1
|
Szabó K, Balogh F, Romhányi D, Erdei L, Toldi B, Gyulai R, Kemény L, Groma G. Epigenetic Regulatory Processes Involved in the Establishment and Maintenance of Skin Homeostasis-The Role of Microbiota. Int J Mol Sci 2025; 26:438. [PMID: 39859154 PMCID: PMC11764776 DOI: 10.3390/ijms26020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Epigenetic mechanisms are central to the regulation of all biological processes. This manuscript reviews the current understanding of diverse epigenetic modifications and their role in the establishment and maintenance of normal skin functions. In healthy skin, these mechanisms allow for the precise control of gene expression, facilitating the dynamic balance between cell proliferation and differentiation necessary for effective barrier function. Furthermore, as the skin ages, alterations in epigenetic marks can lead to impaired regenerative capacity and increased susceptibility to environmental stressors. The interaction between skin microbiota and epigenetic regulation will also be explored, highlighting how microbial communities can influence skin health by modulating the host gene expression. Future research should focus on the development of targeted interventions to promote skin development, resilience, and longevity, even in an ever-changing environment. This underscores the need for integrative approaches to study these complex regulatory networks.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Dóra Romhányi
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lilla Erdei
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Blanka Toldi
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Rolland Gyulai
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Gergely Groma
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
2
|
Niedźwiedź M, Skibińska M, Ciążyńska M, Noweta M, Czerwińska A, Krzyścin J, Narbutt J, Lesiak A. Psoriasis and Seasonality: Exploring the Genetic and Epigenetic Interactions. Int J Mol Sci 2024; 25:11670. [PMID: 39519223 PMCID: PMC11547062 DOI: 10.3390/ijms252111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Psoriasis is a multifactorial, chronic, and inflammatory disease that severely impacts patients' quality of life. The disease is caused by genetic irregularities affected by epigenetic and environmental factors. Some of these factors may include seasonal changes, such as solar radiation, air pollution, and humidity, and changes in circadian rhythm, especially in the temporal and polar zones. Thus, some psoriasis patients report seasonal variability of symptoms. Through a comprehensive review, we aim to delve deeper into the intricate interplay between seasonality, environmental factors, and the genetic and epigenetic landscape of psoriasis. By elucidating these complex relationships, we strive to provide insights that may inform targeted interventions and personalized management strategies for individuals living with psoriasis.
Collapse
Affiliation(s)
- Michał Niedźwiedź
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
- International Doctoral School, Medical University of Lodz, 90-419 Lodz, Poland
| | - Małgorzata Skibińska
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Magdalena Ciążyńska
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Marcin Noweta
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Agnieszka Czerwińska
- Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland; (A.C.); (J.K.)
| | - Janusz Krzyścin
- Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland; (A.C.); (J.K.)
| | - Joanna Narbutt
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Aleksandra Lesiak
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
- Laboratory of Autoinflammatory, Genetic and Rare Skin Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
3
|
Leśniak W. Dynamics and Epigenetics of the Epidermal Differentiation Complex. EPIGENOMES 2024; 8:9. [PMID: 38534793 DOI: 10.3390/epigenomes8010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/28/2024] Open
Abstract
Epidermis is the outer skin layer built of specialized cells called keratinocytes. Keratinocytes undergo a unique differentiation process, also known as cornification, during which their gene expression pattern, morphology and other properties change remarkably to the effect that the terminally differentiated, cornified cells can form a physical barrier, which separates the underlying tissues from the environment. Many genes encoding proteins that are important for epidermal barrier formation are located in a gene cluster called epidermal differentiation complex (EDC). Recent data provided valuable information on the dynamics of the EDC locus and the network of interactions between EDC gene promoters, enhancers and other regions, during keratinocytes differentiation. These data, together with results concerning changes in epigenetic modifications, provide a valuable insight into the mode of regulation of EDC gene expression.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Szabó K, Bolla BS, Erdei L, Balogh F, Kemény L. Are the Cutaneous Microbiota a Guardian of the Skin's Physical Barrier? The Intricate Relationship between Skin Microbes and Barrier Integrity. Int J Mol Sci 2023; 24:15962. [PMID: 37958945 PMCID: PMC10647730 DOI: 10.3390/ijms242115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The skin is a tightly regulated, balanced interface that maintains our integrity through a complex barrier comprising physical or mechanical, chemical, microbiological, and immunological components. The skin's microbiota affect various properties, one of which is the establishment and maintenance of the physical barrier. This is achieved by influencing multiple processes, including keratinocyte differentiation, stratum corneum formation, and regulation of intercellular contacts. In this review, we summarize the potential contribution of Cutibacterium acnes to these events and outline the contribution of bacterially induced barrier defects to the pathogenesis of acne vulgaris. With the combined effects of a Westernized lifestyle, microbial dysbiosis, epithelial barrier defects, and inflammation, the development of acne is very similar to that of several other multifactorial diseases of barrier organs (e.g., inflammatory bowel disease, celiac disease, asthma, atopic dermatitis, and chronic rhinosinusitis). Therefore, the management of acne requires a complex approach, which should be taken into account when designing novel treatments that address not only the inflammatory and microbial components but also the maintenance and strengthening of the cutaneous physical barrier.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Beáta Szilvia Bolla
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Lilla Erdei
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| |
Collapse
|
5
|
Horny K, Sproll C, Peiffer L, Furtmann F, Gerhardt P, Gravemeyer J, Stoecklein NH, Spassova I, Becker JC. Mesenchymal-epithelial transition in lymph node metastases of oral squamous cell carcinoma is accompanied by ZEB1 expression. J Transl Med 2023; 21:267. [PMID: 37076857 PMCID: PMC10114373 DOI: 10.1186/s12967-023-04102-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/01/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC), an HPV-negative head and neck cancer, frequently metastasizes to the regional lymph nodes but only occasionally beyond. Initial phases of metastasis are associated with an epithelial-mesenchymal transition (EMT), while the consolidation phase is associated with mesenchymal-epithelial transition (MET). This dynamic is referred to as epithelial-mesenchymal plasticity (EMP). While it is known that EMP is essential for cancer cell invasion and metastatic spread, less is known about the heterogeneity of EMP states and even less about the heterogeneity between primary and metastatic lesions. METHODS To assess both the heterogeneity of EMP states in OSCC cells and their effects on stromal cells, we performed single-cell RNA sequencing (scRNAseq) of 5 primary tumors, 9 matching metastatic and 5 tumor-free lymph nodes and re-analyzed publicly available scRNAseq data of 9 additional primary tumors. For examining the cell type composition, we performed bulk transcriptome sequencing. Protein expression of selected genes were confirmed by immunohistochemistry. RESULTS From the 23 OSCC lesions, the single cell transcriptomes of a total of 7263 carcinoma cells were available for in-depth analyses. We initially focused on one lesion to avoid confounding inter-patient heterogeneity and identified OSCC cells expressing genes characteristic of different epithelial and partial EMT stages. RNA velocity and the increase in inferred copy number variations indicated a progressive trajectory towards epithelial differentiation in this metastatic lesion, i.e., cells likely underwent MET. Extension to all samples revealed a less stringent but essentially similar pattern. Interestingly, MET cells show increased activity of the EMT-activator ZEB1. Immunohistochemistry confirmed that ZEB1 was co-expressed with the epithelial marker cornifin B in individual tumor cells. The lack of E-cadherin mRNA expression suggests this is a partial MET. Within the tumor microenvironment we found immunomodulating fibroblasts that were maintained in primary and metastatic OSCC. CONCLUSIONS This study reveals that EMP enables different partial EMT and epithelial phenotypes of OSCC cells, which are endowed with capabilities essential for the different stages of the metastatic process, including maintenance of cellular integrity. During MET, ZEB1 appears to be functionally active, indicating a more complex role of ZEB1 than mere induction of EMT.
Collapse
Affiliation(s)
- Kai Horny
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Christoph Sproll
- Department of Oral- and Maxillofacial Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Lukas Peiffer
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Frauke Furtmann
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Dermatology, University Medicine Essen, 45141, Essen, Germany
| | - Patricia Gerhardt
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jan Gravemeyer
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ivelina Spassova
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Dermatology, University Medicine Essen, 45141, Essen, Germany
| | - Jürgen C Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany.
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Department of Dermatology, University Medicine Essen, 45141, Essen, Germany.
| |
Collapse
|
6
|
Xue X, Guo Y, Zhao Q, Li Y, Rao M, Qi W, Shi H. Weighted Gene Co-Expression Network Analysis of Oxymatrine in Psoriasis Treatment. J Inflamm Res 2023; 16:845-859. [PMID: 36915614 PMCID: PMC10008007 DOI: 10.2147/jir.s402535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Purpose Psoriasis is a common, chronic, inflammatory, recurrent, immune-mediated skin disease. Oxymatrine is effective for treating moderate and severe psoriasis. Here, transcriptional changes in skin lesions before and after oxymatrine treatment of patients with psoriasis were identified using full-length transcriptome analysis and then compared with those of normal skin tissues. Patients and Methods Co-expression modules were constructed by combining the psoriasis area and severity index (PASI) score with weighted gene co-expression network analysis to explore the action mechanism of oxymatrine in improving clinical PASI. The expression of selected genes was verified using immunohistochemistry, quantitative real-time PCR, and Western blotting. Results Kyoto Encyclopedia of Gene and Genome pathway analysis revealed that oxymatrine treatment reversed the abnormal pathways, with an improvement in lesions and a reduction in PASI scores. Gene Ontology (GO) analysis revealed that oxymatrine treatment led to altered GO terms being regulated with a decrease in the PASI score in patients. Therefore, oxymatrine treatment may improve the skin barrier, differentiation of keratinocytes, and alleviate abnormality of organelles such as desmosomes. Protein-protein interaction network interaction analysis revealed that the top five hub genes among many interrelated genes were CNFN, S100A8, SPRR2A, SPRR2D, and SPRR2E, associated with the epidermal differentiation complex (EDC). EDC regulates keratinocyte differentiation. This result indicates that oxymatrine treatment can restore keratinocyte differentiation by regulating the expression of EDC-related genes. Conclusion Oxymatrine can improve erythema, scales, and other clinical symptoms of patients with psoriasis by regulating EDC-related genes and multiple pathways, thereby promoting the repair of epithelial tissue and maintaining the dynamic balance of skin keratosis.
Collapse
Affiliation(s)
- Xiaoxiao Xue
- Department of Dermatovenereology, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Yatao Guo
- Dermatological Department, Baoji Central Hospital, Shaanxi, 721008, People's Republic of China
| | - Qianying Zhao
- Medical Experimental Center, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Yongwen Li
- Department of Dermatovenereology, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Mi Rao
- Department of Dermatovenereology, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Wenjing Qi
- Department of Dermatovenereology, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Huijuan Shi
- Department of Dermatovenereology, the General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| |
Collapse
|
7
|
Labarrade F, Botto JM, Imbert IM. miR-203 represses keratinocyte stemness by targeting survivin. J Cosmet Dermatol 2022; 21:6100-6108. [PMID: 35673958 DOI: 10.1111/jocd.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The epidermis possesses the capacity to replace dying cells and to heal wounds, thanks to resident stem cells, which have self-renewal properties. In skin physiology, miRNAs have been shown to be involved in many processes, including skin and hair morphogenesis. Recently, differentiation of epidermal stem cells was shown to be promoted by the miR-203. The miR-203 is upregulated during epidermal differentiation and is of interest because of significant targets. METHODS By utilizing a bioinformatic tool, we identified a target site for miR-203 in the survivin mRNA. Silencing miR-203 was managed with the use of antagomir; the silencing of survivin was performed with a siRNA. Survivin expression was determined by qPCR or immunofluorescence in cultured cells, and by immunohistochemistry in skin sections. Involucrin expression was used as marker of keratinocyte differentiation. A rice extract with previously demonstrated anti-aging properties was evaluated on miR-203 modulation. RESULTS In this study, we identified a miR-203/survivin axis, important for epidermal homeostasis. We report that differentiation of keratinocyte is dependent on the level of miR-203 expression and that inhibition of miR-203 can increase the expression of survivin, an epidermal marker of stemness. CONCLUSION In summary, our findings suggest that miR-203 target 3'UTR region of survivin mRNA and directly represses survivin expression in the epidermis. The rice extract was identified as modulator of miR-203 and pointed out as a promising microRNA-based strategy in treating skin changes occurring with aging.
Collapse
|
8
|
Stănescu AMA, Cristea AMA, Bejan GC, Vieru M, Simionescu AA, Popescu FD. Allergic Contact Cell-Mediated Hypersensitivity in Psoriasis: A Narrative Minireview. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58070914. [PMID: 35888633 PMCID: PMC9324524 DOI: 10.3390/medicina58070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
The dysfunctionality of the protective skin barrier in psoriasis allows easier cutaneous penetration of various contact haptens; thus, such patients can develop allergic contact hypersensitivity as a comorbidity. Both skin conditions involve T-cell-mediated mechanisms. Dermatologists and allergists should consider assessing allergic contact cell-mediated hypersensitivity in selected psoriasis patients, especially those with palmoplantar psoriasis and who are refractory to topical treatments, and in patients with psoriasis, with or without arthritis, treated with biologics that present skin lesions clinically suggestive of contact dermatitis.
Collapse
Affiliation(s)
| | - Ana-Maria-Antoaneta Cristea
- Department of Allergology and Clinical Immunology, Nicolae Malaxa Clinical Hospital, 022441 Bucharest, Romania; (A.-M.-A.C.); (F.-D.P.)
| | - Gabriel Cristian Bejan
- Department of Family Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Correspondence: (G.C.B.); (M.V.)
| | - Mariana Vieru
- Department of Allergology and Clinical Immunology, Nicolae Malaxa Clinical Hospital, 022441 Bucharest, Romania; (A.-M.-A.C.); (F.-D.P.)
- Department of Allergology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (G.C.B.); (M.V.)
| | - Anca Angela Simionescu
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 011132 Bucharest, Romania
| | - Florin-Dan Popescu
- Department of Allergology and Clinical Immunology, Nicolae Malaxa Clinical Hospital, 022441 Bucharest, Romania; (A.-M.-A.C.); (F.-D.P.)
- Department of Allergology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
9
|
Warrick E, Duval C, Nouveau S, Piffaut V, Bourreau E, Bastien P, de Lacharrière O, Morita A, Bernerd F. Actinic lentigines from Japanese and European volunteers share similar impaired biological functions. J Dermatol Sci 2022; 107:8-16. [DOI: 10.1016/j.jdermsci.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
|
10
|
Hawerkamp HC, Fahy CMR, Fallon PG, Schwartz C. Break on through: The role of innate immunity and barrier defence in atopic dermatitis and psoriasis. SKIN HEALTH AND DISEASE 2022; 2:e99. [PMID: 35677926 PMCID: PMC9168024 DOI: 10.1002/ski2.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 12/20/2022]
Abstract
The human skin can be affected by a multitude of diseases including inflammatory conditions such as atopic dermatitis and psoriasis. Here, we describe how skin barrier integrity and immunity become dysregulated during these two most common inflammatory skin conditions. We summarise recent advances made in the field of the skin innate immune system and its interaction with adaptive immunity. We review gene variants associated with atopic dermatitis and psoriasis that affect innate immune mechanisms and skin barrier integrity. Finally, we discuss how current and future therapies may affect innate immune responses and skin barrier integrity in a generalized or more targeted approach in order to ameliorate disease in patients.
Collapse
Affiliation(s)
- H C Hawerkamp
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland
| | - C M R Fahy
- Paediatric Dermatology Children's Health Ireland at Crumlin Dublin Ireland.,Royal United Hospitals NHS Foundation Trust Bath UK
| | - P G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland.,National Children's Research Centre Our Lady's Children's Hospital Dublin Ireland.,Clinical Medicine Trinity College Dublin Dublin Ireland
| | - C Schwartz
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland.,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Erlangen Germany.,Medical Immunology Campus Erlangen FAU Erlangen-Nürnberg Erlangen Germany
| |
Collapse
|
11
|
Starr I, Seiffert-Sinha K, Sinha AA, Gokcumen O. Evolutionary context of psoriatic immune skin response. Evol Med Public Health 2022; 9:474-486. [PMID: 35154781 PMCID: PMC8830311 DOI: 10.1093/emph/eoab042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
The skin is vital for protecting the body and perceiving external stimuli in the environment. Ability to adapt between environments is in part based on skin phenotypic plasticity, indicating evolved homeostasis between skin and environment. This homeostasis reflects the greater relationship between the body and the environment, and disruptions in this balance may lead to accumulation of susceptibility factors for autoimmune conditions like psoriasis. In this study, we examined the relationship between rapid, lineage-specific evolution of human skin and formation of psoriatic skin responses at the transcriptome level. We collected skin tissue biopsies from individuals with psoriasis and compared gene expression in psoriatic plaques to non-plaque psoriatic skin. We then compared these data with non-psoriatic skin transcriptome data from multiple primate species. We found 67 genes showing human-specific skin expression that are also differentially regulated in psoriatic skin; these genes are significantly enriched for skin barrier function, immunity and neuronal development. We identified six gene clusters with differential expression in the context of human evolution and psoriasis, suggesting underlying regulatory mechanisms in these loci. Human and psoriasis-specific enrichment of neuroimmune genes shows the importance of the ongoing evolved homeostatic relationship between skin and external environment. These results have implications for both evolutionary medicine and public health, using transcriptomic data to acknowledge the importance of an individual’s surroundings on their overall health. The skin is important for protecting the body from the environment and perceiving external stimuli, creating an evolved balance between skin and the environment. We compare skin gene expression in humans with psoriasis to humans and non-human primates without psoriasis to better understand human-specific evolutionary changes in the skin. Our results suggest important evolutionary links between skin perception, human-specific skin development and immune response.
Collapse
Affiliation(s)
- Izzy Starr
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Kristina Seiffert-Sinha
- Department of Dermatology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Animesh A Sinha
- Department of Dermatology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
12
|
Tayem R, Niemann C, Pesch M, Morgner J, Niessen CM, Wickström SA, Aumailley M. Laminin 332 Is Indispensable for Homeostatic Epidermal Differentiation Programs. J Invest Dermatol 2021; 141:2602-2610.e3. [PMID: 33965403 DOI: 10.1016/j.jid.2021.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
The skin epidermis is attached to the underlying dermis by a laminin 332 (Lm332)-rich basement membrane. Consequently, loss of Lm332 leads to the severe blistering disorder epidermolysis bullosa junctionalis in humans and animals. Owing to the indispensable role of Lm332 in keratinocyte adhesion in vivo, the severity of the disease has limited research into other functions of the protein. We have conditionally disrupted Lm332 expression in basal keratinocytes of adult mice. Although blisters develop along the interfollicular epidermis, hair follicle basal cells provide sufficient anchorage of the epidermis to the dermis, making inducible deletion of the Lama3 gene compatible with life. Loss of Lm332 promoted the thickening of the epidermis and exaggerated desquamation. Global RNA expression analysis revealed major changes in the expression of keratins, cornified envelope proteins, and cellular stress markers. These modifications of the keratinocyte genetic program are accompanied by changes in cell shape and disorganization of the actin cytoskeleton. These data indicate that loss of Lm332-mediated progenitor cell adhesion alters cell fate and disturbs epidermal homeostasis.
Collapse
Affiliation(s)
- Raneem Tayem
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Catherin Niemann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Monika Pesch
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jessica Morgner
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany; Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carien M Niessen
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Medical Faculty, Department of Cell Biology of the Skin, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sara A Wickström
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Monique Aumailley
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Majewski G, Craw J, Falla T. Accelerated Barrier Repair in Human Skin Explants Induced with a Plant-Derived PPAR-α Activating Complex via Cooperative Interactions. Clin Cosmet Investig Dermatol 2021; 14:1271-1293. [PMID: 34566418 PMCID: PMC8458040 DOI: 10.2147/ccid.s325967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/28/2021] [Indexed: 12/27/2022]
Abstract
Background Peroxisome proliferator-activated receptors (PPARs) govern epidermal lipid synthesis and metabolism. In skin, PPAR activation has been shown to regulate genes responsible for permeability barrier homeostasis, epidermal differentiation, lipid biosynthesis, and inflammation. Objective Given the known dermatologic benefits of PPARs, we set out to discover a naturally derived, multi-molecule complex that would be superior to the more commonly formulated conjugated linoleic acids (CLAs). We hypothesized that a complex may be capable of modulating PPAR-α by cooperative or multi-ligand binding interactions to accelerate skin barrier repair. Methods To achieve this, we assembled a novel PPAR-α agonist complex, referred to as RFV3, from a combination of small molecules routinely used in Ayurvedic medicine and accepted in cosmetic and topical over-the-counter dermatologic products. We tested RFV3’s potential as a PPAR-α agonist by evaluating its transcriptional response, ligand binding affinity to PPAR-α, gene expression profiles and barrier repair properties in human skin explant models. Results We assembled RFV3 by solubilizing two standardized plant extracts in a suitable solvent and induced a significant transcriptional response in PPAR-α luciferase reporter assay. Furthermore, transcriptome profiling of RFV3-treated epidermal substitutes revealed expressed genes consistent with known targets of PPAR-α, including those involved in epidermal barrier repair. In addition, in silico modeling demonstrated differential co-binding affinities of RFV3 to PPAR-α compared with those of the endogenous ligands (CLAs) and a synthetic PPAR-α agonist. Lastly, delipidated skin explant models confirmed accelerated barrier repair activity with significant increases in ceramides, filaggrin and transglutaminase-1 after treatment. Conclusion These findings suggest that the RFV3 complex successfully mimics a PPAR-α agonist and induces synthesis of skin barrier lipids and proteins consistent with known PPAR pathways.
Collapse
Affiliation(s)
- George Majewski
- Rodan & Fields, San Francisco, CA, 94105, USA.,Present Affiliation: Contrast Product Development, Walnut, CA, 91789, USA
| | - John Craw
- Rodan & Fields, San Francisco, CA, 94105, USA
| | | |
Collapse
|
14
|
Shamilov R, Robinson VL, Aneskievich BJ. Seeing Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder. Int J Mol Sci 2021; 22:ijms22157912. [PMID: 34360678 PMCID: PMC8348711 DOI: 10.3390/ijms22157912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Epidermal keratinocyte proteins include many with an eccentric amino acid content (compositional bias), atypical ultrastructural fate (built-in protease sensitivity), or assembly visible at the light microscope level (cytoplasmic granules). However, when considered through the looking glass of intrinsic disorder (ID), these apparent oddities seem quite expected. Keratinocyte proteins with highly repetitive motifs are of low complexity but high adaptation, providing polymers (e.g., profilaggrin) for proteolysis into bioactive derivatives, or monomers (e.g., loricrin) repeatedly cross-linked to self and other proteins to shield underlying tissue. Keratohyalin granules developing from liquid–liquid phase separation (LLPS) show that unique biomolecular condensates (BMC) and proteinaceous membraneless organelles (PMLO) occur in these highly customized cells. We conducted bioinformatic and in silico assessments of representative keratinocyte differentiation-dependent proteins. This was conducted in the context of them having demonstrated potential ID with the prospect of that characteristic driving formation of distinctive keratinocyte structures. Intriguingly, while ID is characteristic of many of these proteins, it does not appear to guarantee LLPS, nor is it required for incorporation into certain keratinocyte protein condensates. Further examination of keratinocyte-specific proteins will provide variations in the theme of PMLO, possibly recognizing new BMC for advancements in understanding intrinsically disordered proteins as reflected by keratinocyte biology.
Collapse
Affiliation(s)
- Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA;
| | - Victoria L. Robinson
- Department of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA;
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
- Correspondence: ; Tel.: +1-860-486-3053
| |
Collapse
|
15
|
Holthaus KB, Lachner J, Ebner B, Tschachler E, Eckhart L. Gene duplications and gene loss in the epidermal differentiation complex during the evolutionary land-to-water transition of cetaceans. Sci Rep 2021; 11:12334. [PMID: 34112911 PMCID: PMC8192740 DOI: 10.1038/s41598-021-91863-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023] Open
Abstract
Major protein components of the mammalian skin barrier are encoded by genes clustered in the Epidermal Differentiation Complex (EDC). The skin of cetaceans, i.e. whales, porpoises and dolphins, differs histologically from that of terrestrial mammals. However, the genetic regulation of their epidermal barrier is only incompletely known. Here, we investigated the EDC of cetaceans by comparative genomics. We found that important epidermal cornification proteins, such as loricrin and involucrin are conserved and subtypes of small proline-rich proteins (SPRRs) are even expanded in numbers in cetaceans. By contrast, keratinocyte proline rich protein (KPRP), skin-specific protein 32 (XP32) and late-cornified envelope (LCE) genes with the notable exception of LCE7A have been lost in cetaceans. Genes encoding proline rich 9 (PRR9) and late cornified envelope like proline rich 1 (LELP1) have degenerated in subgroups of cetaceans. These data suggest that the evolution of an aquatic lifestyle was accompanied by amplification of SPRR genes and loss of specific other epidermal differentiation genes in the phylogenetic lineage leading to cetaceans.
Collapse
Affiliation(s)
- Karin Brigit Holthaus
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Julia Lachner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bettina Ebner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Ordonez LD, Melchor L, Greenow KR, Kendrick H, Tornillo G, Bradford J, Giles P, Smalley MJ. Reproductive history determines Erbb2 locus amplification, WNT signalling and tumour phenotype in a murine breast cancer model. Dis Model Mech 2021; 14:264801. [PMID: 34003256 PMCID: PMC8188886 DOI: 10.1242/dmm.048736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding the mechanisms underlying tumour heterogeneity is key to the development of treatments that can target specific tumour subtypes. We have previously targeted CRE recombinase-dependent conditional deletion of the tumour suppressor genes Brca1, Brca2, p53 (also known as Trp53) and/or Pten to basal or luminal oestrogen receptor-negative (ER−) cells of the mouse mammary epithelium. We demonstrated that both the cell-of-origin and the tumour-initiating genetic lesions cooperate to influence mammary tumour phenotype. Here, we use a CRE-activated HER2 orthologue to specifically target HER2/ERBB2 oncogenic activity to basal or luminal ER− mammary epithelial cells and perform a detailed analysis of the tumours that develop. We find that, in contrast to our previous studies, basal epithelial cells are less sensitive to transformation by the activated NeuKI allele, with mammary epithelial tumour formation largely confined to luminal ER− cells. Histologically, most tumours that developed were classified as either adenocarcinomas of no special type or as metaplastic adenosquamous tumours. The former were typically characterized by amplification of the NeuNT/Erbb2 locus; in contrast, tumours displaying squamous metaplasia were enriched in animals that had been through at least one pregnancy and typically had lower levels of NeuNT/Erbb2 locus amplification but had activated canonical WNT signalling. Squamous changes in these tumours were associated with activation of the epidermal differentiation cluster. Thus, in this model of HER2 breast cancer, cell-of-origin, reproductive history, NeuNT/Erbb2 locus amplification and the activation of specific branches of the WNT signalling pathway all interact to drive inter-tumour heterogeneity. Summary: Using a mouse model of breast cancer, the authors show mammary epithelial cell-type sensitivity to transformation by HER2, as well as a change in tumour phenotype associated with reproductive history and driven by WNT signalling.
Collapse
Affiliation(s)
- Liliana D Ordonez
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Lorenzo Melchor
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Kirsty R Greenow
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | | | - Peter Giles
- Wales Gene Park, University Hospital Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
17
|
Miroshnikova YA, Cohen I, Ezhkova E, Wickström SA. Epigenetic gene regulation, chromatin structure, and force-induced chromatin remodelling in epidermal development and homeostasis. Curr Opin Genet Dev 2019; 55:46-51. [PMID: 31112907 DOI: 10.1016/j.gde.2019.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 01/14/2023]
Abstract
The skin epidermis is a constantly renewing stratified epithelium that provides essential protective barrier functions throughout life. Epidermal stratification is governed by a step-wise differentiation program that requires precise spatiotemporal control of gene expression. How epidermal self-renewal and differentiation are regulated remains a fundamental open question. Cell-intrinsic and cell-extrinsic mechanisms that modify chromatin structure and interactions have been identified as key regulators of epidermal differentiation and stratification. Here, we will review the recent advances in our understanding of how chromatin modifiers, tissue-specific transcription factors, and force-induced nuclear remodeling processes function to shape chromatin and to control epidermal tissue development and homeostasis.
Collapse
Affiliation(s)
- Yekaterina A Miroshnikova
- Helsinki Institute of Life Science, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Finland; Wihuri Research Institute, University of Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Idan Cohen
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | - Sara A Wickström
- Helsinki Institute of Life Science, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Finland; Wihuri Research Institute, University of Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland; Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|
18
|
Abstract
Research on psoriasis pathogenesis has largely increased knowledge on skin biology in general. In the past 15 years, breakthroughs in the understanding of the pathogenesis of psoriasis have been translated into targeted and highly effective therapies providing fundamental insights into the pathogenesis of chronic inflammatory diseases with a dominant IL-23/Th17 axis. This review discusses the mechanisms involved in the initiation and development of the disease, as well as the therapeutic options that have arisen from the dissection of the inflammatory psoriatic pathways. Our discussion begins by addressing the inflammatory pathways and key cell types initiating and perpetuating psoriatic inflammation. Next, we describe the role of genetics, associated epigenetic mechanisms, and the interaction of the skin flora in the pathophysiology of psoriasis. Finally, we include a comprehensive review of well-established widely available therapies and novel targeted drugs.
Collapse
|
19
|
Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J, Kim B, Brestoff JR, Tyldsley AS, Zheng Q, Hodkinson BP, Artis D, Grice EA. Commensal microbiota modulate gene expression in the skin. MICROBIOME 2018; 6:20. [PMID: 29378633 PMCID: PMC5789709 DOI: 10.1186/s40168-018-0404-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/18/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND The skin harbors complex communities of resident microorganisms, yet little is known of their physiological roles and the molecular mechanisms that mediate cutaneous host-microbe interactions. Here, we profiled skin transcriptomes of mice reared in the presence and absence of microbiota to elucidate the range of pathways and functions modulated in the skin by the microbiota. RESULTS A total of 2820 genes were differentially regulated in response to microbial colonization and were enriched in gene ontology (GO) terms related to the host-immune response and epidermal differentiation. Innate immune response genes and genes involved in cytokine activity were generally upregulated in response to microbiota and included genes encoding toll-like receptors, antimicrobial peptides, the complement cascade, and genes involved in IL-1 family cytokine signaling and homing of T cells. Our results also reveal a role for the microbiota in modulating epidermal differentiation and development, with differential expression of genes in the epidermal differentiation complex (EDC). Genes with correlated co-expression patterns were enriched in binding sites for the transcription factors Klf4, AP-1, and SP-1, all implicated as regulators of epidermal differentiation. Finally, we identified transcriptional signatures of microbial regulation common to both the skin and the gastrointestinal tract. CONCLUSIONS With this foundational approach, we establish a critical resource for understanding the genome-wide implications of microbially mediated gene expression in the skin and emphasize prospective ways in which the microbiome contributes to skin health and disease.
Collapse
Affiliation(s)
- Jacquelyn S Meisel
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Georgia Sfyroera
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Casey Bartow-McKenney
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Ciara Gimblet
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Julia Bugayev
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Joseph Horwinski
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Brian Kim
- Department of Dermatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amanda S Tyldsley
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Qi Zheng
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Brendan P Hodkinson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Elizabeth A Grice
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
The Genetic Basis of Psoriasis. Int J Mol Sci 2017; 18:ijms18122526. [PMID: 29186830 PMCID: PMC5751129 DOI: 10.3390/ijms18122526] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is widely regarded as a multifactorial condition which is caused by the interaction between inherited susceptibility alleles and environmental triggers. In the last decade, technological advances have enabled substantial progress in the understanding of disease genetics. Genome-wide association studies have identified more than 60 disease susceptibility regions, highlighting the pathogenic involvement of genes related to Th17 cell activation. This pathway has now been targeted by a new generation of biologics that have shown great efficacy in clinical trials. At the same time, the study of rare variants of psoriasis has identified interleukin (IL)-36 cytokines as important amplifiers of Th17 signaling and promising targets for therapeutic intervention. Here, we review these exciting discoveries, which highlight the translational potential of genetic studies.
Collapse
|
21
|
Honda Y, Kitamura T, Naganuma T, Abe T, Ohno Y, Sassa T, Kihara A. Decreased Skin Barrier Lipid Acylceramide and Differentiation-Dependent Gene Expression in Ichthyosis Gene Nipal4-Knockout Mice. J Invest Dermatol 2017; 138:741-749. [PMID: 29174370 DOI: 10.1016/j.jid.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022]
Abstract
NIPAL4 is one of the causative genes for autosomal recessive congenital ichthyosis. However, the role of NIPAL4 in skin barrier formation and the molecular mechanism of ichthyosis pathology caused by NIPAL4 mutations, have not yet been determined. Here, we found that Nipal4-knockout (KO) mice exhibited neonatal lethality due to skin barrier defects. Histological analyses showed several morphological abnormalities in the Nipal4-KO epidermis, including impairment of lipid multilayer structure formation, hyperkeratosis, immature keratohyalin granules, and developed heterochromatin structures. The levels of the skin barrier lipid acylceramide were decreased in Nipal4-KO mice. Expression of genes involved in skin barrier formation normally increases during keratinocyte differentiation, in which chromatin remodeling is involved. However, the induction of Krt1, Lor, Flg, Elovl1, and Dgat2 was impaired in Nipal4-KO mice. NIPAL4 is a putative Mg2+ transporter, and Mg2+ concentration in differentiated keratinocytes of Nipal4-KO mice was indeed lower than that of wild-type mice. Our results suggest that low Mg2+ concentration causes aberration in the proper chromatin remodeling process, which in turn leads to failure of differentiation-dependent gene induction in keratinocytes. Our findings provide insights into Mg2+-dependent regulation of gene expression and skin barrier formation during keratinocyte differentiation.
Collapse
Affiliation(s)
- Yuichi Honda
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Kitamura
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuro Naganuma
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takaya Abe
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|