F, Salvatore AM, Raspa M, Scavizzi F, Chu Y, Xie S, Yang X, Liao J, Liu X, Wang W, Wang S, Yang G, Lerner RA, Mammano F. Design and Characterization of a Human Monoclonal Antibody that Modulates Mutant Connexin 26 Hemichannels Implicated in Deafness and Skin Disorders. Front Mol Neurosci 2017; 10:298. [PMID: 29018324 PMCID: PMC5615210 DOI: 10.3389/fnmol.2017.00298] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Mutations leading to changes in properties, regulation, or expression of connexin-made channels have been implicated in 28 distinct human hereditary diseases. Eight of these result from variants of connexin 26 (Cx26), a protein critically involved in cell-cell signaling in the inner ear and skin. Lack of non-toxic drugs with defined mechanisms of action poses a serious obstacle to therapeutic interventions for diseases caused by mutant connexins. In particular, molecules that specifically modulate connexin hemichannel function without affecting gap junction channels are considered of primary importance for the study of connexin hemichannel role in physiological as well as pathological conditions. Monoclonal antibodies developed in the last three decades have become the most important class of therapeutic biologicals. Recombinant methods permit rapid selection and improvement of monoclonal antibodies from libraries with large diversity. Methods: By screening a combinatorial library of human single-chain fragment variable (scFv) antibodies expressed in phage, we identified a candidate that binds an extracellular epitope of Cx26. We characterized antibody action using a variety of biochemical and biophysical assays in HeLa cells, organotypic cultures of mouse cochlea and human keratinocyte-derived cells. Results: We determined that the antibody is a remarkably efficient, non-toxic, and completely reversible inhibitor of hemichannels formed by connexin 26 and does not affect direct cell-cell communication via gap junction channels. Importantly, we also demonstrate that the antibody efficiently inhibits hyperative mutant Cx26 hemichannels implicated in autosomal dominant non-syndromic hearing impairment accompanied by keratitis and hystrix-like ichthyosis-deafness (KID/HID) syndrome. We solved the crystal structure of the antibody, identified residues that are critical for binding and used molecular dynamics to uncover its mechanism of action. Conclusions: Although further studies will be necessary to validate the effect of the antibody in vivo, the methodology described here can be extended to select antibodies against hemichannels composed by other connexin isoforms and, consequently, to target other pathologies associated with hyperactive hemichannels. Our study highlights the potential of this approach and identifies connexins as therapeutic targets addressable by screening phage display libraries expressing human randomized antibodies.
Collapse
Affiliation(s)
- Liang Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Andrea Carrer
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | - Zhihu Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Sheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Federico Ceriani
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy
| | - Damiano Buratto
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy
| | - Giulia Crispino
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Venetian Institute of Molecular MedicinePadova, Italy
| | - Veronica Zorzi
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Institute of Otolaryngology, Catholic University School of MedicineRome, Italy
| | - Gaia Ziraldo
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Institute of Otolaryngology, Catholic University School of MedicineRome, Italy
| | - Francesca Bruno
- Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Venetian Institute of Molecular MedicinePadova, Italy
| | - Chiara Nardin
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Science, Roma Tre UniversityRome, Italy
| | - Chiara Peres
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | - Flavia Mazzarda
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Science, Roma Tre UniversityRome, Italy
| | - Anna M Salvatore
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | - Marcello Raspa
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | | | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Sichun Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Xuemei Yang
- School of Life Science and Technology, Shanghai Tech UniversityShanghai, China
| | - Jun Liao
- School of Life Science and Technology, Shanghai Tech UniversityShanghai, China
| | - Xiao Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of SciencesShanghai, China.,University of Chinese Academy of SciencesBeijing, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Shanshan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Richard A Lerner
- Department of Cell and Molecular Biology, The Scripps Research InstituteLa Jolla, CA, United States
| | - Fabio Mammano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Venetian Institute of Molecular MedicinePadova, Italy
| |
Collapse
|
41
|
Esseltine JL, Shao Q, Brooks C, Sampson J, Betts DH, Séguin CA, Laird DW. Connexin43 Mutant Patient-Derived Induced Pluripotent Stem Cells Exhibit Altered Differentiation Potential. J Bone Miner Res 2017; 32:1368-1385. [PMID: 28177159 DOI: 10.1002/jbmr.3098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 01/06/2023]
Abstract
We present for the first time the generation of induced pluripotent stem cells (iPSCs) from a patient with a connexin-linked disease. The importance of gap junctional intercellular communication in bone homeostasis is exemplified by the autosomal dominant developmental disorder oculodentodigital dysplasia (ODDD), which is linked to mutations in the GJA1 (Cx43) gene. ODDD is characterized by craniofacial malformations, ophthalmic deficits, enamel hypoplasia, and syndactyly. In addition to harboring a Cx43 p.V216L mutation, ODDD iPSCs exhibit reduced Cx43 mRNA and protein abundance when compared to control iPSCs and display impaired channel function. Osteogenic differentiation involved an early, and dramatic downregulation of Cx43 followed by a slight upregulation during the final stages of differentiation. Interestingly, osteoblast differentiation was delayed in ODDD iPSCs. Moreover, Cx43 subcellular localization was altered during chondrogenic differentiation of ODDD iPSCs compared to controls and this may have contributed to the more compact cartilage pellet morphology found in differentiated ODDD iPSCs. These studies highlight the importance of Cx43 expression and function during osteoblast and chondrocyte differentiation, and establish a potential mechanism for how ODDD-associated Cx43 mutations may have altered cell lineages involved in bone and cartilage development. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jessica L Esseltine
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario. London, ON, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario. London, ON, Canada
| | - Courtney Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jacinda Sampson
- Department of Neurology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario. London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
42
|
Gudmundsson S, Wilbe M, Ekvall S, Ameur A, Cahill N, Alexandrov LB, Virtanen M, Hellström Pigg M, Vahlquist A, Törmä H, Bondeson ML. Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26. Hum Mol Genet 2017; 26:1070-1077. [PMID: 28158657 PMCID: PMC5409067 DOI: 10.1093/hmg/ddx017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/30/2016] [Indexed: 01/21/2023] Open
Abstract
Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G > A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. To our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.
Collapse
Affiliation(s)
- Sanna Gudmundsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Ekvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicola Cahill
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ludmil B Alexandrov
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA and
| | - Marie Virtanen
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden
| | - Maritta Hellström Pigg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Vahlquist
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden
| | - Hans Törmä
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Bargiello TA, Oh S, Tang Q, Bargiello NK, Dowd TL, Kwon T. Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:22-39. [PMID: 28476631 DOI: 10.1016/j.bbamem.2017.04.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 11/18/2022]
Abstract
Voltage is an important physiologic regulator of channels formed by the connexin gene family. Connexins are unique among ion channels in that both plasma membrane inserted hemichannels (undocked hemichannels) and intercellular channels (aggregates of which form gap junctions) have important physiological roles. The hemichannel is the fundamental unit of gap junction voltage-gating. Each hemichannel displays two distinct voltage-gating mechanisms that are primarily sensitive to a voltage gradient formed along the length of the channel pore (the transjunctional voltage) rather than sensitivity to the absolute membrane potential (Vm or Vi-o). These transjunctional voltage dependent processes have been termed Vj- or fast-gating and loop- or slow-gating. Understanding the mechanism of voltage-gating, defined as the sequence of voltage-driven transitions that connect open and closed states, first and foremost requires atomic resolution models of the end states. Although ion channels formed by connexins were among the first to be characterized structurally by electron microscopy and x-ray diffraction in the early 1980's, subsequent progress has been slow. Much of the current understanding of the structure-function relations of connexin channels is based on two crystal structures of Cx26 gap junction channels. Refinement of crystal structure by all-atom molecular dynamics and incorporation of charge changing protein modifications has resulted in an atomic model of the open state that arguably corresponds to the physiologic open state. Obtaining validated atomic models of voltage-dependent closed states is more challenging, as there are currently no methods to solve protein structure while a stable voltage gradient is applied across the length of an oriented channel. It is widely believed that the best approach to solve the atomic structure of a voltage-gated closed ion channel is to apply different but complementary experimental and computational methods and to use the resulting information to derive a consensus atomic structure that is then subjected to rigorous validation. In this paper, we summarize our efforts to obtain and validate atomic models of the open and voltage-driven closed states of undocked connexin hemichannels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Thaddeus A Bargiello
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| | - Seunghoon Oh
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Qingxiu Tang
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Nicholas K Bargiello
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Terry L Dowd
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States
| | - Taekyung Kwon
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
44
|
Press ER, Shao Q, Kelly JJ, Chin K, Alaga A, Laird DW. Induction of cell death and gain-of-function properties of connexin26 mutants predict severity of skin disorders and hearing loss. J Biol Chem 2017; 292:9721-9732. [PMID: 28428247 DOI: 10.1074/jbc.m116.770917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/20/2017] [Indexed: 11/06/2022] Open
Abstract
Connexin26 (Cx26) is a gap junction protein that oligomerizes in the cell to form hexameric transmembrane channels called connexons. Cell surface connexons dock between adjacent cells to allow for gap junctional intercellular communication. Numerous autosomal dominant mutations in the Cx26-encoding GJB2 gene lead to many skin disorders and sensorineural hearing loss. Although some insights have been gained into the pathogenesis of these diseases, it is not fully understood how distinct GJB2 mutations result in hearing loss alone or in skin pathologies with comorbid hearing loss. Here we investigated five autosomal dominant Cx26 mutants (N14K, D50N, N54K, M163V, and S183F) linked to various syndromic or nonsyndromic diseases to uncover the molecular mechanisms underpinning these disease links. We demonstrated that when gap junction-deficient HeLa cells expressed the N14K and D50N mutants, they undergo cell death. The N54K mutant was retained primarily within intracellular compartments and displayed dominant or transdominant properties on wild-type Cx26 and coexpressed Cx30 and Cx43. The S183F mutant formed some gap junction plaques but was largely retained within the cell and exhibited only a mild transdominant reduction in gap junction communication when co-expressed with Cx30. The M163V mutant, which causes only hearing loss, exhibited impaired gap junction function and showed no transdominant interactions. These findings suggest that Cx26 mutants that promote cell death or exert transdominant effects on other connexins in keratinocytes will lead to skin diseases and hearing loss, whereas mutants having reduced channel function but exhibiting no aberrant effects on coexpressed connexins cause only hearing loss. Moreover, cell death-inducing GJB2 mutations lead to more severe syndromic disease.
Collapse
Affiliation(s)
- Eric R Press
- Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Qing Shao
- From the Departments of Anatomy and Cell Biology and
| | - John J Kelly
- From the Departments of Anatomy and Cell Biology and
| | - Katrina Chin
- From the Departments of Anatomy and Cell Biology and
| | - Anton Alaga
- From the Departments of Anatomy and Cell Biology and
| | - Dale W Laird
- Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada .,From the Departments of Anatomy and Cell Biology and
| |
Collapse
|