1
|
Nammour HM, Madrigal K, Starling CT, Doan HQ. Advancing Treatment Options for Merkel Cell Carcinoma: A Review of Tumor-Targeted Therapies. Int J Mol Sci 2024; 25:11055. [PMID: 39456853 PMCID: PMC11507330 DOI: 10.3390/ijms252011055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Although rare, Merkel cell carcinoma (MCC) is a highly aggressive and increasingly prevalent neuroendocrine cancer of the skin. While current interventions, including surgical resection, radiation, and immunotherapy have been employed in treating many patients, those who remain unresponsive to treatment are met with sparse alternatives and a grim prognosis. For this reason, it is of interest to expand the repertoire of available therapies for MCC patients who remain resistant to current primary interventions. Recently, our improved mechanistic understanding of aberrant cell signaling observed in both MCPyV-positive and -negative MCC has facilitated exploration into several small molecules and inhibitors, among them receptor tyrosine kinase inhibitors (TKIs) and somatostatin analogs (SSAs), both of which have positively improved response rates and reduced tumor volumes upon application to treatment of MCC. The introduction of such targeted therapies into treatment protocols holds promise for more personalized care tailored towards patients of diverse subtypes, thereby improving outcomes and mitigating tumor burden, especially for treatment-resistant individuals. In this review, we characterize recent findings surrounding targeted treatments that have been applied to MCC and provide an overview of emerging perspectives on translatable options that can be further developed to offer additional therapeutic avenues for patients with the disease.
Collapse
Affiliation(s)
- Helena M. Nammour
- UTHealth McGovern Medical School, Houston, TX 77030, USA; (H.M.N.); (K.M.)
| | - Karla Madrigal
- UTHealth McGovern Medical School, Houston, TX 77030, USA; (H.M.N.); (K.M.)
| | - Caroline T. Starling
- Department of Dermatology, UTHealth McGovern Medical School, Houston, TX 77030, USA;
- Department of Dermatology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hung Q. Doan
- Department of Dermatology, UTHealth McGovern Medical School, Houston, TX 77030, USA;
- Department of Dermatology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Wu Z, Guo Y, Qu L, Wang X, Zhang H. Development and validation of a prognostic signature of breast cancer based on drug absorption, distribution, metabolism and excretion (ADME)-related genes. Sci Rep 2024; 14:21619. [PMID: 39284852 PMCID: PMC11405771 DOI: 10.1038/s41598-024-72635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
The individual variation of carcinogenesis and drug response is influenced by the absorption, distribution, metabolism, and excretion (ADME) of drugs. The utilization of signatures derived from ADME-related genes holds potential for predicting prognosis and treatment response across diverse cancer types. Further investigation is required to completely understand the role of ADME-associated genes in breast cancer. A signature was constructed through the application of a least absolute shrinkage and selection operator regression model, employing prognostic differentially expressed genes found in both cancer tissue and normal tissue. To assess the robustness of the signature, verification analyses were carried out. RT-qPCR was utilized for the validation of gene expression related to risk. Subsequently, a nomogram was developed to enhance the clinical utility of our prognostic tool. The ADME signature, comprising four genes, was established and exhibited a robust association with the prognoses of individuals diagnosed with breast cancer. The nomogram was created by fusing the clinicopathological characteristics with the ADME signature. The ADME signature demonstrated remarkable superiority when compared to the performance of the other individual predictors. Additionally, the analysis of the immune microenvironment revealed that the ImmuneScores of the low-risk group were elevated. The variation in both the infiltration of immune cells and the expression of immune-related genes in the tissues differed among the two groups. For patients with breast cancer, the utilization of ADME signatures as biomarkers presents a significant reference point for prognosis and individualized treatment strategies.
Collapse
Affiliation(s)
- Zhixuan Wu
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yangyang Guo
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Liangchen Qu
- Emergency Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, 318000, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 325200, China
| | - Hewei Zhang
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.
- Department of Hepatobiliary and Pancreatic Surgery, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang Province, 325000, China.
| |
Collapse
|
3
|
Kervarrec T, Appenzeller S, Gramlich S, Coyaud E, Bachiri K, Appay R, Macagno N, Tallet A, Bonenfant C, Lecorre Y, Kapfer J, Kettani S, Srinivas N, Lei KC, Lange A, Becker JC, Sarosi EM, Sartelet H, von Deimling A, Touzé A, Guyétant S, Samimi M, Schrama D, Houben R. Analyses of combined Merkel cell carcinomas with neuroblastic components suggests that loss of T antigen expression in Merkel cell carcinoma may result in cell cycle arrest and neuroblastic transdifferentiation. J Pathol 2024; 264:112-124. [PMID: 39049595 DOI: 10.1002/path.6304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by genomic integration of the Merkel cell polyomavirus (MCPyV). MCPyV-negative cases often present as combined MCCs, which represent a distinctive subset of tumors characterized by association of an MCC with a second tumor component, mostly squamous cell carcinoma. Up to now, only exceptional cases of combined MCC with neuroblastic differentiation have been reported. Herein we describe two additional combined MCCs with neuroblastic differentiation and provide comprehensive morphologic, immunohistochemical, transcriptomic, genetic and epigenetic characterization of these tumors, which both arose in elderly men and appeared as an isolated inguinal adenopathy. Microscopic examination revealed biphasic tumors combining a poorly differentiated high-grade carcinoma with a poorly differentiated neuroblastic component lacking signs of proliferation. Immunohistochemical investigation revealed keratin 20 and MCPyV T antigen (TA) in the MCC parts, while neuroblastic differentiation was confirmed in the other component in both cases. A clonal relation of the two components can be deduced from 20 and 14 shared acquired point mutations detected by whole exome analysis in both combined tumors, respectively. Spatial transcriptomics demonstrated a lower expression of stem cell marker genes such as SOX2 and MCM2 in the neuroblastic component. Interestingly, although the neuroblastic part lacked TA expression, the same genomic MCPyV integration and the same large T-truncating mutations were observed in both tumor parts. Given that neuronal transdifferentiation upon TA repression has been reported for MCC cell lines, the most likely scenario for the two combined MCC/neuroblastic tumors is that neuroblastic transdifferentiation resulted from loss of TA expression in a subset of MCC cells. Indeed, DNA methylation profiling suggests an MCC-typical cellular origin for the combined MCC/neuroblastomas. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Humans
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/virology
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/metabolism
- Male
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/virology
- Skin Neoplasms/metabolism
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/metabolism
- Cell Transdifferentiation
- Merkel cell polyomavirus/genetics
- Cell Cycle Checkpoints/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Aged, 80 and over
- Aged
- Neoplasms, Complex and Mixed/pathology
- Neoplasms, Complex and Mixed/genetics
- Neoplasms, Complex and Mixed/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/genetics
- Neuroblastoma/metabolism
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
- CARADERM Network
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Gramlich
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Kamel Bachiri
- PRISM INSERM U1192, Université de Lille, Lille, France
| | - Romain Appay
- Department of Pathology, Université de Marseille, Assistance publique des Hopitaux de Marseille, Marseille, France
| | - Nicolas Macagno
- CARADERM Network
- Department of Pathology, Université de Marseille, Assistance publique des Hopitaux de Marseille, Marseille, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Christine Bonenfant
- Platform of Somatic Tumor Molecular Genetics, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Yannick Lecorre
- Dermatology Department, LUNAM Université, CHU Angers, Angers, France
| | | | | | - Nalini Srinivas
- Department of Translational Skin Cancer Research and Dermatology, University Hospital Essen, Essen, Germany
| | - Kuan Cheok Lei
- Department of Translational Skin Cancer Research and Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Lange
- Bioinformatics & Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research and Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Maria Sarosi
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Hervé Sartelet
- Laboratoire de Biopathologie, CHRU de Nancy, Nancy, France
- INSERM U1256, Université de Lorraine, Nancy, France
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Antoine Touzé
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
| | - Mahtab Samimi
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
- CARADERM Network
- Department of Dermatology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Gerard L, Gillet JP. The uniqueness of ABCB5 as a full transporter ABCB5FL and a half-transporter-like ABCB5β. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:29. [PMID: 39267923 PMCID: PMC11391348 DOI: 10.20517/cdr.2024.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024]
Abstract
The ABCB5 gene encodes several isoforms, including two transporters (i.e., ABCB5FL, ABCB5β) and several soluble proteins, such as ABCB5α which has been hypothesized to have a regulatory function. ABCB5FL is a full ABC transporter and is expressed in the testis and prostate, whereas ABCB5β is an atypical half-transporter with a ubiquitous expression pattern. ABCB5β has been shown to mark cancer stem cells in several cancer types. In addition, ABCB5β and ABCB5FL have been shown to play a role in tumorigenesis and multidrug resistance. However, ABCB5β shares its entire protein sequence with ABCB5FL, making them difficult to distinguish. It cannot be excluded that some biological effects described for one transporter may be mediated by the other isoform. Therefore, it is difficult to interpret the available data and some controversies remain regarding their function in cancer cells. In this review, we discuss the data collected on ABCB5 isoforms over the last 20 years and propose a common ground on which we can build further to unravel the pathophysiological roles of ABCB5 transporters.
Collapse
Affiliation(s)
- Louise Gerard
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur 5000, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur 5000, Belgium
| |
Collapse
|
5
|
Pedersen EA, Verhaegen ME, Joseph MK, Harms KL, Harms PW. Merkel cell carcinoma: updates in tumor biology, emerging therapies, and preclinical models. Front Oncol 2024; 14:1413793. [PMID: 39136002 PMCID: PMC11317257 DOI: 10.3389/fonc.2024.1413793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma thought to arise via either viral (Merkel cell polyomavirus) or ultraviolet-associated pathways. Surgery and radiotherapy have historically been mainstays of management, and immunotherapy has improved outcomes for advanced disease. However, there remains a lack of effective therapy for those patients who fail to respond to these established approaches, underscoring a critical need to better understand MCC biology for more effective prognosis and treatment. Here, we review the fundamental aspects of MCC biology and the recent advances which have had profound impact on management. The first genetically-engineered mouse models for MCC tumorigenesis provide opportunities to understand the potential MCC cell of origin and may prove useful for preclinical investigation of novel therapeutics. The MCC cell of origin debate has also been advanced by recent observations of MCC arising in association with a clonally related hair follicle tumor or squamous cell carcinoma in situ. These studies also suggested a role for epigenetics in the origin of MCC, highlighting a potential utility for this therapeutic avenue in MCC. These and other therapeutic targets form the basis for a wealth of ongoing clinical trials to improve MCC management. Here, we review these recent advances in the context of the existing literature and implications for future investigations.
Collapse
Affiliation(s)
| | | | - Mallory K. Joseph
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Kelly L. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Paul W. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Chen YC, Gowda K, Amin S, Schell TD, Sharma AK, Robertson GP. Pharmacological agents targeting drug-tolerant persister cells in cancer. Pharmacol Res 2024; 203:107163. [PMID: 38569982 DOI: 10.1016/j.phrs.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Krishne Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd D Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Arun K Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Pennsylvania State University Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
7
|
Martins C, Rasbach E, Heppt MV, Singh P, Kulcsar Z, Holzgruber J, Chakraborty A, Mucciarone K, Kleffel S, Brandenburg A, Hoetzenecker W, Rahbari NN, DeCaprio JA, Thakuria M, Murphy GF, Ramsey MR, Posch C, Barthel SR, Schatton T. Tumor cell-intrinsic PD-1 promotes Merkel cell carcinoma growth by activating downstream mTOR-mitochondrial ROS signaling. SCIENCE ADVANCES 2024; 10:eadi2012. [PMID: 38241371 PMCID: PMC10798567 DOI: 10.1126/sciadv.adi2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer. Inhibitors targeting the programmed cell death 1 (PD-1) immune checkpoint have improved MCC patient outcomes by boosting antitumor T cell immunity. Here, we identify PD-1 as a growth-promoting receptor intrinsic to MCC cells. In human MCC lines and clinical tumors, RT-PCR-based sequencing, immunoblotting, flow cytometry, and immunofluorescence analyses demonstrated PD-1 gene and protein expression by MCC cells. MCC-PD-1 ligation enhanced, and its inhibition or silencing suppressed, in vitro proliferation and in vivo tumor xenograft growth. Consistently, MCC-PD-1 binding to PD-L1 or PD-L2 induced, while antibody-mediated PD-1 blockade inhibited, protumorigenic mTOR signaling, mitochondrial (mt) respiration, and ROS generation. Last, pharmacologic inhibition of mTOR or mtROS reversed MCC-PD-1:PD-L1-dependent proliferation and synergized with PD-1 checkpoint blockade in suppressing tumorigenesis. Our results identify an MCC-PD-1-mTOR-mtROS axis as a tumor growth-accelerating mechanism, the blockade of which might contribute to clinical response in patients with MCC.
Collapse
Affiliation(s)
- Christina Martins
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erik Rasbach
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Markus V. Heppt
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University (FAU), 91054 Erlangen, Germany
| | - Praveen Singh
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zsofi Kulcsar
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julia Holzgruber
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology and Venerology, Johannes Kepler University, 4020 Linz, Austria
| | - Asmi Chakraborty
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyla Mucciarone
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sonja Kleffel
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Brandenburg
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venerology, Johannes Kepler University, 4020 Linz, Austria
| | - Nuh N. Rahbari
- Department of Surgery, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Merkel Cell Carcinoma Center of Excellence, Dana-Farber/Brigham and Women’s Hospital Cancer Center, Boston, MA 02115, USA
| | - Manisha Thakuria
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Merkel Cell Carcinoma Center of Excellence, Dana-Farber/Brigham and Women’s Hospital Cancer Center, Boston, MA 02115, USA
| | - George F. Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew R. Ramsey
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Posch
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Vienna Healthcare Group, 1130 Vienna, Austria
- Faculty of Medicine, Sigmund Freud University Vienna, 1020 Vienna, Austria
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Steven R. Barthel
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Schatton
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Niebergall-Roth E, Frank NY, Ganss C, Frank MH, Kluth MA. Skin-Derived ABCB5 + Mesenchymal Stem Cells for High-Medical-Need Inflammatory Diseases: From Discovery to Entering Clinical Routine. Int J Mol Sci 2022; 24:66. [PMID: 36613507 PMCID: PMC9820160 DOI: 10.3390/ijms24010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The ATP-binding cassette superfamily member ABCB5 identifies a subset of skin-resident mesenchymal stem cells (MSCs) that exhibit potent immunomodulatory and wound healing-promoting capacities along with superior homing ability. The ABCB5+ MSCs can be easily accessed from discarded skin samples, expanded, and delivered as a highly homogenous medicinal product with standardized potency. A range of preclinical studies has suggested therapeutic efficacy of ABCB5+ MSCs in a variety of currently uncurable skin and non-skin inflammatory diseases, which has been substantiated thus far by distinct clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. Therefore, skin-derived ABCB5+ MSCs have the potential to provide a breakthrough at the forefront of MSC-based therapies striving to fulfill current unmet medical needs. The most recent milestones in this regard are the approval of a phase III pivotal trial of ABCB5+ MSCs for treatment of recessive dystrophic and junctional epidermolysis bullosa by the US Food and Drug Administration, and national market access of ABCB5+ MSCs (AMESANAR®) for therapy-refractory chronic venous ulcers under the national hospital exemption pathway in Germany.
Collapse
Affiliation(s)
| | - Natasha Y. Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ganss
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | - Markus H. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Mark A. Kluth
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021; 14:cancers14010096. [PMID: 35008260 PMCID: PMC8749988 DOI: 10.3390/cancers14010096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Although rare, uveal melanoma (UM) is the most common cancer that develops inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers in UM published over the last three years. Finally, we discuss the problems preventing meaningful advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks and paths of UM-related research. Abstract Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.
Collapse
|
10
|
Castoldi DF, Malafaia O, Santos-Neto PHD, Postiglioni TV, Vasconcelos C, Bremer FP, Czeczko LEA, Gasser M, Waaga-Gasser AM, Ribas CAPM. IS THERE A CLINICAL PATHOLOGICAL CORRELATION OF COLORECTAL ADENOCARCINOMA WITH THE IMMUNOHISTOCHEMICAL EXPRESSION OF OPN AND ABCB5? ACTA ACUST UNITED AC 2021; 33:e1569. [PMID: 33759959 PMCID: PMC7983527 DOI: 10.1590/0102-672020200004e1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022]
Abstract
Background: Studies with biomarkers in TMA (tissue microarray) have been showing important results regarding its expression in colon cancer.
Aim: Correlate the expression profile of the OPN and ABCB5 biomarkers with the epidemiological and clinicopathological characteristics of the patients, the impact on the progression of the disease and the death.
Method: A total of 122 CRC patients who underwent surgical resection, immunomarking and their relationship with progression and death events were evaluated.
Result: The average age was 61.9 (±13.4) years. The cases were distributed in 42 (35.9%) in the ascending/transverse colon, 31 (26.5%) in the sigmoid, 27 in the rectum (23.1%), 17 (14.5%) in the descending colon. Most patients had advanced disease (stages III and IV) in 74 cases (60.9%). There was a predominance of moderately differentiated tumors in 101 samples (82.8%); despite this, the poorly differentiated subtype proved to be an independent risk factor for death in 70%. Metastasis to the liver proved to be an independent risk factor for death in 75% (18/24), as well as patients with primary rectal tumors in 81.5% (22/27).
Conclusion: The immunohistochemical expression of the OPN and ABCB5 markers was not associated with epidemiological and clinicopathological characteristics. Regarding the progression of disease and death, it was not possible to observe a correspondence relationship with the evaluated markers.
Collapse
Affiliation(s)
- Diogo Francesco Castoldi
- Medical Research Institute, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil.,Evangelical Mackenzie University Hospital, Curitiba, Paraná, Brazil
| | - Osvaldo Malafaia
- Medical Research Institute, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil.,Department of Surgery, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil.,Evangelical Mackenzie University Hospital, Curitiba, Paraná, Brazil
| | | | | | - Cecilia Vasconcelos
- Department of Hematology, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil
| | - Fabiola Past Bremer
- Department of Oncology, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil
| | | | - Martin Gasser
- Department of Surgery, University Hospital Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
11
|
Tangella LP, Arooj M, Deplazes E, Gray ES, Mancera RL. Identification and characterisation of putative drug binding sites in human ATP-binding cassette B5 (ABCB5) transporter. Comput Struct Biotechnol J 2020; 19:691-704. [PMID: 33510870 PMCID: PMC7817430 DOI: 10.1016/j.csbj.2020.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/24/2022] Open
Abstract
The human ATP-binding cassette B5 (ABCB5) transporter, a member of the ABC transporter superfamily, is linked to chemoresistance in tumour cells by drug effluxion. However, little is known about its structure and drug-binding sites. In this study, we generated an atomistic model of the full-length human ABCB5 transporter with the highest quality using the X-ray crystal structure of mouse ABCB1 (Pgp1), a close homologue of ABCB5 and a well-studied member of the ABC family. Molecular dynamics simulations were used to validate the atomistic model of ABCB5 and characterise its structural properties in model cell membranes. Molecular docking simulations of known ABCB5 substrates such as taxanes, anthracyclines, camptothecin and etoposide were then used to identify at least three putative binding sites for chemotherapeutic drugs transported by ABCB5. The location of these three binding sites is predicted to overlap with the corresponding binding sites in Pgp1. These findings will serve as the basis for future in vitro studies to validate the nature of the identified substrate-binding sites in the full-length ABCB5 transporter.
Collapse
Affiliation(s)
- Lokeswari P Tangella
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Mahreen Arooj
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
12
|
Lee CAA, Banerjee P, Wilson BJ, Wu S, Guo Q, Berg G, Karpova S, Mishra A, Lian JW, Tran J, Emmerich M, Murphy GF, Frank MH, Frank NY. Targeting the ABC transporter ABCB5 sensitizes glioblastoma to temozolomide-induced apoptosis through a cell-cycle checkpoint regulation mechanism. J Biol Chem 2020; 295:7774-7788. [PMID: 32317280 PMCID: PMC7261782 DOI: 10.1074/jbc.ra120.013778] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/10/2020] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant brain tumor with a poor prognosis resulting from tumor resistance to anticancer therapy and a high recurrence rate. Compelling evidence suggests that this is driven by subpopulations of cancer stem cells (CSCs) with tumor-initiating potential. ABC subfamily B member 5 (ABCB5) has been identified as a molecular marker for distinct subsets of chemoresistant tumor-initiating cell populations in diverse human malignancies. In the current study, we examined the potential role of ABCB5 in growth and chemoresistance of GBM. We found that ABCB5 is expressed in primary GBM tumors, in which its expression was significantly correlated with the CSC marker protein CD133 and with overall poor survival. Moreover, ABCB5 was also expressed by CD133-positive CSCs in the established human U-87 MG, LN-18, and LN-229 GBM cell lines. Antibody- or shRNA-mediated functional ABCB5 blockade inhibited proliferation and survival of GBM cells and sensitized them to temozolomide (TMZ)-induced apoptosis in vitro Likewise, in in vivo human GBM xenograft experiments with immunodeficient mice, mAb treatment inhibited growth of mutant TP53, WT PTEN LN-229 tumors, and sensitized LN-229 tumors to TMZ therapy. Mechanistically, we demonstrate that ABCB5 blockade inhibits TMZ-induced G2/M arrest and augments TMZ-mediated cell death. Our results identify ABCB5 as a GBM chemoresistance marker and point to the potential utility of targeting ABCB5 to improve current GBM therapies.
Collapse
Affiliation(s)
- Catherine A A Lee
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Pallavi Banerjee
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
| | - Brian J Wilson
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Siyuan Wu
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Qin Guo
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
| | - Gretchen Berg
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
| | - Svetlana Karpova
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
| | - Ananda Mishra
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - John W Lian
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Johnathan Tran
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Max Emmerich
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - George F Murphy
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Markus H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia 6027, Australia
| | - Natasha Y Frank
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
13
|
Hartwig V, Dewidar B, Lin T, Dropmann A, Ganss C, Kluth MA, Tappenbeck N, Tietze L, Christ B, Frank M, Vogelmann R, Ebert MPA, Dooley S. Human skin-derived ABCB5 + stem cell injection improves liver disease parameters in Mdr2KO mice. Arch Toxicol 2019; 93:2645-2660. [PMID: 31435712 DOI: 10.1007/s00204-019-02533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Although liver transplantation is a potential effective cure for patients with end-stage liver diseases, this strategy has several drawbacks including high cost, long waiting list, and limited availability of liver organs. Therefore, stem cell-based therapy is presented as an alternative option, which showed promising results in animal models of acute and chronic liver injuries. ABCB5+ cells isolated from skin dermis represent an easy accessible and expandable source of homogenous stem cell populations. In addition, ABCB5+ cells showed already promising results in the treatment of corneal and skin injury. To date, the effect of these cells on liver injury is still unknown. In the current study, sixteen weeks old Mdr2KO mice were i.v. injected with 500,000 ABCB5+ cells using different experimental setups. The effects of cellular therapy on inflammation, fibrosis, apoptosis, and proliferation were analyzed in the collected liver tissues. Toxicity of ABCB5+ cells was additionally investigated in mice with partial liver resection. In vitro, the fibrosis- and inflammatory-modulating effects of supernatant from ABCB5+ cells were examined in the human hepatic stellate cell line (LX-2). Cell injections into fibrotic Mdr2KO mice as well as into mice upon partial liver resection have no signs of toxicity with regard to cell transformation, cellular damage, fibrosis or inflammation as compared to controls. We next investigated the effects of ABCB5+ cells on established biliary liver fibrosis in the Mdr2KO mice. ABCB5+ cells to some extent influenced the shape of the liver inflammatory response and significantly reduced the amount of collagen deposition, as estimated from quantification of sirius red staining. Furthermore, reduced apoptosis and enhanced death compensatory proliferation resulted from ABCB5+ cell transformation. The stem cells secreted several trophic factors that activated TGF-β family signaling in cultured LX-2 hepatic stellate cells (HSCs), therewith shaping cell fate to an αSMAhigh, Vimentinlow phenotype. Taken together, ABCB5+ cells can represent a safe and feasible strategy to support liver regeneration and to reduce liver fibrosis in chronic liver diseases.
Collapse
Affiliation(s)
- Vanessa Hartwig
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Bedair Dewidar
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tao Lin
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Anne Dropmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Ganss
- RHEACELL GmbH and Co. KG, 69120, Heidelberg, Germany
- TICEBA GmbH, 69120, Heidelberg, Germany
| | - Mark Andreas Kluth
- RHEACELL GmbH and Co. KG, 69120, Heidelberg, Germany
- TICEBA GmbH, 69120, Heidelberg, Germany
| | | | - Lysann Tietze
- Applied Molecular Hepatology, Department of Visceral Transplantation, Thoracic und Vascular Surgery, Leipzig University, 04103, Leipzig, Germany
| | - Bruno Christ
- Applied Molecular Hepatology, Department of Visceral Transplantation, Thoracic und Vascular Surgery, Leipzig University, 04103, Leipzig, Germany
| | - Markus Frank
- Department of Pediatrics and Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Roger Vogelmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Philip Alexander Ebert
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
14
|
Willers C, Svitina H, Rossouw MJ, Swanepoel RA, Hamman JH, Gouws C. Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux. J Cancer Res Clin Oncol 2019; 145:1949-1976. [PMID: 31292714 DOI: 10.1007/s00432-019-02973-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Efflux transporters of the adenosine triphosphate-binding cassette (ABC)-superfamily play an important role in the development of multidrug resistance (multidrug resistant; MDR) in cancer. The overexpression of these transporters can directly contribute to the failure of chemotherapeutic drugs. Several in vitro and in vivo models exist to screen for the efficacy of chemotherapeutic drugs against MDR cancer, specifically facilitated by efflux transporters. RESULTS This article reviews a range of efflux transporter-based MDR models used to test the efficacy of compounds to overcome MDR in cancer. These models are classified as either in vitro or in vivo and are further categorised as the most basic, conventional models or more complex and advanced systems. Each model's origin, advantages and limitations, as well as specific efflux transporter-based MDR applications are discussed. Accordingly, future modifications to existing models or new research approaches are suggested to develop prototypes that closely resemble the true nature of multidrug resistant cancer in the human body. CONCLUSIONS It is evident from this review that a combination of both in vitro and in vivo preclinical models can provide a better understanding of cancer itself, than using a single model only. However, there is still a clear lack of progression of these models from basic research to high-throughput clinical practice.
Collapse
Affiliation(s)
- Clarissa Willers
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Hanna Svitina
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Michael J Rossouw
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Roan A Swanepoel
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Josias H Hamman
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Chrisna Gouws
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
15
|
Milosevic V, Kopecka J, Salaroglio IC, Libener R, Napoli F, Izzo S, Orecchia S, Ananthanarayanan P, Bironzo P, Grosso F, Tabbò F, Comunanza V, Alexa-Stratulat T, Bussolino F, Righi L, Novello S, Scagliotti GV, Riganti C. Wnt/IL-1β/IL-8 autocrine circuitries control chemoresistance in mesothelioma initiating cells by inducing ABCB5. Int J Cancer 2019; 146:192-207. [PMID: 31107974 DOI: 10.1002/ijc.32419] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a tumor with high chemoresistance and poor prognosis. MPM-initiating cells (ICs) are known to be drug resistant, but it is unknown if and how stemness-related pathways determine chemoresistance. Moreover, there are no predictive markers of IC-associated chemoresistance. Aim of this work is to clarify if and by which mechanisms the chemoresistant phenotype of MPM IC was due to specific stemness-related pathways. We generated MPM IC from primary MPM samples and compared the gene expression and chemo-sensitivity profile of IC and differentiated/adherent cells (AC) of the same patient. Compared to AC, IC had upregulated the drug efflux transporter ABCB5 that determined resistance to cisplatin and pemetrexed. ABCB5-knocked-out (KO) IC clones were resensitized to the drugs in vitro and in patient-derived xenografts. ABCB5 was transcriptionally activated by the Wnt/GSK3β/β-catenin/c-myc axis that also increased IL-8 and IL-1β production. IL-8 and IL-1β-KO IC clones reduced the c-myc-driven transcription of ABCB5 and reacquired chemosensitivity. ABCB5-KO clones had lower IL-8 and IL-1β secretion, and c-myc transcriptional activity, suggesting that either Wnt/GSK3β/β-catenin and IL-8/IL-1β signaling drive c-myc-mediated transcription of ABCB5. ABCB5 correlated with lower time-to-progression and overall survival in MPM patients treated with cisplatin and pemetrexed. Our work identified multiple autocrine loops linking stemness pathways and resistance to cisplatin and pemetrexed in MPM IC. ABCB5 may represent a new target to chemosensitize MPM IC and a potential biomarker to predict the response to the first-line chemotherapy in MPM patients.
Collapse
Affiliation(s)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Roberta Libener
- Pathology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Francesca Napoli
- Department of Oncology, University of Torino, Torino, Italy.,Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Stefania Izzo
- Department of Oncology, University of Torino, Torino, Italy.,Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Sara Orecchia
- Pathology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | | | - Paolo Bironzo
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Federica Grosso
- Oncology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Fabrizio Tabbò
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy
| | | | - Federico Bussolino
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, Torino, Italy.,Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Silvia Novello
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy.,Interdepartmental Center "G. Scansetti" for the Study of Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy
| |
Collapse
|
16
|
Immunohistochemical Expression of ABCB5 as a Potential Prognostic Factor in Uveal Melanoma. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Uveal melanoma represents the most common primary intraocular malignancy in adults; it may arise in any part of the uveal tract, with choroid and ciliary bodies being the most frequent sites of disease. In the present paper we studied ABCB5 expression levels in patients affected by uveal melanoma, both with and without metastasis, in order to evaluate if ABCB5 is associated with a higher risk of metastatic disease and can be used as a poor prognostic factor in uveal melanoma. The target population consisted of 23 patients affected by uveal melanoma with metastasis and 32 without metastatic disease. A high expression of ABCB5 was seen in patients with metastasis (14/23, 60.9%), compared to that observed in patients without metastasis (13/32, 40.6%). In conclusion, we found that ABCB5 expression levels were correlated with faster metastatic progression and poorer prognosis, indicating their role as a prognostic factor in uveal melanoma.
Collapse
|
17
|
Williams MPI, Rigon M, Straka T, Hörner SJ, Thiel M, Gretz N, Hafner M, Reischl M, Rudolf R. A Novel Optical Tissue Clearing Protocol for Mouse Skeletal Muscle to Visualize Endplates in Their Tissue Context. Front Cell Neurosci 2019; 13:49. [PMID: 30873005 PMCID: PMC6401545 DOI: 10.3389/fncel.2019.00049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Neuromuscular junctions (NMJs) mediate skeletal muscle contractions and play an important role in several neuromuscular disorders when their morphology and function are compromised. However, due to their small size and sparse distribution throughout the comparatively large, inherently opaque muscle tissue the analysis of NMJ morphology has been limited to teased fiber preparations, longitudinal muscle sections, and flat muscles. Consequently, whole mount analyses of NMJ morphology, numbers, their distribution, and assignment to a given muscle fiber have also been impossible to determine in muscle types that are frequently used in experimental paradigms. This impossibility is exacerbated by the lack of optical tissue clearing techniques that are compatible with clear and persistent NMJ stains. Here, we present MYOCLEAR, a novel and highly reproducible muscle tissue clearing protocol. Based on hydrogel-based tissue clearing methods, this protocol permits the labeling and detection of all NMJs in adult hindleg extensor digitorum longus muscles from wildtype and diseased mice. The method is also applicable to adult mouse diaphragm muscles and can be used for different staining agents, including toxins, lectins, antibodies, and nuclear dyes. It will be useful in understanding the distribution, morphological features, and muscle tissue context of NMJs in hindleg muscle whole mounts for biomedical and basic research.
Collapse
Affiliation(s)
| | - Matteo Rigon
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Manfred Thiel
- Department of Anesthesiology and Surgical Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Center, Heidelberg University, Mannheim, Germany.,Medical Faculty Mannheim, Institute of Medical Technology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Medical Faculty Mannheim, Institute of Medical Technology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.,Medical Faculty Mannheim, Institute of Medical Technology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Borchers S, Maβlo C, Müller CA, Tahedl A, Volkind J, Nowak Y, Umansky V, Esterlechner J, Frank MH, Ganss C, Kluth MA, Utikal J. Detection of ABCB5 tumour antigen-specific CD8 + T cells in melanoma patients and implications for immunotherapy. Clin Exp Immunol 2017; 191:74-83. [PMID: 28940439 DOI: 10.1111/cei.13053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
ATP binding cassette subfamily B member 5 (ABCB5) has been identified as a tumour-initiating cell marker and is expressed in various malignancies, including melanoma. Moreover, treatment with anti-ABCB5 monoclonal antibodies has been shown to inhibit tumour growth in xenotransplantation models. Therefore, ABCB5 represents a potential target for cancer immunotherapy. However, cellular immune responses against ABCB5 in humans have not been described so far. Here, we investigated whether ABCB5-reactive T cells are present in human melanoma patients and tested the applicability of ABCB5-derived peptides for experimental induction of human T cell responses. Peripheral blood mononuclear cells (PBMNC) isolated from blood samples of melanoma patients (n = 40) were stimulated with ABCB5 peptides, followed by intracellular cytokine staining (ICS) for interferon (IFN)-γ and tumour necrosis factor (TNF)-α. To evaluate immunogenicity of ABCB5 peptides in naive healthy donors, CD8 T cells were co-cultured with ABCB5 antigen-loaded autologous dendritic cells (DC). ABCB5 reactivity in expanded T cells was assessed similarly by ICS. ABCB5-reactive CD8+ T cells were detected ex vivo in 19 of 29 patients, melanoma antigen recognised by T cells (MART-1)-reactive CD8+ T cells in six of 21 patients. In this small, heterogeneous cohort, reactivity against ABCB5 was significantly higher than against MART-1. It occurred significantly more often and independently of clinical characteristics. Reactivity against ABCB5 could be induced in 14 of 16 healthy donors in vitro by repeated stimulation with peptide-loaded autologous DC. As ABCB5-reactive CD8 T cells can be found in the peripheral blood of melanoma patients and an ABCB5-specific response can be induced in vitro in naive donors, ABCB5 could be a new target for immunotherapies in melanoma.
Collapse
Affiliation(s)
- S Borchers
- RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | - C Maβlo
- RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | | | - A Tahedl
- TICEBA GmbH, Heidelberg, Germany
| | | | - Y Nowak
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - V Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | | | - M H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - C Ganss
- RHEACELL GmbH & Co. KG, Heidelberg, Germany.,TICEBA GmbH, Heidelberg, Germany
| | - M A Kluth
- RHEACELL GmbH & Co. KG, Heidelberg, Germany.,TICEBA GmbH, Heidelberg, Germany
| | - J Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
19
|
Samarkandy SJ, Aldahan AS, Mlacker S, Shah VV, Hsu VM, Molla A, Nouri K. Cells to Surgery Quiz: April 2016. J Invest Dermatol 2016; 136:e41. [PMID: 27462669 DOI: 10.1016/j.jid.2016.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|