1
|
Jin SP, Oh JH, Kim NK, Chung JH. H Antigen expression modulates epidermal Keratinocyte Integrity and differentiation. Biol Res 2024; 57:72. [PMID: 39420441 PMCID: PMC11487879 DOI: 10.1186/s40659-024-00541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND ABO blood group antigens (ABH antigens) are carbohydrate chains glycosylated on epithelial and red blood cells. Recent findings suggest reduced ABH expression in psoriasis and atopic dermatitis, a chronic inflammatory skin disease with retained scale. H antigen, a precursor for A and B antigens, is synthesized by fucosyltransferase 1 (FUT1). Desmosomes, critical for skin integrity, are known to require N-glycosylation for stability. We investigate the impact of H antigens, a specific type of glycosylation, on desmosomes in keratinocytes. METHOD Primary human keratinocytes were transfected with FUT1 siRNA or recombinant adenovirus for FUT1 overexpression. Cell adhesion and desmosome characteristics and their underlying mechanisms were analyzed. RESULT The knockdown of FUT1, responsible for H2 antigen expression in the skin, increased cell-cell adhesive strength and desmosome size in primary cultured keratinocytes without altering the overall desmosome structure. Desmosomal proteins, including desmogleins or plakophilin, were upregulated, suggesting enhanced desmosome assembly. Reduced H2 antigen expression via FUT1 knockdown led to increased keratinocyte differentiation, evidenced by elevated expression of differentiation markers. Epidermal growth factor receptor (EGFR) has been described to be associated with FUT1 and promotes cell migration and differentiation. The effects of FUT1 knockdown were recapitulated by an EGFR inhibitor concerning desmosomal proteins and cellular differentiation. Further investigation demonstrated that the FUT1 knockdown reduced EGFR signaling by lowering the levels of EGF ligands rather than directly regulating EGFR activity. Moreover, FUT1 overexpression reversed the effects observed in FUT1 knockdown, resulting in the downregulation of desmosomal proteins and differentiation markers while increasing both mRNA and protein levels of EGFR ligands. CONCLUSION The expression level of FUT1 in the epidermis appears to influence cell-cell adhesion and keratinocyte differentiation status, at least partly through regulation of H2 antigen and EGFR ligand expression. These observations imply that the fucosylation of the H2 antigen by FUT1 could play a significant role in maintaining the molecular composition and regulation of desmosomes and suggest a possible involvement of the altered H2 antigen expression in skin diseases, such as psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Namjoo Kaylee Kim
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Wang H, Wu Y, Bassetti JA, Wang Z, Oza VS, Rangu SA, McGivern B, Peng S, Liang L, Huang S, Gong Z, Xu Z, Lin Z. A gain-of-function variant in SREBF1 causes generalized skin hyperpigmentation with congenital cataracts. Br J Dermatol 2024; 191:805-815. [PMID: 39005171 DOI: 10.1093/bjd/ljae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Lipid metabolism has essential roles in skin barrier formation and the regulation of skin inflammation. Lipid homeostasis regulates skin melanogenesis, although the underlying mechanism remains largely unknown. Sterol regulatory element binding protein 1 (SREBP-1) is a key transcription factor essential for cellular lipid metabolism. Loss-of-function variants in SREBF1 are responsible for autosomal-dominant ichthyosis follicularis, alopecia and photophobia syndrome, emphasizing the significance of lipid homeostasis in skin keratinization. OBJECTIVES To identify the genetic basis of a new entity featuring diffuse skin hyperpigmentation with congenital cataracts, and to unravel the underlying mechanism for the pathogenesis of the SREBF1 variant. METHODS Whole-exome sequencing was performed to identify underlying genetic variants. Quantitative polymerase chain reaction, Western blot and immunofluorescence staining were used to assess the expression and the subcellular localization of the SREBF1 variant. The transcriptional activity of mutant SREBP-1 was determined by a luciferase reporter assay. A transgenic zebrafish model was constructed. RESULTS Two unrelated patients presented with generalized skin hyperpigmentation with skin xerosis, congenital cataracts and extracutaneous symptoms. We identified a de novo nonsense variant c.1289C>A (p.Ser430*) in SREBF1 in both patients. The variant encoded a truncated protein that showed preferential nucleus localization, in contrast to wild-type SREBP-1 which - in sterol-sufficient conditions - is mainly localized in the cytoplasm. The luciferase reporter assay revealed that the p.Ser430* mutant exhibited enhanced transcriptional activity. Cultured patient primary melanocytes showed increased melanin synthesis vs. those from healthy controls. At 35 days postfertilization, the p.Ser430* transgenic zebrafish model exhibited more black spots, along with upregulated expression of melanogenic genes. CONCLUSIONS We demonstrated that a gain-of-function variant of SREBF1 causes a previously undescribed disorder characterized by generalized skin hyperpigmentation and congenital cataracts. Our study reveals the involvement of SREBP-1 in melanogenesis and lens development, and paves the way for the development of novel therapeutic targets for skin dyspigmentation or cataracts.
Collapse
Affiliation(s)
- Huijun Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Wu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | | | - Zhaoyang Wang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Vikash S Oza
- Department of Dermatology and Pediatrics, The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sneha A Rangu
- Albert Einstein College of Medicine, New York, NY, USA
| | | | - Sha Peng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lina Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Shimiao Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhuoqing Gong
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zigang Xu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhimiao Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Jiang X, Yang C, Wang Z, Liang L, Gong Z, Huang S, Xu Z, Zhang B, Pei X, Cai L, Wang H, Lin Z. Loss-of-function variants in GLMN are associated with generalized skin hyperpigmentation with or without glomuvenous malformation. Br J Dermatol 2024; 191:107-116. [PMID: 38489583 DOI: 10.1093/bjd/ljae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Inherited hyperpigmented skin disorders comprise a group of entities with considerable clinical and genetic heterogenicity. The genetic basis of a majority of these disorders remains to be elucidated. OBJECTIVES This study aimed to identify the underlying gene for an unclarified disorder of autosomal-dominant generalized skin hyperpigmentation with or without glomuvenous malformation. METHODS Whole-exome sequencing was performed in five unrelated families with autosomal-dominant generalized skin hyperpigmentation. Variants were confirmed using Sanger sequencing and a minigene assay was employed to evaluate the splicing alteration. Immunofluorescence and transmission electron microscopy (TEM) were used to determine the quantity of melanocytes and melanosomes in hyperpigmented skin lesions. GLMN knockdown by small interfering RNA assays was performed in human MNT-1 cells to examine melanin concentration and the underlying molecular mechanism. RESULTS We identified five variants in GLMN in five unrelated families, including c.995_996insAACA(p.Ser333Thrfs*11), c.632 + 4delA, c.1470_1473dup(p.Thr492fs*12), c.1319G > A(p.Trp440*) and c.1613_1614insTA(Thr540*). The minigene assay confirmed that the c.632 + 4delA mutant resulted in abolishment of the canonical donor splice site. Although the number of melanocytes remained unchanged in skin lesions, as demonstrated by immunofluorescent staining of tyrosinase and premelanosome protein, TEM revealed an increased number of melanosomes in the skin lesion of a patient. The GLMN knockdown MNT-1 cells demonstrated a higher melanin concentration, a higher proportion of stage III and IV melanosomes, upregulation of microphthalmia-associated transcription factor and tyrosinase, and downregulation of phosphorylated p70S6 K vs. mock-transfected cells. CONCLUSIONS We found that loss-of-function variants in GLMN are associated with generalized skin hyperpigmentation with or without glomuvenous malformation. Our study implicates a potential role of glomulin in human skin melanogenesis, in addition to vascular morphogenesis.
Collapse
Affiliation(s)
- Xingyuan Jiang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Chao Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhaoyang Wang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lina Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhuoqing Gong
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Shimiao Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zigang Xu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Bin Zhang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoping Pei
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Liangqi Cai
- Department of Dermatology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Huijun Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhimiao Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Liu S, Chai T, Garcia-Marques F, Yin Q, Hsu EC, Shen M, Shaw Toland AM, Bermudez A, Hartono AB, Massey CF, Lee CS, Zheng L, Baron M, Denning CJ, Aslan M, Nguyen HM, Nolley R, Zoubeidi A, Das M, Kunder CA, Howitt BE, Soh HT, Weissman IL, Liss MA, Chin AI, Brooks JD, Corey E, Pitteri SJ, Huang J, Stoyanova T. UCHL1 is a potential molecular indicator and therapeutic target for neuroendocrine carcinomas. Cell Rep Med 2024; 5:101381. [PMID: 38244540 PMCID: PMC10897521 DOI: 10.1016/j.xcrm.2023.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Timothy Chai
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | | | - Qingqing Yin
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - En-Chi Hsu
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Abel Bermudez
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Alifiani B Hartono
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher F Massey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chung S Lee
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liwei Zheng
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Maya Baron
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Caden J Denning
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Merve Aslan
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Millie Das
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, USA; Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA
| | | | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, USA
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, TX, USA
| | - Arnold I Chin
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - James D Brooks
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Sharon J Pitteri
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
6
|
Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 2023; 25:123. [PMID: 36844618 PMCID: PMC9950345 DOI: 10.3892/ol.2023.13709] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a member of the lesser-known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH-L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH-L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH-L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH-L1 in different types of cancer is key for the future treatment of UCH-L1-associated cancer. The present review details the molecular structure and function of UCH-L1. The role of UCH-L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Department of The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
7
|
Shi J, Guo Y, Wang H, Xiao Y, Liu W, Lyu L. The ubiquitin-proteasome system in melanin metabolism. J Cosmet Dermatol 2022; 21:6661-6668. [PMID: 36207998 DOI: 10.1111/jocd.15433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/06/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The ubiquitin-proteasome system (UPS) is a highly conserved way of regulating intracellular protein balance. UPS mediates proteolysis and disruption of variation or misfolding, while finely regulating proteins involved in differentiation and other biological processes. AIMS The aim of this review is to systematically introduce UPS as a key regulator of melanin metabolism. METHODS Systematic search and retrospective review were performed on the published data. RESULTS Melanocyte-inducing transcription factor (MITF) is a substrate of the ubiquitin ligase VCHL1 and acts as a transcription factor to regulate the expression of key enzymes in melanin synthesis such as tyrosinase (TYR). The rate-limiting enzyme TYR is modified by the ubiquitin ligase Hrd1 during melanosynthesis. Melanin itself is also regulated by multiple ubiquitin ligases including Fbp1 and Vhl. By regulating the ubiquitination modification to target each link of melanin synthesis, it plays an important role in correcting the disorder of melanin metabolism. A number of chemical agents have been proven to inhibit the activity of ubiquitin ligase. CONCLUSIONS Drugs targeting E3 ligase and deubiquitinating enzymes have great potential in the treatment of melanin metabolism disorders.
Collapse
Affiliation(s)
- Jingpei Shi
- Yunnan Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Yanfang Guo
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hanying Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Yun Xiao
- Department of Dermatology, The Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Weimin Liu
- Department of Dermatology, the Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Jahanimoghadam A, Abdolahzadeh H, Rad NK, Zahiri J. Discovering Common Pathogenic Mechanisms of COVID-19 and Parkinson Disease: An Integrated Bioinformatics Analysis. J Mol Neurosci 2022; 72:2326-2337. [PMID: 36301487 PMCID: PMC9607846 DOI: 10.1007/s12031-022-02068-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged since December 2019 and was later characterized as a pandemic by WHO, imposing a major public health threat globally. Our study aimed to identify common signatures from different biological levels to enlighten the current unclear association between COVID-19 and Parkinson's disease (PD) as a number of possible links, and hypotheses were reported in the literature. We have analyzed transcriptome data from peripheral blood mononuclear cells (PBMCs) of both COVID-19 and PD patients, resulting in a total of 81 common differentially expressed genes (DEGs). The functional enrichment analysis of common DEGs are mostly involved in the complement system, type II interferon gamma (IFNG) signaling pathway, oxidative damage, microglia pathogen phagocytosis pathway, and GABAergic synapse. The protein-protein interaction network (PPIN) construction was carried out followed by hub detection, revealing 10 hub genes (MX1, IFI27, C1QC, C1QA, IFI6, NFIX, C1S, XAF1, IFI35, and ELANE). Some of the hub genes were associated with molecular mechanisms such as Lewy bodies-induced inflammation, microglia activation, and cytokine storm. We investigated regulatory elements of hub genes at transcription factor and miRNA levels. The major transcription factors regulating hub genes are SOX2, XAF1, RUNX1, MITF, and SPI1. We propose that these events may have important roles in the onset or progression of PD. To sum up, our analysis describes possible mechanisms linking COVID-19 and PD, elucidating some unknown clues in between.
Collapse
Affiliation(s)
- Aria Jahanimoghadam
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Hadis Abdolahzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Zahiri
- Department of Neuroscience, University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
9
|
Tu J, Wang J, Tang B, Zhang Z, Han M, Li M, Yu J, Shen L, Zhang M, Ye J. Expression and clinical significance of TYRP1, ABCB5, and MMP17 in sinonasal mucosal melanoma. Cancer Biomark 2022; 35:331-342. [DOI: 10.3233/cbm-220093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND: Sinonasal mucosal melanoma (SNMM) is a lethal malignancy with poor prognosis. Treatment outcomes of SNMM are poor. Novel prognostic or progression markers are needed to help adjust therapy. METHODS: RNA-seq was used to analyze the mRNA expression of tumor tissues and normal nasal mucosa from primary SNMM patients (n= 3). Real-time fluorescent quantitative PCR (qRT-PCR) was used to validate the results of RNA-seq (n= 3), while protein expression was analyzed by immunohistochemistry (IHC, n= 31) and western blot (n= 3). Retrospective studies were designed to determine the clinical parameters and the total survival rate, and correlation between the protein expression levels of the most significant key genes and prognosis was analyzed. RESULTS: In total, 668 genes were upregulated and 869 genes were downregulated in SNMM (fold change ⩾ 2, adjusted p value < 0.01). Both mRNA and protein expression levels of the key genes in SNMM tumor tissues were higher than those in the normal control nasal mucosal tissues. The expression rates of TYRP1, ABCB5, and MMP17 in 31 primary SNMM cases were 90.32%, 80.65%, and 64.52%, respectively. In addition, age, typical symptoms, and AJCC stage were related to overall survival rate of patients with SNMM (p< 0.05). Furthermore, the expression of ABCB5 was age-related (p= 0.002). Compared with individuals with negative ABCB5 expression, those with positive expression exhibited significantly poor overall survival (p= 0.02). CONCLUSION: The expression levels of TYRP1, ABCB5, and MMP17 were significantly upregulated in SNMM tissues, and the expression of ABCB5 was related to poor prognosis in SNMM. Thus, ABCB5 may serve as a progression marker and can predict unfavorable prognosis in patients with SNMM.
Collapse
Affiliation(s)
- Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Binxiang Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiqiang Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mei Han
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mengyue Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jieqing Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Otorhinolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Meiping Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Otorhinolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
A systematic exploration reveals the potential of spermidine for hypopigmentation treatment through the stabilization of melanogenesis-associated proteins. Sci Rep 2022; 12:14478. [PMID: 36008447 PMCID: PMC9411574 DOI: 10.1038/s41598-022-18629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Spermidine (SPD), a polyamine naturally present in living organisms, is known to prolong the lifespan of animals. In this study, the role of SPD in melanogenesis was investigated, showing potential as a pigmenting agent. SPD treatment increased melanin production in melanocytes in a dose dependent manner. Computational analysis with RNA-sequencing data revealed the alteration of protein degradation by SPD treatment without changes in the expressions of melanogenesis-related genes. Indeed, SPD treatment significantly increased the stabilities of tyrosinase-related protein (TRP)-1 and -2 while inhibiting ubiquitination, which was confirmed by treatment of proteasome inhibitor MG132. Inhibition of protein synthesis by cycloheximide (CHX) showed that SPD treatment increased the resistance of TRP-1 and TRP-2 to protein degradation. To identify the proteins involved in SPD transportation in melanocytes, the expression of several solute carrier (SLC) membrane transporters was assessed and, among 27 transporter genes, SLC3A2, SLC7A1, SLC18B1, and SLC22A18 were highly expressed, implying they are putative SPD transporters in melanocytes. Furthermore, SLC7A1 and SLC22A18 were downregulated by SPD treatment, indicating their active involvement in polyamine homeostasis. Finally, we applied SPD to a human skin equivalent and observed elevated melanin production. Our results identify SPD as a potential natural product to alleviate hypopigmentation.
Collapse
|
11
|
Yao J, Reyimu A, Sun A, Duoji Z, Zhou W, Liang S, Hu S, Wang X, Dai J, Xu X. UCHL1 acts as a potential oncogene and affects sensitivity of common anti-tumor drugs in lung adenocarcinoma. World J Surg Oncol 2022; 20:153. [PMID: 35546675 PMCID: PMC9092673 DOI: 10.1186/s12957-022-02620-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/29/2022] [Indexed: 01/02/2023] Open
Abstract
Background Lung adenocarcinoma is the leading cause of cancer death worldwide. Recently, ubiquitin C-terminal hydrolase L1 (UCHL1) has been demonstrated to be highly expressed in many tumors and plays the role of an oncogene. However, the functional mechanism of UCHL1 is unclear in lung adenocarcinoma progression. Methods We analyzed the differential expression of the UCHL1 gene in lung adenocarcinoma and normal lung tissues, and the correlation between the UCHL1 gene and prognosis was also analyzed by the bioinformatics database TCGA. Meanwhile, we detected and analyzed the expression of UCHL1 and Ki-67 protein in a tissue microarray (TMA) containing 150 patients with lung adenocarcinoma by immunohistochemistry (IHC) and clinicopathological characteristics by TCGA database. In vitro experiments, we knocked down the UCHL1 gene of A549 cells and detected the changes in cell migration, invasion, and apoptosis. At the same time, we analyzed the effect of UCHL1 on anti-tumor drug sensitivity of lung adenocarcinoma by a bioinformatics database. In terms of the detection rate of lung adenocarcinoma indicators, we analyzed the impact of UCHL1 combined with common clinical indicators on the detection rate of lung adenocarcinoma through a bioinformatics database. Results In this study, the analysis of UCHL1 protein expression in lung adenocarcinoma proved that obviously higher UCHL1 protein level was discovered in lung adenocarcinoma tissues. The expression of UCHL1 was closely related to poor clinical outcomes. Interestingly, a significantly positive correlation between the expression of UCHL1 and Ki-67-indicated UCHL1 was associated with tumor migration and invasion. Through executing loss of function tests, we affirmed that silencing of UCHL1 expression significantly inhibited migration and invasion of lung adenocarcinoma cells in vitro. Furthermore, lung adenocarcinoma cells with silenced UCHL1 showed a higher probability of apoptosis. In terms of the detection rate of lung adenocarcinoma indicators, we discovered UCHL1 could improve the detection rate of clinical lung adenocarcinoma and affect drug sensitivity. Conclusion In lung adenocarcinoma, UCHL1 promotes tumor migration, invasion, and metastasis by inhibiting apoptosis and has an important impact on the clinical drug treatment of lung adenocarcinoma. In addition, UCHL1 can improve the detection rate of clinical lung adenocarcinoma. Above all, UCHL1 may be a new marker for the diagnosis of lung adenocarcinoma and provide a new target for the treatment of clinical diseases.
Collapse
Affiliation(s)
- Jianbo Yao
- College of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Abdusemer Reyimu
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China
| | - Ao Sun
- Class 11, Grade 2018, Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, 223300, People's Republic of China
| | - Zaxi Duoji
- Research Center of High Altitude Medicine, Naqu, Tibet, China, People's Hospital of Naqu Affiliated to Dalian Medical University, Dalian, Tibet, 852000, People's Republic of China
| | - Wubi Zhou
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Song Liang
- Department of Medical Laboratory, Second branch, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China
| | - Suxia Hu
- Department of Medical Laboratory, Huainan First People's Hospital, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, 232007, People's Republic of China
| | - Xiang Wang
- Department of Pediatrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China.
| | - Jingjing Dai
- Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, People's Republic of China.
| | - Xiaoguang Xu
- Research Center of High Altitude Medicine, Naqu, Tibet, China, People's Hospital of Naqu Affiliated to Dalian Medical University, Dalian, Tibet, 852000, People's Republic of China.
| |
Collapse
|
12
|
Liu N, Chen Y, Yang L, Shi Q, Lu Y, Ma W, Han X, Guo H, Li D, Gan W. Both SUMOylation and ubiquitination of TFE3 fusion protein regulated by androgen receptor are the potential target in the therapy of Xp11.2 translocation renal cell carcinoma. Clin Transl Med 2022; 12:e797. [PMID: 35452181 PMCID: PMC9029019 DOI: 10.1002/ctm2.797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023] Open
Abstract
Background The aggressiveness of renal cell carcinoma (RCC) associated with Xp11.2 translocation/TFE3 gene fusion (Xp11.2 translocation RCC [Xp11.2 tRCC]) is age‐dependent, which is similar to the overall trend of reproductive endocrine hormones. Therefore, this study focused on the effect and potential mechanism of androgen and androgen receptor (AR) on the progression of Xp11.2 tRCC. Methods The effects of androgen and AR on the proliferation and migration of Xp11.2 tRCC cells were first evaluated utilising Xp11.2 tRCC cell lines and tissues. Because Transcription factor enhancer 3 (TFE3) fusion proteins play a key role in Xp11.2 tRCC, we focused on the regulatory role of AR and TFE3 expression and transcriptional activity. Results When Xp11.2 tRCC cells were treated with dihydrotestosterone, increased cell proliferation, invasion and migration were observed. Compared with clear cell RCC, the positive rate of AR in Xp11.2 tRCC tissues was higher, and its expression was negatively associated with the progression‐free survival of Xp11.2 tRCC. Further studies revealed that AR could positively regulate the transcriptional activity of TFE3 fusion proteins by small ubiquitin‐related modifier (SUMO)‐specific protease 1, inducing the deSUMOylation of TFE3 fusion. On the other hand, UCHL1 negatively regulated by AR plays a role in the deubiquitination degradation of the PRCC‐TFE3 fusion protein. Therefore, the combination of the AR inhibitor MDV3100 and the UCHL1 inhibitor 6RK73 was effective in delaying the progression of Xp11.2 tRCC, especially PRCC‐TFE3 tRCC. Conclusions Androgen and AR function as facilitators in Xp11.2 tRCC progression and may be a novel therapeutic target for Xp11.2 tRCC. The combined use of AR antagonist MDV3100 and UCHL1 inhibitor 6RK73 increased both the SUMOylation and ubiquitination of the PRCC‐TFE3 fusion protein
Collapse
Affiliation(s)
- Ning Liu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yi Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Qiancheng Shi
- Department of Urology, Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanwen Lu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Davoodi P, Ehsani A, Vaez Torshizi R, Masoudi AA. New insights into genetics underlying of plumage color. Anim Genet 2021; 53:80-93. [PMID: 34855995 DOI: 10.1111/age.13156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 01/12/2023]
Abstract
Plumage color can be considered as a social signal in chickens and a breeding identification tool among breeders. The relationship between plumage color and trait groups of immunity, growth and fertility is still a controversial issue. This research aimed to determine the genome-wide additive and epistatic variants affecting plumage color variation in chickens using the chicken Illumina 60k high-density SNP array. Two scenarios of genome-wide additive association studies using all SNPs and independent SNPs were carried out. To perform epistatic association analysis, the LD pruning approach was used to reduce the complexity of the analysis. We detected seven novel significant loci using all of the SNPs in the model and 14 SNPs using the LD pruning approach associated with plumage color. Moreover, 89 significantly associated SNP-SNP interactions (P-value <10-6 ) distributed in 25 chromosomes were identified, indicating that all of the signals together putatively influence the quantitative variation of plumage color. By annotating genes relevant to top SNPs, we have distinguished 18 potential candidate genes comprising HNF4beta, CKMT1B, TBC1D22A, RPL8, CACNA2D1, FZD4, SGMS1, IRF8, OPTN, LOC420362, TRABD, OvoDA1, DAD1, USP6, RBM12B, MIR1772, MIR1709 and MIR6696 and also 89 putative gene-gene combinations responsible for plumage color variation in chickens. Furthermore, several KEGG pathways including metabolic pathway, cytokine-cytokine receptor interaction, focal adhesion, melanogenesis, glycosaminoglycan biosynthesis-keratan sulfate and sphingolipid metabolism were enriched in the gene-set analysis. The results indicated that plumage color is a highly polygenic trait which, in turn, can be affected by multiple coding genes, regulatory genes and gene-gene epistasis interactions. In addition to genes with additive effects, epistatic genes with tiny individual effect sizes but significant effects in a pair have the potential to control plumage coloration in chickens.
Collapse
Affiliation(s)
- P Davoodi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| | - A Ehsani
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| | - R Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| | - A A Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| |
Collapse
|
14
|
|
15
|
Hu S, Bai S, Dai Y, Yang N, Li J, Zhang X, Wang F, Zhao B, Bao G, Chen Y, Wu X. Deubiquitination of MITF-M Regulates Melanocytes Proliferation and Apoptosis. Front Mol Biosci 2021; 8:692724. [PMID: 34179099 PMCID: PMC8221579 DOI: 10.3389/fmolb.2021.692724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
Microphthalmia-associated transcription factor-M (MITF-M) is the key gene in the proliferation and differentiation of melanocytes, which undergoes an array of post-translation modifications. As shown in our previous study, deubiquitinase USP13 is directly involved in melanogenesis. However, it is still ambiguous that the effect of USP13-mediated MITF-M expression on melanocytes proliferation and apoptosis. Herein, we found that MITF-M overexpressing melanocytes showed high cell proliferation, reduced apoptosis, and increased melanin levels. Besides, melanin-related genes, TYR, DCT, GPNMB, and PMEL, were significantly up-regulated in MITF-M overexpressing melanocytes. Furthermore, Exogenous USP13 significantly upregulated the endogenous MITF-M protein level, downregulated USP13 significantly inhibited MITF-M protein levels, without altering MITF-M mRNA expression. In addition, USP13 upregulation mitigated the MITF-M degradation and significantly increased the half-life of MITF-M. Also, USP13 stabilized the exogenous MITF protein levels. In conclusion, the MITF-M level was regulated by USP13 deubiquitinase in melanocytes, affecting melanocytes proliferation and apoptosis. This study provides the theoretical basis for coat color transformation that could be useful in the development of the new breed in fur animals.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guolian Bao
- Animal Husbandry and Veterinary Research Institute Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Molecular and Biochemical Basis of Minocycline-Induced Hyperpigmentation-The Study on Normal Human Melanocytes Exposed to UVA and UVB Radiation. Int J Mol Sci 2021; 22:ijms22073755. [PMID: 33916535 PMCID: PMC8038496 DOI: 10.3390/ijms22073755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 01/04/2023] Open
Abstract
Minocycline is a drug which induces skin hyperpigmentation. Its frequency reaches up to 50% of treated patients. The adverse effect diminishes the great therapeutic potential of minocycline, including antibacterial, neuroprotective, anti-inflammatory and anti-cancer actions. It is supposed that an elevated melanin level and drug accumulation in melanin-containing cells are related to skin hyperpigmentation. This study aimed to evaluate molecular and biochemical mechanism of minocycline-induced hyperpigmentation in human normal melanocytes, as well as the contribution of UV radiation to this side effect. The experiments involved the evaluation of cyto- and phototoxic potential of the drug using cell imaging with light and confocal microscopes as well as biochemical and molecular analysis of melanogenesis. We showed that minocycline induced melanin synthesis in epidermal melanocytes. The action was intensified by UV irradiation, especially with the UVB spectrum. Minocycline stimulated the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) gene. Higher levels of melanin and increased activity of tyrosinase were also observed in treated cells. Moreover, minocycline triggered the supranuclear accumulation of tyrosinase, similar to UV radiation. The decreased level of premelanosome protein PMEL17 observed in all minocycline-treated cultures suggests disorder of the formation, maturation or distribution of melanosomes. The study revealed that minocycline itself was able to enhance melanin synthesis. The action was intensified by irradiation, especially with the UVB spectrum. Demonstrated results confirmed the potential role of melanin and UV radiation minocycline-induced skin hyperpigmentation.
Collapse
|
17
|
Rong C, Zhou R, Wan S, Su D, Wang SL, Hess J. Ubiquitin Carboxyl-Terminal Hydrolases and Human Malignancies: The Novel Prognostic and Therapeutic Implications for Head and Neck Cancer. Front Oncol 2021; 10:592501. [PMID: 33585209 PMCID: PMC7878561 DOI: 10.3389/fonc.2020.592501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), have been found in a variety of tumor entities and play distinct roles in the pathogenesis and development of various cancers including head and neck cancer (HNC). HNC is a heterogeneous disease arising from the mucosal epithelia of the upper aerodigestive tract, including different anatomic sites, distinct histopathologic types, as well as human papillomavirus (HPV)-positive and negative subgroups. Despite advances in multi-disciplinary treatment for HNC, the long-term survival rate of patients with HNC remains low. Emerging evidence has revealed the members of UCHs are associated with the pathogenesis and clinical prognosis of HNC, which highlights the prognostic and therapeutic implications of UCHs for patients with HNC. In this review, we summarize the physiological and pathological functions of the UCHs family, which provides enlightenment of potential mechanisms of UCHs family in HNC pathogenesis and highlights the potential consideration of UCHs as attractive drug targets.
Collapse
Affiliation(s)
- Chao Rong
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ran Zhou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Dan Su
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Huang YJ, Gao Y, Wang CJ, Han DX, Zheng Y, Wang WH, Jiang H, Yuan B, Zhang JB. Hydroxyurea regulates the development and survival of B16 Melanoma Cells by upregulating MiR-7013-3p. Int J Med Sci 2021; 18:1877-1885. [PMID: 33746605 PMCID: PMC7976580 DOI: 10.7150/ijms.52177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
miRNAs are a family of short, noncoding RNAs that are involved in many processes in melanoma cells. MITF acts as a master regulator of melanocyte function, development and survival by modulating various genes. Hydroxyurea (HU) is used to treat melanoma, and miRNA expression is altered after HU treatment in B16 melanoma cells. In this study, we screened for miRNAs that were upregulated after HU treatment and that targeted the MITF gene. We found that miR-7013-3p exhibited increased expression after HU treatment and could bind to MITF. miR-7013-3p inhibited melanin production, proliferation, and migration and promoted apoptosis in B16 melanoma cells. The results may provide more information on the roles of miR-7013-3p in B16 melanoma cells.
Collapse
Affiliation(s)
- Yi-Jie Huang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Yan Gao
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Chang-Jiang Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Dong-Xu Han
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Yi Zheng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Wen-Hua Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| |
Collapse
|
19
|
Vu HN, Dilshat R, Fock V, Steingrímsson E. User guide to MiT-TFE isoforms and post-translational modifications. Pigment Cell Melanoma Res 2020; 34:13-27. [PMID: 32846025 DOI: 10.1111/pcmr.12922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The microphthalmia-associated transcription factor (MITF) is at the core of melanocyte and melanoma fate specification. The related factors TFEB and TFE3 have been shown to be instrumental for transcriptional regulation of genes involved in lysosome biogenesis and autophagy, cellular processes important for mediating nutrition signals and recycling of cellular materials, in many cell types. The MITF, TFEB, TFE3, and TFEC proteins are highly related. They share many structural and functional features and are targeted by the same signaling pathways. However, the existence of several isoforms of each factor and the increasing number of residues shown to be post-translationally modified by various signaling pathways poses a difficulty in indexing amino acid residues in different isoforms across the different proteins. Here, we provide a resource manual to cross-reference amino acids and post-translational modifications in all isoforms of the MiT-TFE family in humans, mice, and zebrafish and summarize the protein accession numbers for each isoform of these factors in the different genomic databases. This will facilitate future studies on the signaling pathways that regulate different isoforms of the MiT-TFE transcription factor family.
Collapse
Affiliation(s)
- Hong Nhung Vu
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
20
|
Lewis JJ, Van Belleghem SM, Papa R, Danko CG, Reed RD. Many functionally connected loci foster adaptive diversification along a neotropical hybrid zone. SCIENCE ADVANCES 2020; 6:6/39/eabb8617. [PMID: 32978147 PMCID: PMC7518860 DOI: 10.1126/sciadv.abb8617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/11/2020] [Indexed: 05/02/2023]
Abstract
Characterizing the genetic complexity of adaptation and trait evolution is a major emphasis of evolutionary biology and genetics. Incongruent findings from genetic studies have resulted in conceptual models ranging from a few large-effect loci to massively polygenic architectures. Here, we combine chromatin immunoprecipitation sequencing, Hi-C, RNA sequencing, and 40 whole-genome sequences from Heliconius butterflies to show that red color pattern diversification occurred via many genomic loci. We find that the red wing pattern master regulatory transcription factor Optix binds dozens of loci also under selection, which frequently form three-dimensional adaptive hubs with selection acting on multiple physically interacting genes. Many Optix-bound genes under selection are tied to pigmentation and wing development, and these loci collectively maintain separation between adaptive red color pattern phenotypes in natural populations. We propose a model of trait evolution where functional connections between loci may resolve much of the disparity between large-effect and polygenic evolutionary models.
Collapse
Affiliation(s)
- James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | | | - Riccardo Papa
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
Bi HL, Zhang XL, Zhang YL, Xie X, Xia YL, Du J, Li HH. The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor. SCIENCE ADVANCES 2020; 6:eaax4826. [PMID: 32494592 PMCID: PMC7164950 DOI: 10.1126/sciadv.aax4826] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 01/23/2020] [Indexed: 05/09/2023]
Abstract
Pathological cardiac hypertrophy leads to heart failure (HF). The ubiquitin-proteasome system (UPS) plays a key role in maintaining protein homeostasis and cardiac function. However, research on the role of deubiquitinating enzymes (DUBs) in cardiac function is limited. Here, we observed that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) was significantly up-regulated in agonist-stimulated primary cardiomyocytes and in hypertrophic and failing hearts. Knockdown of UCHL1 in cardiomyocytes and mouse hearts significantly ameliorated cardiac hypertrophy induced by agonist or pressure overload. Conversely, overexpression of UCHL1 had the opposite effect in cardiomyocytes and rAAV9-UCHL1-treated mice. Mechanistically, UCHL1 bound, deubiquitinated, and stabilized epidermal growth factor receptor (EGFR) and activated its downstream mediators. Systemic administration of the UCHL1 inhibitor LDN-57444 significantly reversed cardiac hypertrophy and remodeling. These findings suggest that UCHL1 positively regulates cardiac hypertrophy by stabilizing EGFR and identify UCHL1 as a target for hypertrophic therapy.
Collapse
Affiliation(s)
- Hai-Lian Bi
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Xiao-Li Zhang
- Department of Medical Technology, Beijing Health Vocational College, Beijing 101101, China
| | - Yun-Long Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Xin Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Jie Du
- Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, School of Basic Medical Sciences, Capital Medical University, Beijing 100029, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
22
|
Ye Q, Wen Y, Al-Kuwari N, Chen X. Association Between Parkinson's Disease and Melanoma: Putting the Pieces Together. Front Aging Neurosci 2020; 12:60. [PMID: 32210791 PMCID: PMC7076116 DOI: 10.3389/fnagi.2020.00060] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Patients with Parkinson’s disease (PD) generally have reduced risk of developing many types of cancers, except melanoma—a malignant tumor of melanin-producing cells in the skin. For decades, a large number of epidemiological studies have reported that the occurrence of melanoma is higher than expected among subjects with PD, and the occurrence of PD is reciprocally higher than expected among patients with melanoma. More recent epidemiological studies further indicated a bidirectional association, not only in the patients themselves but also in their relatives. This association between PD and melanoma offers a unique opportunity to understand PD. Here, we summarize epidemiological, clinical, and biological evidence in regard to shared risk factors and possible underlying mechanisms for these two seemingly distinct conditions.
Collapse
Affiliation(s)
- Qing Ye
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ya Wen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Ietheory Institute, Burlington, MA, United States
| | - Nasser Al-Kuwari
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
UCHL1/PGP 9.5 Dynamic in Neuro-Immune-Cutaneous Milieu: Focusing on Axonal Nerve Terminals and Epidermal Keratinocytes in Psoriatic Itch. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7489316. [PMID: 30148172 PMCID: PMC6083486 DOI: 10.1155/2018/7489316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 01/03/2023]
Abstract
Psoriasis is an immunogenetic skin disease manifesting as plaque lesions on the skin. Patients with psoriasis frequently suffer from itch, an unpleasant sensation causing a desire to scratch. Psoriatic itch is mainly transmitted by unmyelinated C-fibers; however, the exact molecular mechanism of psoriatic itch is still unexplained. Protein gene product 9.5 (PGP 9.5) is a panneurological marker commonly used for analysis of peripheral peptidergic and nonpeptidergic nerves and identification of cutaneous neuro-immune-endocrine cells. However, some studies suggested that nonneuronal cells, like keratinocytes, may also express PGP 9.5. This phenomenon might be linked with impaired axonal transport, keratinocyte injury, or dysfunctions of neuro-immune-cutaneous connections. The aim of this study was to analyze the expression of PGP 9.5 in psoriatic skin. We observed significantly altered density of PGP 9.5-positive axonal nerve terminals in pruritic lesional (p=0.04) and nonlesional psoriatic skin (p>0.001) compared with controls. In contrast, no significant differences were observed between psoriatic skin without itch and controls. Furthermore, PGP 9.5 expression by suprabasal keratinocytes (SBKs) was significantly increased in itchy skin lesions (p=0.007) compared to skin without itch, and a positive correlation was observed between PGP 9.5 expression and itch intensity (r=0.64; p=0.02). Our findings indicate changes in peripheral innervations and psoriatic keratinocytes, which may influence neuro-immune-cutaneous homeostasis and modulate itch transmission.
Collapse
|