1
|
Jin SP, Oh JH, Kim NK, Chung JH. H Antigen expression modulates epidermal Keratinocyte Integrity and differentiation. Biol Res 2024; 57:72. [PMID: 39420441 PMCID: PMC11487879 DOI: 10.1186/s40659-024-00541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND ABO blood group antigens (ABH antigens) are carbohydrate chains glycosylated on epithelial and red blood cells. Recent findings suggest reduced ABH expression in psoriasis and atopic dermatitis, a chronic inflammatory skin disease with retained scale. H antigen, a precursor for A and B antigens, is synthesized by fucosyltransferase 1 (FUT1). Desmosomes, critical for skin integrity, are known to require N-glycosylation for stability. We investigate the impact of H antigens, a specific type of glycosylation, on desmosomes in keratinocytes. METHOD Primary human keratinocytes were transfected with FUT1 siRNA or recombinant adenovirus for FUT1 overexpression. Cell adhesion and desmosome characteristics and their underlying mechanisms were analyzed. RESULT The knockdown of FUT1, responsible for H2 antigen expression in the skin, increased cell-cell adhesive strength and desmosome size in primary cultured keratinocytes without altering the overall desmosome structure. Desmosomal proteins, including desmogleins or plakophilin, were upregulated, suggesting enhanced desmosome assembly. Reduced H2 antigen expression via FUT1 knockdown led to increased keratinocyte differentiation, evidenced by elevated expression of differentiation markers. Epidermal growth factor receptor (EGFR) has been described to be associated with FUT1 and promotes cell migration and differentiation. The effects of FUT1 knockdown were recapitulated by an EGFR inhibitor concerning desmosomal proteins and cellular differentiation. Further investigation demonstrated that the FUT1 knockdown reduced EGFR signaling by lowering the levels of EGF ligands rather than directly regulating EGFR activity. Moreover, FUT1 overexpression reversed the effects observed in FUT1 knockdown, resulting in the downregulation of desmosomal proteins and differentiation markers while increasing both mRNA and protein levels of EGFR ligands. CONCLUSION The expression level of FUT1 in the epidermis appears to influence cell-cell adhesion and keratinocyte differentiation status, at least partly through regulation of H2 antigen and EGFR ligand expression. These observations imply that the fucosylation of the H2 antigen by FUT1 could play a significant role in maintaining the molecular composition and regulation of desmosomes and suggest a possible involvement of the altered H2 antigen expression in skin diseases, such as psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Namjoo Kaylee Kim
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Laureano AF, Vigato AA, Puzer L, de Araujo DR. Recombinant scFv-Fc Anti-kallikrein 7 Antibody-Loaded Thermosensitive Hydrogels Against Skin Desquamation Disorders. ACS APPLIED BIO MATERIALS 2024; 7:4486-4496. [PMID: 38886921 PMCID: PMC11253099 DOI: 10.1021/acsabm.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Human tissue kallikrein-related peptidase 7 (KLK7) is a serine protease implicated in the physiology of skin desquamation, and its uncontrolled activity can lead to chronic diseases such as psoriasis, atopic dermatitis, and Netherton syndrome. For this reason, kallikrein 7 has been identified as a potential therapeutic target. This work aimed to evaluate Pluronic (PL) hydrogels as topical carriers of four specific scFv-Fc antibodies to inhibit KLK7. The hydrogels comprised PL F127 (30% w/v) alone and a binary F127/P123 (28-2% w/v) system. Each formulation was loaded with 1 μg/mL of each antibody and characterized by physicochemical and pharmaceutical techniques, considering antibody-micelle interactions and hydrogel behavior as smart delivery systems. Results showed that the antibodies were successfully loaded into the PL-based systems, and the sol-gel transition temperature was shifted to high values after the P123 addition. The antibodies released from the gels preserved their rheological properties (G' > G'', 35- to 41-fold) and inhibitory activity against KLK7, even after 24 h. This work presented potential agents targeting KLK7 that may provide strategies for treating skin abnormalities.
Collapse
Affiliation(s)
- Ana Flávia
Santarine Laureano
- Department
of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital & Harvard Medical School, CNY149 13th Street, Charlestown, Boston, Massachusetts 02129, United States
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Al. da Universidade, s/n-Anchieta, São
Bernardo do Campo, SP 09606-045, Brazil
| | - Aryane Alves Vigato
- Department
of Biomedical Science (BMV), Faculty of Health and Society, Malmö University, Malmö 20506, Sweden
- Biofilms−Research
Center for Biointerfaces, Malmö University, Malmö 20506, Sweden
| | - Luciano Puzer
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Al. da Universidade, s/n-Anchieta, São
Bernardo do Campo, SP 09606-045, Brazil
| | - Daniele Ribeiro de Araujo
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Av. dos
Estados, 5001, Bloco A, Torre 3, Santo André, SP 09210-580, Brazil
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, Vila Clementino, Sao Paulo, SP 04023-062, Brazil
| |
Collapse
|
3
|
Fluhr JW, Moore DJ, Lane ME, Lachmann N, Rawlings AV. Epidermal barrier function in dry, flaky and sensitive skin: A narrative review. J Eur Acad Dermatol Venereol 2024; 38:812-820. [PMID: 38140732 DOI: 10.1111/jdv.19745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
The stratum corneum (SC)-the outermost layer of the epidermis-is the principal permeability and protective barrier of the skin. Different components of the SC, including corneocytes, natural moisturizing factor, a variety of enzymes and their inhibitors, antimicrobial peptides and lipids, work interactively to maintain barrier function. The main barrier properties of the SC are the limitation of water loss and the prevention of infection and contact with potentially harmful exogenous factors. Although the SC functions consistently as a protective barrier throughout the body, variations in functions and morphology occur across body sites with age and skin type. Healthy SC function also depends on the interplay between the chemosensory barrier, the skin's microbiome and the innate immune system. Dysregulation of SC barrier function can lead to the development of skin disorders, such as dry, flaky or sensitive skin, but the complete underlying pathophysiology of these are not fully understood. This review provides insight into the current literature and emerging themes related to epidermal barrier changes that occur in the context of dry, flaky and sensitive skin. Additional studies are needed to further elucidate the underlying aetiology of dry, flaky and sensitive skin and to provide tailored treatment.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Institute of Allergology IFA Charité Universitätsmedizin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | | | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | | | - Anthony V Rawlings
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
- AVR Consulting Ltd., Northwich, UK
| |
Collapse
|
4
|
Montenegro SE, Oh JH, Suh JH, Mun JH, Chung JH. Higher Expression of Lympho-epithelial Kazal-type-Related Inhibitor-1 Fragments and Decreased Desquamation in the Lesional Skin of Nummular Eczema. Acta Derm Venereol 2024; 104:adv188636. [PMID: 38551375 PMCID: PMC11000662 DOI: 10.2340/actadv.v104.18636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Nummular eczema, a chronic dermatitis characterized by coin-shaped lesions, was first documented in 1857. However, its pathophysiological characteristics are still not well known. To investigate differences in the regulation of the desquamation process in the stratum corneum of lesional and nonlesional skin of patients with nummular eczema and healthy control subjects, tape-stripped stratum corneum samples from patients with nummular eczema and healthy volunteers were analysed using immunofluorescence staining and western blot analysis. In the nummular eczema lesional skin, expression of desmoglein-1, desmocollin-1, and corneodesmosin exhibited a disorganized, dense or partially diffuse non-peripheral pattern with increased intensity, compared with the peripheral patterns observed in healthy or nonlesional skin, suggesting the impaired desquamation process in nummular eczema. Furthermore, although the expression of the desquamation-related serine proteases, kallikrein-related peptidase 7 and 5, was increased in nummular eczema lesional skin, the immunofluorescence staining of lympho-epithelial Kazal-type-related inhibitor-1, an endogenous inhibitor of various kallikrein-related peptidases, and its fragments were significantly increased in the nummular eczema lesional skin, suggesting its contribution to the inhibition of corneodesmosomal degradation. Therefore, the increased detection of corneodesmosomal proteins in nummular eczema lesions may be due to the increased amount of the fragments of lympho-epithelial Kazal-type-related inhibitor-1, which could contribute to delayed desquamation.
Collapse
Affiliation(s)
- Sara Estefania Montenegro
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joong Heon Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Je-Ho Mun
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
de Boer FL, van der Molen HF, Kezic S. Epidermal biomarkers of the skin barrier in atopic and contact dermatitis. Contact Dermatitis 2023; 89:221-229. [PMID: 37571977 DOI: 10.1111/cod.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Dysfunction of the skin barrier plays a critical role in the initiation and progression of inflammatory skin diseases, such as atopic dermatitis and contact dermatitis. Epidermal biomarkers can aid in evaluating the functionality of the skin barrier and understanding the mechanisms that underlay its impairment. This narrative review provides an overview of recent studies on epidermal biomarkers associated with the function and integrity of the skin barrier, and their application in research on atopic dermatitis and contact dermatitis. The reviewed studies encompass a wide spectrum of molecular, morphological and biophysical biomarkers, mainly obtained from stratum corneum tape strips and biopsies. Lipids, natural moisturizing factors, and structural proteins are the most frequently reported molecular biomarkers. Additionally, corneocyte surface topography and elasticity show potential as biomarkers for assessing the physical barrier of the skin. In contact dermatitis studies, biomarkers are commonly employed to evaluate skin irritation and differentiate between irritant and allergic contact dermatitis. In atopic dermatitis, biomarkers are primarily utilized to identify differences between atopic and healthy skin, for predictive purposes, and monitoring response to therapies. While this overview identifies potential biomarkers for the skin barrier, their validation as epidermal biomarkers for atopic dermatitis and contact dermatitis has yet to be established.
Collapse
Affiliation(s)
- F L de Boer
- Public and Occupational Health Department, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research, Amsterdam, The Netherlands
| | - H F van der Molen
- Public and Occupational Health Department, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research, Amsterdam, The Netherlands
| | - S Kezic
- Public and Occupational Health Department, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Moran MC, Brewer MG, Schlievert PM, Beck LA. S. aureus virulence factors decrease epithelial barrier function and increase susceptibility to viral infection. Microbiol Spectr 2023; 11:e0168423. [PMID: 37737609 PMCID: PMC10581065 DOI: 10.1128/spectrum.01684-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 09/23/2023] Open
Abstract
Individuals with atopic dermatitis (AD) are highly colonized by Staphylococcus aureus and are more susceptible to severe viral complications. We hypothesized that S. aureus secreted virulence factors may alter keratinocyte biology to enhance viral susceptibility through disruption of the skin barrier, impaired keratinocyte differentiation, and/or inflammation. To address this hypothesis, human keratinocytes were exposed to conditioned media from multiple S. aureus strains that vary in virulence factor production (USA300, HG003, and RN4220) or select purified virulence factors. We have identified the S. aureus enterotoxin-like superantigen SElQ, as a virulence factor of interest, since it is highly produced by USA300 and was detected on the skin of 53% of AD subjects (n = 72) in a study conducted by our group. Treatment with USA300 conditioned media or purified SElQ resulted in a significant increase in keratinocyte susceptibility to infection with vaccinia virus, and also significantly decreased barrier function. Importantly, we have previously demonstrated that keratinocyte differentiation influences susceptibility to viral infection, and our qPCR observations indicated that USA300 S. aureus and SElQ alter differentiation in keratinocytes. CRISPR/Cas9 was used to knock out CD40, a potential enterotoxin receptor on epithelial cells. We found that CD40 expression on keratinocytes was not completely necessary for SElQ-mediated responses, as measured by proinflammatory cytokine expression and barrier function. Together, these findings support that select S. aureus virulence factors, particularly SElQ, enhance the susceptibility of epidermal cells to viral infection, which may contribute to the increased cutaneous infections observed in individuals with AD. IMPORTANCE Staphylococcus aureus skin colonization and infection are frequently observed in individuals with atopic dermatitis. Many S. aureus strains belong to the clonal group USA300, and these strains produce superantigens including the staphylococcal enterotoxin-like Q (SElQ). Our studies highlight that SElQ may play a key role by altering keratinocyte differentiation and reducing barrier function; collectively, this may explain the AD-specific enhanced infection risk to cutaneous viruses. It is unclear what receptor mediates SElQ's effects on keratinocytes. We have shown that one putative surface receptor, CD40, was not critical for its effects on proinflammatory cytokine production or barrier function.
Collapse
Affiliation(s)
- Mary C. Moran
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew G. Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
7
|
Thibault Greugny E, Bensaci J, Fages F, Stamatas GN. Computational modelling predicts impaired barrier function and higher sensitivity to skin inflammation following pH elevation. Exp Dermatol 2023; 32:177-185. [PMID: 36321871 DOI: 10.1111/exd.14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/04/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Skin surface pH has been identified as a key regulator of the epidermal homeostasis through its action on serine protease activity. These enzymes, like kallikreins (KLK), are responsible for the degradation of corneodesmosomes, the protein structures linking together corneocytes, and are regulated by Lympho-Epithelial Kazal-Type-related Inhibitor (LEKTI). KLK activity increases at pH levels higher than physiological. An increase in skin surface pH has been observed in patients suffering from skin diseases characterized by impaired barrier function, like atopic dermatitis. In this work, we introduce an agent-based model of the epidermis to study the impact of a change in skin surface pH on the structural and physiological properties of the epidermis, through the LEKTI-KLK mechanism. We demonstrate that a less acidic pH, compared to the slightly acidic pH observed in healthy skin, is sufficient to significantly affect the water loss at the surface and the amount of irritant permeating through the epidermis. This weakening of the skin barrier function eventually results in a more intense skin inflammation following exposure to an external irritant. This work provides additional evidence that skin surface pH and serine proteases can be therapeutic targets to improve skin barrier integrity.
Collapse
Affiliation(s)
- Eléa Thibault Greugny
- Essential Health Translational Science, Johnson & Johnson Santé Beauté France, Issy-les-Moulineaux, France.,Inria Saclay Île-de-France, Lifeware Team, Palaiseau, France
| | - Jalil Bensaci
- Essential Health Translational Science, Johnson & Johnson Santé Beauté France, Issy-les-Moulineaux, France
| | - François Fages
- Inria Saclay Île-de-France, Lifeware Team, Palaiseau, France
| | - Georgios N Stamatas
- Essential Health Translational Science, Johnson & Johnson Santé Beauté France, Issy-les-Moulineaux, France
| |
Collapse
|
8
|
Zhang Y, Fu H, Zhang Y, Wang D, Zhao D, Zhang J, Li M, Wang C. Taraxasterol repairs UVB-induced skin barrier injury through MAPK/NF-κB signaling pathways. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yuzhi Zhang
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China
- Institute of cosmetic regulatory science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Hao Fu
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China
- Institute of cosmetic regulatory science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yongtao Zhang
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China
- Institute of cosmetic regulatory science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Dongdong Wang
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China
- Institute of cosmetic regulatory science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Dan Zhao
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China
- Institute of cosmetic regulatory science, Beijing Technology and Business University, Beijing, People’s Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Jiachan Zhang
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China
- Institute of cosmetic regulatory science, Beijing Technology and Business University, Beijing, People’s Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Meng Li
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China
- Institute of cosmetic regulatory science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Changtao Wang
- Beijing Key Lab of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China
- Institute of cosmetic regulatory science, Beijing Technology and Business University, Beijing, People’s Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Cadau S, Gault M, Berthelemy N, Hsu CY, Danoux L, Pelletier N, Goudounèche D, Pons C, Leprince C, André-Frei V, Simon M, Pain S. An Inflamed and Infected Reconstructed Human Epidermis to Study Atopic Dermatitis and Skin Care Ingredients. Int J Mol Sci 2022; 23:12880. [PMID: 36361668 PMCID: PMC9656979 DOI: 10.3390/ijms232112880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 08/22/2023] Open
Abstract
Atopic dermatitis (AD), the most common inflammatory skin disorder, is a multifactorial disease characterized by a genetic predisposition, epidermal barrier disruption, a strong T helper (Th) type 2 immune reaction to environmental antigens and an altered cutaneous microbiome. Microbial dysbiosis characterized by the prevalence of Staphylococcus aureus (S. aureus) has been shown to exacerbate AD. In recent years, in vitro models of AD have been developed, but none of them reproduce all of the pathophysiological features. To better mimic AD, we developed reconstructed human epidermis (RHE) exposed to a Th2 pro-inflammatory cytokine cocktail and S. aureus. This model well reproduced some of the vicious loops involved in AD, with alterations at the physical, microbial and immune levels. Our results strongly suggest that S. aureus acquired a higher virulence potential when the epidermis was challenged with inflammatory cytokines, thus later contributing to the chronic inflammatory status. Furthermore, a topical application of a Castanea sativa extract was shown to prevent the apparition of the AD-like phenotype. It increased filaggrin, claudin-1 and loricrin expressions and controlled S. aureus by impairing its biofilm formation, enzymatic activities and inflammatory potential.
Collapse
Affiliation(s)
- Sébastien Cadau
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Manon Gault
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Nicolas Berthelemy
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Chiung-Yueh Hsu
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Louis Danoux
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Nicolas Pelletier
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Dominique Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie, Paul Sabatier University, 133, Route de Narbonne, 31062 Toulouse, France
| | - Carole Pons
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051and Inserm UMR1291, CHU Purpan BP 3028, CEDEX 3, 31024 Toulouse, France
| | - Corinne Leprince
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051and Inserm UMR1291, CHU Purpan BP 3028, CEDEX 3, 31024 Toulouse, France
| | - Valérie André-Frei
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051and Inserm UMR1291, CHU Purpan BP 3028, CEDEX 3, 31024 Toulouse, France
| | - Sabine Pain
- BASF Beauty Care Solutions France, 32 Rue Saint Jean de Dieu, 69007 Lyon, France
| |
Collapse
|
10
|
Matus CE, Ehrenfeld P, Figueroa CD. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am J Physiol Cell Physiol 2022; 323:C1070-C1087. [PMID: 35993513 DOI: 10.1152/ajpcell.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.
Collapse
Affiliation(s)
- Carola E Matus
- Departament of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Molecular Biology and Pharmacogenetics, Universidad de La Frontera, Temuco, Chile.,Center of Biomedical and Morphofunctional Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
11
|
Morizane S, Sunagawa K, Nomura H, Ouchida M. Aberrant serine protease activities in atopic dermatitis. J Dermatol Sci 2022; 107:2-7. [PMID: 35817663 DOI: 10.1016/j.jdermsci.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease; the three major factors responsible for AD, i.e., epidermal barrier dysfunction, allergic inflammation, and itching, interact with each other to form a pathological condition. Excessive protease activities are characteristic abnormalities that affect the epidermal barrier in patients with AD. In normal skin, epidermal serine protease activities are controlled by kallikrein-related peptidases (KLKs) and their inhibitors, including lympho-epithelial Kazal-type-related inhibitor (LEKTI). In AD lesions, KLKs are excessively expressed, which results in the enhancement of epidermal serine protease activities and facilitates the invasion by allergens and microorganisms. In addition, some KLKs can activate protease-activated receptor 2 (PAR2) in epidermal keratinocytes and peripheral nerves, resulting in the induction of inflammation and itching. Furthermore, in AD patients with single nucleotide polymorphism (SNP) such as E420K and D386N of SPINK5 which encodes LEKTI, LEKTI function is attenuated, resulting in the activation of KLKs and easy invasion by allergens and microorganisms. Further analysis is needed to elucidate the detailed mechanism underlying the control of serine protease activities, which may lead to the development of new therapeutic and prophylactic agents for AD.
Collapse
Affiliation(s)
- Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.
| | - Ko Sunagawa
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Hayato Nomura
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Mamoru Ouchida
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| |
Collapse
|
12
|
Hawerkamp HC, Fahy CMR, Fallon PG, Schwartz C. Break on through: The role of innate immunity and barrier defence in atopic dermatitis and psoriasis. SKIN HEALTH AND DISEASE 2022; 2:e99. [PMID: 35677926 PMCID: PMC9168024 DOI: 10.1002/ski2.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 12/20/2022]
Abstract
The human skin can be affected by a multitude of diseases including inflammatory conditions such as atopic dermatitis and psoriasis. Here, we describe how skin barrier integrity and immunity become dysregulated during these two most common inflammatory skin conditions. We summarise recent advances made in the field of the skin innate immune system and its interaction with adaptive immunity. We review gene variants associated with atopic dermatitis and psoriasis that affect innate immune mechanisms and skin barrier integrity. Finally, we discuss how current and future therapies may affect innate immune responses and skin barrier integrity in a generalized or more targeted approach in order to ameliorate disease in patients.
Collapse
Affiliation(s)
- H C Hawerkamp
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland
| | - C M R Fahy
- Paediatric Dermatology Children's Health Ireland at Crumlin Dublin Ireland.,Royal United Hospitals NHS Foundation Trust Bath UK
| | - P G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland.,National Children's Research Centre Our Lady's Children's Hospital Dublin Ireland.,Clinical Medicine Trinity College Dublin Dublin Ireland
| | - C Schwartz
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin Dublin Ireland.,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Erlangen Germany.,Medical Immunology Campus Erlangen FAU Erlangen-Nürnberg Erlangen Germany
| |
Collapse
|
13
|
Moosbrugger-Martinz V, Leprince C, Méchin MC, Simon M, Blunder S, Gruber R, Dubrac S. Revisiting the Roles of Filaggrin in Atopic Dermatitis. Int J Mol Sci 2022; 23:5318. [PMID: 35628125 PMCID: PMC9140947 DOI: 10.3390/ijms23105318] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/31/2022] Open
Abstract
The discovery in 2006 that loss-of-function mutations in the filaggrin gene (FLG) cause ichthyosis vulgaris and can predispose to atopic dermatitis (AD) galvanized the dermatology research community and shed new light on a skin protein that was first identified in 1981. However, although outstanding work has uncovered several key functions of filaggrin in epidermal homeostasis, a comprehensive understanding of how filaggrin deficiency contributes to AD is still incomplete, including details of the upstream factors that lead to the reduced amounts of filaggrin, regardless of genotype. In this review, we re-evaluate data focusing on the roles of filaggrin in the epidermis, as well as in AD. Filaggrin is important for alignment of keratin intermediate filaments, control of keratinocyte shape, and maintenance of epidermal texture via production of water-retaining molecules. Moreover, filaggrin deficiency leads to cellular abnormalities in keratinocytes and induces subtle epidermal barrier impairment that is sufficient enough to facilitate the ingress of certain exogenous molecules into the epidermis. However, although FLG null mutations regulate skin moisture in non-lesional AD skin, filaggrin deficiency per se does not lead to the neutralization of skin surface pH or to excessive transepidermal water loss in atopic skin. Separating facts from chaff regarding the functions of filaggrin in the epidermis is necessary for the design efficacious therapies to treat dry and atopic skin.
Collapse
Affiliation(s)
- Verena Moosbrugger-Martinz
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Corinne Leprince
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Marie-Claire Méchin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Stefan Blunder
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| |
Collapse
|
14
|
Salimian J, Salehi Z, Ahmadi A, Emamvirdizadeh A, Davoudi SM, Karimi M, Korani M, Azimzadeh Jamalkandi S. Atopic dermatitis: molecular, cellular, and clinical aspects. Mol Biol Rep 2022; 49:3333-3348. [PMID: 34989960 DOI: 10.1007/s11033-021-07081-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Atopic dermatitis (AD) is a complicated, inflammatory skin disease, which numerous genetic and environmental factors play roles in its development. AD is categorized into different phenotypes and stages, although they are mostly similar in their pathophysiological aspects. Immune response alterations and structural distortions of the skin-barrier layer are evident in AD patients. Genetic makeup, lifestyle, and environment are also significantly involved in contextual factors. Genes involved in AD-susceptibility, including filaggrin and natural moisturizing, cause considerable structural modifications in the skin's lipid bilayer and cornified envelope. Additionally, the skin's decreased integrity and altered structure are accompanied by biochemical changes in the normal skin microflora's dysbiosis. The dynamic immunological responses, genetic susceptibilities, and structural modifications associated with AD's pathophysiology will be extensively discussed in this review, each according to the latest achievements and findings.
Collapse
Affiliation(s)
- Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Masoud Davoudi
- Department of Dermatology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Korani
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Muhammad K, Xavier D, Klein-Hessling S, Azeem M, Rauschenberger T, Murti K, Avots A, Goebeler M, Klein M, Bopp T, Sielaff M, Tenzer S, Möckel S, Aramburu J, López-Rodríguez C, Kerstan A, Serfling E. NFAT5 Controls the Integrity of Epidermis. Front Immunol 2021; 12:780727. [PMID: 34956208 PMCID: PMC8696207 DOI: 10.3389/fimmu.2021.780727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The skin protects the human body against dehydration and harmful challenges. Keratinocytes (KCs) are the most abundant epidermal cells, and it is anticipated that KC-mediated transport of Na+ ions creates a physiological barrier of high osmolality against the external environment. Here, we studied the role of NFAT5, a transcription factor whose activity is controlled by osmotic stress in KCs. Cultured KCs from adult mice were found to secrete more than 300 proteins, and upon NFAT5 ablation, the secretion of several matrix proteinases, including metalloproteinase-3 (Mmp3) and kallikrein-related peptidase 7 (Klk7), was markedly enhanced. An increase in Mmp3 and Klk7 RNA levels was also detected in transcriptomes of Nfat5-/- KCs, along with increases of numerous members of the 'Epidermal Differentiation Complex' (EDC), such as small proline-rich (Sprr) and S100 proteins. NFAT5 and Mmp3 as well as NFAT5 and Klk7 are co-expressed in the basal KCs of fetal and adult epidermis but not in basal KCs of newborn (NB) mice. The poor NFAT5 expression in NB KCs is correlated with a strong increase in Mmp3 and Klk7 expression in KCs of NB mice. These data suggests that, along with the fragile epidermis of adult Nfat5-/- mice, NFAT5 keeps in check the expression of matrix proteases in epidermis. The NFAT5-mediated control of matrix proteases in epidermis contributes to the manifold changes in skin development in embryos before and during birth, and to the integrity of epidermis in adults.
Collapse
Affiliation(s)
- Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Delicia Xavier
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Wuerzburg, Germany
| | - Muhammad Azeem
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Tabea Rauschenberger
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Krisna Murti
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Andris Avots
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Wuerzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany.,University Cancer Center Mainz, University Medical Center, University of Mainz, Mainz, Germany
| | - Malte Sielaff
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, University of Mainz, Mainz, Germany
| | - Sigrid Möckel
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - José Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Wuerzburg, Germany
| |
Collapse
|
16
|
Darlenski R, Kozyrskyj AL, Fluhr JW, Caraballo L. Association between barrier impairment and skin microbiota in atopic dermatitis from a global perspective: Unmet needs and open questions. J Allergy Clin Immunol 2021; 148:1387-1393. [PMID: 34688495 DOI: 10.1016/j.jaci.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
Atopic diathesis encompassing atopic dermatitis (AD), allergic rhinoconjunctivitis, food allergy, eosinophilic esophagitis, and asthma is a widely prevalent condition with a broad heterogeneity in clinical course, age of onset, and lifespan persistence. A primary event in AD is the commonly inherited epidermal barrier dysfunction. Together with the host-microbiome interactions, barrier defect and allergen exposure modulate both innate and adaptive immunity, thus triggering and maintaining the inflammatory response. Microbiome diversity, together with the host's contact with nonpathogenic microbes in childhood, is a prerequisite for functional maturation of the immune system, which is in part mediated by microbiome-induced epigenetic changes. Yet, whether microbiome alterations are the result or the reason for barrier impairment and inflammatory response of the host is unclear. Exposure to locally prevalent microbial species could contribute to further modification of the disease course. The objective of this review is to reveal the link between changes in the skin microbiota, barrier dysfunction, and inflammation in AD. Addressing unmet needs includes determining the genetic background of AD susceptibility; the epigenetic modifications induced by the microbiota and other environmental factors; the role of globally diverse provoking factors; and the implementation of personalized, phenotype-specific therapies such as a epidermal barrier restoration in infancy and microbiota modulation via systemic or topical interventions, all of which open gaps for future research.
Collapse
Affiliation(s)
- Razvigor Darlenski
- Department of Dermatovenerology, ACC Tokuda Hospital, Sofia, Bulgaria; Department of Dermatovenerology, Trakia University, Stara Zagora, Bulgaria.
| | - Anita L Kozyrskyj
- Department of Pediatrics, Faculty of Medicine and Dentistry, Edmonton Clinic Health Academy, Edmonton, Alberta, Canada
| | - Joachim W Fluhr
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
17
|
Chinnappan M, Harris-Tryon TA. Novel mechanisms of microbial crosstalk with skin innate immunity. Exp Dermatol 2021; 30:1484-1495. [PMID: 34252227 DOI: 10.1111/exd.14429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Skin is an organ with a dynamic ecosystem that harbours pathogenic and commensal microbes, which constantly communicate amongst each other and with the host immune system. Evolutionarily, skin and its microbiota have evolved to remain in homeostasis. However, frequently this homeostatic relationship is disturbed by a variety of factors such as environmental stress, diet, genetic mutations, and the microbiome itself. Commensal microbes also play a major role in the maintenance of microbial homeostasis. In addition to their ability to limit pathogens, many skin commensals such as Staphylococcus epidermidis and Cutibacterium acnes have recently been implicated in disease pathogenesis either by directly modulating the host immune components or by supporting the expansion of other pathogenic microbes. Likewise, opportunistic skin pathogens such as Staphylococcus aureus and Staphylococcus lugdunensis are able to breach the skin and cause disease. Though much has been established about the microbiota's function in skin immunity, we are in a time where newer mechanistic insights rapidly redefine our understanding of the host/microbial interface in the skin. In this review, we provide a concise summary of recent advances in our understanding of the interplay between host defense strategies and the skin microbiota.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tamia A Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Zhang Q, Jiang H, Liu M, Li X, Zhou M, Lyu Y, Huang J, Chen S, Wang L. Therapeutic effects of quinine in a mouse model of atopic dermatitis. Mol Med Rep 2021; 23:313. [PMID: 34240224 PMCID: PMC7974254 DOI: 10.3892/mmr.2021.11952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that seriously affects quality of life. Quinine is a bitter taste receptor agonist that exhibits antimalarial effects. The aim of the present study was to examine the therapeutic effects of quinine in AD‑like mice. AD was induced with 2,4‑dinitrochlorobenzene, and the mice were treated with 10 mg/kg quinine for 1, 4 and 7 days. A total of 60 BALB/c mice were divided into the following groups: Healthy, AD‑like, AD‑like + quinine and healthy + quinine, with 1, 4 and 7 days groups for each treatment. Blood was extracted from all mice and ELISA was performed to detect immunoglobulin E (IgE) levels. H&E‑stained tissue sections were prepared from skin lesions on the backs of the mice and pathological changes were observed. Cytokines were detected via ELISA, and the filaggrin (FLG) and kallikrein‑7 (KLK7) proteins were detected via western blotting and immunohistochemistry. IKKα and NF‑κB mRNA were analyzed via reverse transcription‑quantitative PCR. Quinine ameliorated skin damage in the AD‑like mice, reduced IgE expression in the blood, inhibited expression of IKKα and NF‑κB, reduced cytokine secretion, reduced KLK7 expression, reduced scratching frequency, increased FLG expression and repaired the skin barrier. These results suggested that quinine exhibited therapeutic effects in AD‑like mice.
Collapse
MESH Headings
- Animals
- Cytokines/metabolism
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Dinitrochlorobenzene/toxicity
- Disease Models, Animal
- I-kappa B Kinase/genetics
- I-kappa B Kinase/metabolism
- Immunoglobulin E/blood
- Kallikreins/genetics
- Kallikreins/metabolism
- Male
- Mice, Inbred BALB C
- NF-KappaB Inhibitor alpha/genetics
- NF-KappaB Inhibitor alpha/metabolism
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Quinine/pharmacology
- Quinine/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Signal Transduction/drug effects
- Skin/drug effects
- Skin/pathology
- Mice
Collapse
Affiliation(s)
- Qian Zhang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Hongjing Jiang
- Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
- Department of Microbiology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Miao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, P.R. China
| | - Xinchen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, P.R. China
| | - Murong Zhou
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- Guangdong and Hong Kong Joint Research Center for Optical Fiber Sensors, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yansi Lyu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Jingkai Huang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Si Chen
- Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
- Department of Immunology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Li Wang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
19
|
Towell AM, Feuillie C, Vitry P, Da Costa TM, Mathelié-Guinlet M, Kezic S, Fleury OM, McAleer MA, Dufrêne YF, Irvine AD, Geoghegan JA. Staphylococcus aureus binds to the N-terminal region of corneodesmosin to adhere to the stratum corneum in atopic dermatitis. Proc Natl Acad Sci U S A 2021; 118:e2014444118. [PMID: 33361150 PMCID: PMC7817190 DOI: 10.1073/pnas.2014444118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus colonizes the skin of the majority of patients with atopic dermatitis (AD), and its presence increases disease severity. Adhesion of S. aureus to corneocytes in the stratum corneum is a key initial event in colonization, but the bacterial and host factors contributing to this process have not been defined. Here, we show that S. aureus interacts with the host protein corneodesmosin. Corneodesmosin is aberrantly displayed on the tips of villus-like projections that occur on the surface of AD corneocytes as a result of low levels of skin humectants known as natural moisturizing factor (NMF). An S. aureus mutant deficient in fibronectin binding protein B (FnBPB) and clumping factor B (ClfB) did not bind to corneodesmosin in vitro. Using surface plasmon resonance, we found that FnBPB and ClfB proteins bound with similar affinities. The S. aureus binding site was localized to the N-terminal glycine-serine-rich region of corneodesmosin. Atomic force microscopy showed that the N-terminal region was present on corneocytes containing low levels of NMF and that blocking it with an antibody inhibited binding of individual S. aureus cells to corneocytes. Finally, we found that S. aureus mutants deficient in FnBPB or ClfB have a reduced ability to adhere to low-NMF corneocytes from patients. In summary, we show that FnBPB and ClfB interact with the accessible N-terminal region of corneodesmosin on AD corneocytes, allowing S. aureus to take advantage of the aberrant display of corneodesmosin that accompanies low NMF in AD. This interaction facilitates the characteristic strong binding of S. aureus to AD corneocytes.
Collapse
Affiliation(s)
- Aisling M Towell
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Cécile Feuillie
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Pauline Vitry
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Thaina M Da Costa
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Orla M Fleury
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Maeve A McAleer
- Clinical Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, B-1300 Wavre, Belgium
| | - Alan D Irvine
- Clinical Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland;
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| |
Collapse
|
20
|
The Whey Acidic Protein WFDC12 Is Specifically Expressed in Terminally Differentiated Keratinocytes and Regulates Epidermal Serine Protease Activity. J Invest Dermatol 2020; 141:1198-1206.e13. [PMID: 33157095 DOI: 10.1016/j.jid.2020.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
WFDC proteins such as peptidase inhibitor 3 and SLPI inhibit proteases in the epidermis and other tissues. In this study, we tested the hypothesis that further WFDC protein family members might contribute to epidermal homeostasis. We found that in addition to peptidase inhibitor 3 and SLPI, WFDC5 and WFDC12 were expressed in human epidermis. In contrast to WFDC5, the expression of WFDC12 was induced during the late differentiation of keratinocytes and was restricted to the outermost layer of live cells. Single-cell RNA sequencing demonstrated that WFDC12-positive keratinocytes were characterized by the upregulation of LCE mRNA expression and downregulated the expression of keratins and claudins. Immunogold-electron microscopy revealed the colocalization of WFDC12 with corneodesmosomes in the lower stratum corneum. WFDC12 was elevated in the affected skin of patients with psoriasis, atopic dermatitis, and Darier disease. By contrast, WFDC12 expression was strongly upregulated not only in the affected but even more so in clinically normal-appearing skin of patients with Netherton syndrome. Finally, functional analysis showed distinct inhibitory activity of WFDC12 on neutrophil elastase and epidermal kallikrein‒related peptidase. Altogether, our study identified WFDC12 as a marker of the last stage of epidermal keratinocyte differentiation and suggests that WFDC12 contributes to the control of protease activity in the stratum corneum.
Collapse
|
21
|
Emmert H, Baurecht H, Thielking F, Stölzl D, Rodriguez E, Harder I, Proksch E, Weidinger S. Stratum corneum lipidomics analysis reveals altered ceramide profile in atopic dermatitis patients across body sites with correlated changes in skin microbiome. Exp Dermatol 2020; 30:1398-1408. [PMID: 32885529 DOI: 10.1111/exd.14185] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/24/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is driven by the interplay between a dysfunctional epidermal barrier and a skewed cutaneous immune dysregulation. As part of the complex skin barrier dysfunction, abnormalities in lipid organization and microbiome composition have been described. We set out to systematically investigate the composition of the stratum corneum lipidome, skin microbiome and skin physiology parameters at three different body sites in patients with AD and healthy volunteers. METHODS We analysed tape strips from different body areas obtained from 10 adults with AD and 10 healthy volunteers matched for FLG mutation status for 361 skin lipid species using the Metabolon mass spectrometry platform. 16S rRNA data were available from all probands. RESULTS Our study showed that the lipid composition differs significantly between body sites and between AD patients and healthy individuals. Ceramide species NS was significantly higher in AD patients compared to healthy volunteers and was also higher in AD patients with a FLG mutation compared to AD patients without a FLG mutation. The correlation analysis of skin lipid alterations with the microbiome showed that Staphylococcus colonization in AD is positively correlated with ceramide subspecies AS, ADS, NS and NDS. CONCLUSION This is the first study to reveal site-specific lipid alterations and correlations with the skin microbiome in AD.
Collapse
Affiliation(s)
- Hila Emmert
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hansjörg Baurecht
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Frederieke Thielking
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dora Stölzl
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Elke Rodriguez
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Inken Harder
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ehrhardt Proksch
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
22
|
Laneri S, Dini I, Tito A, Di Lorenzo R, Bimonte M, Tortora A, Zappelli C, Angelillo M, Bernardi A, Sacchi A, Colucci MG, Apone F. Plant cell culture extract of Cirsium eriophorum with skin pore refiner activity by modulating sebum production and inflammatory response. Phytother Res 2020; 35:530-540. [PMID: 32816329 DOI: 10.1002/ptr.6832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/02/2023]
Abstract
Facial pore enlargement is considered a significant esthetic and health concern in skincare cosmetics. The pores fulfill the critical function of keeping the skin surface hydrated and protected against microbial infections. The hyperseborrhea, the stress factors, and the hormonal triggers can cause pore size enlargement, causing higher susceptibility of the skin to microbe aggressions and inflammatory reactions. Thus, reducing excessive sebum production and keeping functional pores are two of the most requested activities in skincare cosmetics. A Cirsium eriophorum cell culture extract was investigated for its role in sebum regulation, stratum corneum desquamation, and anti-inflammation. The extract was able to regulate essential markers associated with sebum secretion and pore enlargements, such as the enzyme 5α-reductase, which plays a central role in sebum production, and the trypsin-like serine protease Kallikrein 5, which promotes skin exfoliation and antimicrobial response. Moreover, the extract showed a sebum-normalizing and pore refining activity in individuals having seborrheic or acne-prone skins, suggesting a role of the C. eriophorum extract in rebalancing altered skin conditions responsible for pore enlargement.
Collapse
Affiliation(s)
- Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Irene Dini
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | - Antonia Sacchi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Fabio Apone
- Arterra Bioscience SpA, Naples, Italy.,Vitalab srl, Naples, Italy
| |
Collapse
|
23
|
Yoon JS, Shim J, Lim JM, Park SG. Biophysical characteristics of dandruff-affected scalp categorized on the basis of sebum levels. J Cosmet Dermatol 2020; 20:1002-1008. [PMID: 32757243 DOI: 10.1111/jocd.13626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Various sebum levels can be detected in dandruff-affected scalps. However, few studies have compared the biophysical characteristics of dandruff scalps categorized based on sebum levels. AIMS To investigate and compare the biophysical characteristics of dandruff-affected scalps categorized based on sebum levels. METHODS Fifty-four Korean women with dandruff and 30 healthy Korean women underwent physiological measurements, including evaluation of sebum and hydration levels, pH, and transepidermal water loss (TEWL) in the scalp. The levels of the biomarkers of interleukin-8 (IL-8) and kallikrein 5 (KLK5) and corneodesmosomes were investigated in the stratum corneum (SC) of the scalp. RESULTS Dandruff was categorized as dry (low-sebum, n = 25) or oily (high-sebum, n = 29) based on a sebum cutoff level of 97.82 μg/cm2 . Both dry and oily dandruff-affected scalps showed significantly decreased hydration levels and increased pH and TEWL compared with healthy subjects, with hydration levels being lower in dry dandruff-affected scalps. IL-8 expression was significantly increased in the oily dandruff-affected scalp. In addition, both dry and oily dandruff-affected scalps showed significantly increased KLK5 levels in the SC, with the levels being higher in oily dandruff-affected scalps. Altered distribution of corneodesmosomes, present on the entire surface area of the corneocytes, was notable in oily dandruff-affected scalps. CONCLUSION The biophysical characteristics of the two types of dandruff represent the influence of different characteristics, including hydration levels, expression of IL-8 and KLK5, and corneodesmosome distribution. Thus, strategies to reduce dandruff levels should differ according to sebum levels.
Collapse
|
24
|
Mohamad J, Sarig O, Malki L, Rabinowitz T, Assaf S, Malovitski K, Shkury E, Mayer T, Vodo D, Peled A, Daniely D, Pavlovsky M, Shomron N, Samuelov L, Sprecher E. Loss-of-Function Variants in SERPINA12 Underlie Autosomal Recessive Palmoplantar Keratoderma. J Invest Dermatol 2020; 140:2178-2187. [PMID: 32247861 DOI: 10.1016/j.jid.2020.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/09/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Abstract
Inherited palmoplantar keratodermas refer to a large and heterogeneous group of conditions resulting from abnormal epidermal differentiation and featuring thickening of the skin of the palms and soles. Here, we aimed at delineating the genetic basis of an autosomal recessive form of palmoplantar keratodermas manifesting with erythematous hyperkeratotic plaques over the palms and soles, extending to non-palmoplantar areas. Whole-exome sequencing in affected individuals revealed homozygous nonsense variants in the SERPINA12 gene. SERPINA12 encodes the visceral adipose tissue-derived serpin A12, a serine protease inhibitor. The pathogenic variants were found to result in reduced visceral adipose tissue-derived serpin A12 expression in patients' skin biopsies in comparison to healthy controls. In addition, SERPINA12 downregulation in three-dimensional skin equivalents was associated with marked epidermal acanthosis and hyperkeratosis, replicating the human phenotype. Moreover, decreased SERPINA12 expression resulted in reduced visceral adipose tissue-derived serpin A12-mediated inhibition of kallikrein 7 activity as well as decreased levels of desmoglein-1 and corneodesmosin, two known kallikrein 7 substrates, which are required for normal epidermal differentiation. The present data, taken collectively, demarcate a unique type of autosomal recessive palmoplantar keratodermas, attribute to visceral adipose tissue-derived serpin A12 a role in skin biology, and emphasize the importance of mechanisms regulating proteolytic activity for normal epidermal differentiation.
Collapse
Affiliation(s)
- Janan Mohamad
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Liron Malki
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tom Rabinowitz
- Department of Cell and Developmental Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Sari Assaf
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kiril Malovitski
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eden Shkury
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talia Mayer
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dan Vodo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alon Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Daniely
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mor Pavlovsky
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Liat Samuelov
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Medgyesi B, Dajnoki Z, Béke G, Gáspár K, Szabó IL, Janka EA, Póliska S, Hendrik Z, Méhes G, Törőcsik D, Bíró T, Kapitány A, Szegedi A. Rosacea Is Characterized by a Profoundly Diminished Skin Barrier. J Invest Dermatol 2020; 140:1938-1950.e5. [PMID: 32199994 DOI: 10.1016/j.jid.2020.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Rosacea is a common chronic inflammation of sebaceous gland-rich facial skin characterized by severe skin dryness, elevated pH, transepidermal water loss, and decreased hydration levels. Until now, there has been no thorough molecular analysis of permeability barrier alterations in the skin of patients with rosacea. Thus, we aimed to investigate the barrier alterations in papulopustular rosacea samples compared with healthy sebaceous gland-rich skin, using RNA sequencing analysis (n = 8). Pathway analyses by Cytoscape ClueGO revealed 15 significantly enriched pathways related to skin barrier formation. RT-PCR and immunohistochemistry were used to validate the pathway analyses. The results showed significant alterations in barrier components in papulopustular rosacea samples compared with sebaceous gland-rich skin, including the cornified envelope and intercellular lipid lamellae formation, desmosome and tight junction organizations, barrier alarmins, and antimicrobial peptides. Moreover, the barrier damage in papulopustular rosacea was unexpectedly similar to atopic dermatitis; this similarity was confirmed by immunofluorescent staining. In summary, besides the well-known dysregulation of immunological, vascular, and neurological functions, we demonstrated prominent permeability barrier alterations in papulopustular rosacea at the molecular level, which highlight the importance of barrier repair therapies for rosacea.
Collapse
Affiliation(s)
- Barbara Medgyesi
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Clinical Immunology and Allergology, University of Debrecen, Debrecen, Hungary
| | - Zsolt Dajnoki
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Béke
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztián Gáspár
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Imre Lőrinc Szabó
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Anna Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anikó Kapitány
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
26
|
Molecular Mechanism of Epidermal Barrier Dysfunction as Primary Abnormalities. Int J Mol Sci 2020; 21:ijms21041194. [PMID: 32054030 PMCID: PMC7072774 DOI: 10.3390/ijms21041194] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
Epidermal barrier integrity could be influenced by various factors involved in epidermal cell differentiation and proliferation, cell–cell adhesion, and skin lipids. Dysfunction of this barrier can cause skin disorders, including eczema. Inversely, eczema can also damage the epidermal barrier. These interactions through vicious cycles make the mechanism complicated in connection with other mechanisms, particularly immunologic responses. In this article, the molecular mechanisms concerning epidermal barrier abnormalities are reviewed in terms of the following categories: epidermal calcium gradients, filaggrin, cornified envelopes, desquamation, and skin lipids. Mechanisms linked to ichthyoses, atopic dermatitis without exacerbation or lesion, and early time of experimental irritation were included. On the other hand, the mechanism associated with epidermal barrier abnormalities resulting from preceding skin disorders was excluded. The molecular mechanism involved in epidermal barrier dysfunction has been mostly episodic. Some mechanisms have been identified in cultured cells or animal models. Nonetheless, research into the relationship between the causative molecules has been gradually increasing. Further evidence-based systematic data of target molecules and their interactions would probably be helpful for a better understanding of the molecular mechanism underlying the dysfunction of the epidermal barrier.
Collapse
|
27
|
Nauroy P, Nyström A. Kallikreins: Essential epidermal messengers for regulation of the skin microenvironment during homeostasis, repair and disease. Matrix Biol Plus 2019; 6-7:100019. [PMID: 33543017 PMCID: PMC7852331 DOI: 10.1016/j.mbplus.2019.100019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
As the outermost layer of the skin, the epidermis is playing a major role in organism homeostasis providing the first barrier against external aggressions. Although considered as an extracellular matrix (ECM)-poor subtissue, the epidermal microenvironment is a key regulator of skin homeostasis and functionality. Among the proteins essential for upholding the epidermal microenvironment are the members of the kallikrein (KLK) family composed of 15 secreted serine proteases. Most of the members of these epithelial-specific proteins are present in skin and regulate skin desquamation and inflammation. However, although epidermal products, the consequences of KLK activities are not confined to the epidermis but widespread in the skin. In this review starting with the location and proteolytic activation cascade of KLKs, we present KLKs involvement in skin homeostasis, regeneration and pathology. KLKs have a large variety of substrates including ECM proteins, and evidence suggests that they are involved in the different steps of skin wound healing as discussed here. KLKs are also used as prognosis/diagnosis markers for many cancer types and we are focusing later on KLKs in cutaneous cancers, although their pathogenicity remains to be fully elucidated. Dysregulation of the KLK cascade is directly responsible for skin diseases with heavy inflammatory aspects, highlighting their involvement in skin immune homeostasis. Future studies will be needed to support the therapeutic potential of adjusting KLK activities for treatment of inflammatory skin diseases and wound healing pathologies. Regulation of the microenvironment even in an extracellular matrix-poor tissue can heavily impact organ function. Extracellular activities of kallikreins maintain skin homeostasis by regulating desquamation and inflammation. The activation of skin epidermal-specific kallikrein family of proteases is regulated by an intricate proteolytic cascade. Kallikreins are emerging as players during skin wound healing. Dysregulated kallikrein expression and activity occur in cancers and inflammatory skin diseases.
Collapse
Key Words
- AD, atopic dermatitis
- CDSN, corneodesmosin
- DSC1, desmocollin 1
- DSG1, desmoglein 1
- Diseases
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- Epidermal microenvironment
- Epidermis
- Inflammation
- KLKs, kallikreins
- Kallikrein
- LEKTI, lympho-epithelial Kazal-type inhibitor
- NS, Netherton syndrome
- PAR1/2, protease activated-receptor 1/2
- SCC, squamous cell carcinoma
- Wound healing
- tPA, tissue plasminogen activator
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Pauline Nauroy
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| |
Collapse
|
28
|
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie 2019; 166:52-76. [PMID: 31505212 PMCID: PMC7615277 DOI: 10.1016/j.biochi.2019.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem β-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| | - Hans Brandstetter
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| |
Collapse
|
29
|
Sugihara S, Sugimoto S, Tachibana K, Kobashi M, Nomura H, Miyake T, Hirai Y, Yamasaki O, Morizane S. TNF-α and IL-17A induce the expression of lympho-epithelial Kazal-type inhibitor in epidermal keratinocytes. J Dermatol Sci 2019; 96:26-32. [DOI: 10.1016/j.jdermsci.2019.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 01/01/2023]
|
30
|
Progress in Understanding Atopic Dermatitis. J Invest Dermatol 2018; 138:e93-e95. [PMID: 30466540 DOI: 10.1016/j.jid.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/02/2018] [Indexed: 01/20/2023]
|
31
|
Yamanishi H, Soma T, Kishimoto J, Hibino T, Ishida-Yamamoto A. Marked Changes in Lamellar Granule and Trans-Golgi Network Structure Occur during Epidermal Keratinocyte Differentiation. J Invest Dermatol 2018; 139:352-359. [PMID: 30240698 DOI: 10.1016/j.jid.2018.07.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022]
Abstract
Epidermal lamellar granules transport various lipids, proteins, and protein inhibitors from the trans-Golgi network to the extracellular space, and play an important role in skin barrier formation. We elucidated the 3-dimensional structure of lamellar granules and the trans-Golgi network in normal human skin by focused ion beam scanning electron microscopy. Reconstructed focused ion beam scanning electron microscopy 3-dimensional images revealed that the overall lamellar granule structure changed from vesicular to reticular within the second layer of the stratum granulosum. Furthermore, the trans-Golgi network was well developed within this layer and spread through the cytoplasm with branched, tubular structures that connected to lamellar granules. Our study reveals the unique overall 3-dimensional structure of lamellar granules and the trans-Golgi network within the cells of the epidermis, and provides the basis for an understanding of the skin barrier formation.
Collapse
Affiliation(s)
| | - Tsutomu Soma
- Shiseido Global Innovation Center, Tsuzuki-ku, Yokohama, Japan
| | - Jiro Kishimoto
- Shiseido Global Innovation Center, Tsuzuki-ku, Yokohama, Japan
| | | | | |
Collapse
|
32
|
Ishida-Yamamoto A, Igawa S, Kishibe M. Molecular basis of the skin barrier structures revealed by electron microscopy. Exp Dermatol 2018; 27:841-846. [PMID: 29704884 DOI: 10.1111/exd.13674] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
The barrier function of skin is indispensable for terrestrial animals. This function is mainly carried out by the epidermis, more specifically by its granular and cornified layers. The major structural components associated with this function are the intercellular lipid layer, desmosomes, corneodesmosomes, tight junctions, cornified cell envelope and keratin filaments. In this review, we discuss the current knowledge of their ultrastructure, their molecular basis and their relevance to skin disease.
Collapse
Affiliation(s)
| | - Satomi Igawa
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Mari Kishibe
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
33
|
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease, with a lifetime prevalence of up to 20% and substantial effects on quality of life. AD is characterized by intense itch, recurrent eczematous lesions and a fluctuating course. AD has a strong heritability component and is closely related to and commonly co-occurs with other atopic diseases (such as asthma and allergic rhinitis). Several pathophysiological mechanisms contribute to AD aetiology and clinical manifestations. Impairment of epidermal barrier function, for example, owing to deficiency in the structural protein filaggrin, can promote inflammation and T cell infiltration. The immune response in AD is skewed towards T helper 2 cell-mediated pathways and can in turn favour epidermal barrier disruption. Other contributing factors to AD onset include dysbiosis of the skin microbiota (in particular overgrowth of Staphylococcus aureus), systemic immune responses (including immunoglobulin E (IgE)-mediated sensitization) and neuroinflammation, which is involved in itch. Current treatments for AD include topical moisturizers and anti-inflammatory agents (such as corticosteroids, calcineurin inhibitors and cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4) inhibitors), phototherapy and systemic immunosuppressants. Translational research has fostered the development of targeted small molecules and biologic therapies, especially for moderate-to-severe disease.
Collapse
|