1
|
Weissmann S, Babyev AS, Gordon M, Golan-Tripto I, Horev A. Association of hematological ratios with psoriasis: a nationwide retrospective cohort study. Int J Dermatol 2024; 63:1369-1374. [PMID: 38459652 DOI: 10.1111/ijd.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Psoriasis is a common skin disorder linked to systemic inflammation and immune dysregulation. It is believed to involve activated T cells and neutrophils. Recent research has highlighted the potential role of hematological ratios, such as neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), eosinophil-to-lymphocyte ratio (ELR), eosinophil-to-neutrophil ratio (ENR), and eosinophil-to-monocyte ratio (EMR), as markers for inflammatory skin diseases, including psoriasis. OBJECTIVES We aimed to investigate hematological ratios between children and adults, patients and controls, and patients with moderate-to-severe and mild psoriasis. MATERIALS AND METHODS This national retrospective cohort study included over 16,000 psoriasis patients in Israel. Patients with comorbidities influencing blood counts were excluded. Ratios were calculated from blood counts taken within 30 days of diagnosis. Multivariable logistic regression, including age, gender, ethnicity, smoking status, and socioeconomic status, was performed. RESULTS Findings revealed age-specific variations in blood counts, hematological ratios, and differences between mild and moderate-severe patients and patients versus controls. Moderate-severe psoriasis patients had elevated neutrophil and eosinophil counts (4.57 vs. 4.25, P < 0.001, and 0.24 vs. 0.22, P = 0.047, respectively), as well as increased NLR (2.46 vs. 2.29, P < 0.001). Multivariable logistic regression analysis confirmed the significance of neutrophil and platelet counts as well as NLR and PLR in predicting psoriasis severity. LIMITATIONS This was a retrospective study without subjective data on disease severity. CONCLUSION This study highlights hematologic ratios' diagnostic and prognostic potential in psoriasis.
Collapse
Affiliation(s)
- Sarah Weissmann
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Clinical Research Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Amit S Babyev
- Clinical Research Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Michal Gordon
- Clinical Research Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Inbal Golan-Tripto
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Pediatric Pulmonary Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Amir Horev
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Pediatric Dermatology Service, Soroka University Medical Center, Beer Sheva, Israel
| |
Collapse
|
2
|
Park S, Jang J, Kim HJ, Jung Y. Unveiling multifaceted roles of myeloid innate immune cells in the pathogenesis of psoriasis. Mol Aspects Med 2024; 99:101306. [PMID: 39191143 DOI: 10.1016/j.mam.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide. Initially viewed as a keratinocyte disorder, psoriasis is now recognized to involve a complex interplay between genetic predisposition, environmental triggers, and a dysregulated immune system, with a significant role of CD4+ T cells producing IL-17. Recent genetic studies have identified susceptibility loci that underscore the importance of innate immune responses, particularly the roles of myeloid cells, such as dendritic cells, macrophages, and neutrophils. These cells initiate and sustain inflammation through cytokine production triggered by external stimuli. They influence keratinocyte behavior and interact with adaptive immune cells. Recent techniques have further revealed the heterogeneity of myeloid cells in psoriatic lesions, highlighting the contributions of less-studied subsets, such as eosinophils and mast cells. This review examines the multifaceted roles of myeloid innate immune cells in psoriasis, emphasizing their functional diversity in promoting psoriatic inflammation. It also describes current treatment targeting myeloid innate immune cells and explores potential new therapeutic strategies based on the functional characteristics of these subsets. Future research should focus on the detailed characterization of myeloid subsets and their interactions to develop targeted treatments that address the complex immune landscape of psoriasis.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea.
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, South Korea.
| |
Collapse
|
3
|
Kim HJ, Jang J, Na K, Lee EH, Gu HJ, Lim YH, Joo SA, Baek SE, Roh JY, Maeng HJ, Kim YH, Lee YJ, Oh BC, Jung Y. TLR7-dependent eosinophil degranulation links psoriatic skin inflammation to small intestinal inflammatory changes in mice. Exp Mol Med 2024; 56:1164-1177. [PMID: 38689088 PMCID: PMC11148187 DOI: 10.1038/s12276-024-01225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Recent evidence of gut microbiota dysbiosis in the context of psoriasis and the increased cooccurrence of inflammatory bowel disease and psoriasis suggest a close relationship between skin and gut immune responses. Using a mouse model of psoriasis induced by the Toll-like receptor (TLR) 7 ligand imiquimod, we found that psoriatic dermatitis was accompanied by inflammatory changes in the small intestine associated with eosinophil degranulation, which impaired intestinal barrier integrity. Inflammatory responses in the skin and small intestine were increased in mice prone to eosinophil degranulation. Caco-2 human intestinal epithelial cells were treated with media containing eosinophil granule proteins and exhibited signs of inflammation and damage. Imiquimod-induced skin and intestinal changes were attenuated in eosinophil-deficient mice, and this attenuation was counteracted by the transfer of eosinophils. Imiquimod levels and the distribution of eosinophils were positively correlated in the intestine. TLR7-deficient mice did not exhibit intestinal eosinophil degranulation but did exhibit attenuated inflammation in the skin and small intestine following imiquimod administration. These results suggest that TLR7-dependent bidirectional skin-to-gut communication occurs in psoriatic inflammation and that inflammatory changes in the intestine can accelerate psoriasis.
Collapse
Affiliation(s)
- Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
| | - Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
| | - Kunhee Na
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
| | - Eun-Hui Lee
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Hyeon-Jung Gu
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
| | - Yoon Hee Lim
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Seul-A Joo
- College of Pharmacy, Gachon University, Incheon, 21936, Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Joo-Young Roh
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, Korea
- Department of Dermatology, Ewha Womans University Medical Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon, 21936, Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, 50612, Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Young-Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - YunJae Jung
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea.
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea.
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea.
| |
Collapse
|
4
|
Pantoja CJ, Li H, Rodante J, Keel A, Sorokin AV, Svedbom A, Teague HL, Stahle M, Mehta NN, Playford MP. Serum Beta-Defensin-2 is a biomarker for psoriasis but not subclinical atherosclerosis: Role of IL17a, PI-3 kinase and Rac1. JEADV CLINICAL PRACTICE 2024; 3:150-159. [PMID: 38646149 PMCID: PMC11031204 DOI: 10.1002/jvc2.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/20/2023] [Indexed: 04/23/2024]
Abstract
Background Beta-defensins (BDs) are antimicrobial peptides secreted upon epithelial injury. Both chemotactic and antimicrobial properties of BDs function as initial steps in host defense and prime the adaptive immune system in the body. Psoriasis, a chronic immune-mediated inflammatory disease, has both visible cutaneous manifestations as well as known associations with higher incidence of cardiometabolic complications and vascular inflammation. Objectives We aimed to investigate the circulating expression of beta-defensin-2 (BD2) in psoriasis at baseline compared to control subjects, along with changes in BD2 levels following biologic treatment at one-year. The contribution of BD2 to subclinical atherosclerosis is also assessed. In addition, we have sought to unravel signaling mechanisms linking inflammation with BD2 expression. Methods Multimodality imaging as well inflammatory biomarker assays were performed in biologic naïve psoriasis (n=71) and non-psoriasis (n=53) subjects. A subset of psoriasis patients were followed for one-year after biological intervention (anti-Tumor Necrosis Factor-α (TNFα), n=30; anti-Interleukin17A (IL17A), n=21). Measurements of circulating BD2 were completed by Enzyme-Linked Immunosorbent Assay (ELISA). Using HaCaT transformed keratinocytes, expression of BD2 upon cytokine treatment was assessed by quantitative polymerase chain reaction (qPCR) and ELISA. Results Herein, we confirm that human circulating BD2 levels associate with psoriasis, which attenuate upon biologic interventions (anti-TNFα, anti-IL-17A). A link between circulating BD2 and sub-clinical atherosclerosis markers was not observed. Furthermore, we demonstrate that IL-17A-driven BD2 expression occurs in a Phosphatidylinositol 3-kinase (PI3-kinase) and Rac1 GTPase-dependent manner. Conclusions Our findings expand on the potential role of BD2 as a tractable biomarker in psoriasis patients and describes the role of an IL-17A-PI3-kinase/Rac signaling axis in regulating BD2 levels in keratinocytes.
Collapse
Affiliation(s)
- CJ. Pantoja
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, Maryland
| | - H. Li
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, Maryland
| | - J. Rodante
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, Maryland
| | - A. Keel
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, Maryland
| | - AV. Sorokin
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, Maryland
| | - A. Svedbom
- Division of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - HL. Teague
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, Maryland
| | - M. Stahle
- Division of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - NN. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, Maryland
| | - MP. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Kline SN, Orlando NA, Lee AJ, Wu MJ, Zhang J, Youn C, Feller LE, Pontaza C, Dikeman D, Limjunyawong N, Williams KL, Wang Y, Cihakova D, Jacobsen EA, Durum SK, Garza LA, Dong X, Archer NK. Staphylococcus aureus proteases trigger eosinophil-mediated skin inflammation. Proc Natl Acad Sci U S A 2024; 121:e2309243121. [PMID: 38289950 PMCID: PMC10861893 DOI: 10.1073/pnas.2309243121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Staphylococcus aureus skin colonization and eosinophil infiltration are associated with many inflammatory skin disorders, including atopic dermatitis, bullous pemphigoid, Netherton's syndrome, and prurigo nodularis. However, whether there is a relationship between S. aureus and eosinophils and how this interaction influences skin inflammation is largely undefined. We show in a preclinical mouse model that S. aureus epicutaneous exposure induced eosinophil-recruiting chemokines and eosinophil infiltration into the skin. Remarkably, we found that eosinophils had a comparable contribution to the skin inflammation as T cells, in a manner dependent on eosinophil-derived IL-17A and IL-17F production. Importantly, IL-36R signaling induced CCL7-mediated eosinophil recruitment to the inflamed skin. Last, S. aureus proteases induced IL-36α expression in keratinocytes, which promoted infiltration of IL-17-producing eosinophils. Collectively, we uncovered a mechanism for S. aureus proteases to trigger eosinophil-mediated skin inflammation, which has implications in the pathogenesis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Sabrina N. Kline
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Nicholas A. Orlando
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Alex J. Lee
- Department of Oncology, Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Jing Zhang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Christine Youn
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Laine E. Feller
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Cristina Pontaza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Nathachit Limjunyawong
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok10700, Thailand
| | - Kaitlin L. Williams
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Yu Wang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Daniela Cihakova
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ85259
| | - Scott K. Durum
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD21702
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Xinzhong Dong
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| |
Collapse
|
6
|
Zhou G, Ren X, Tang Z, Li W, Chen W, He Y, Wei B, Zhang H, Ma F, Chen X, Zhang G, Shen M, Liu H. Exploring the association and causal effect between white blood cells and psoriasis using large-scale population data. Front Immunol 2023; 14:1043380. [PMID: 36865550 PMCID: PMC9971993 DOI: 10.3389/fimmu.2023.1043380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Psoriasis is a chronic inflammatory disease of the skin. A few studies have shown that psoriasis is an immune-mediated disease in which multiple immune cells play crucial roles. However, the association between circulating immune cells and psoriasis remains elusive. Methods To explore the role of circulating immune cells in psoriasis, 361,322 individuals from the UK Biobank (UKB) and 3,971 patients with psoriasis from China were included to investigate the association between white blood cells and psoriasis via an observational study. Genome-wide association studies (GWAS) and Mendelian randomization (MR) were used to evaluate the causal relationship between circulating leukocytes and psoriasis. Results The risk of psoriasis increased with high levels of monocytes, neutrophils, and eosinophils (relative risks and 95% confidence intervals, respectively: 1.430 (1.291-1.584) for monocytes, 1.527 (1.379-1.692) for neutrophils, and 1.417 (1.294-1.551) for eosinophils). Upon further MR analysis, eosinophils showed a definite causal relationship with psoriasis (odds ratio of inverse-variance weighted: 1.386, 95% confidence intervals: 1.092-1.759) and a positive correlation with the psoriasis area and severity index (PASI) score (P = 6.6 × 10-5). The roles of the neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and lymphocyte-monocyte ratio (LMR) in psoriasis were also assessed. More than 20,000 genetic variations associated with NLR, PLR, and LMR were discovered in a GWAS analysis using the UKB data. Following adjustment for covariates in the observational study, NLR and PLR were shown to be risk factors for psoriasis, whereas LMR was a protective factor. MR results indicated that there was no causal relationship between these three indicators and psoriasis; however, NLR, PLR, and LMR correlated with the PASI score (NLR: rho = 0.244, P = 2.1 × 10-21; PLR: rho = 0.113, P = 1.4 × 10-5; LMR: rho = -0.242, P = 3.5×10-21). Discussion Our findings revealed an important association between circulating leukocytes and psoriasis, which is instructive for the clinical practice of psoriasis treatment.
Collapse
Affiliation(s)
- Guowei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Xiangmei Ren
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Wang Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Wenqiong Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Yi He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Benliang Wei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailun Zhang
- Department of Research and Development, Beijing GAP Biotechnology Co., Ltd, Beijing, China
| | - Fangyu Ma
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guanxiong Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Hardman CS, Chen YL, Wegrecki M, Ng SW, Murren R, Mangat D, Silva JP, Munro R, Chan WY, O'Dowd V, Doyle C, Mori P, Popplewell A, Rossjohn J, Lightwood D, Ogg GS. CD1a promotes systemic manifestations of skin inflammation. Nat Commun 2022; 13:7535. [PMID: 36477177 PMCID: PMC9729296 DOI: 10.1038/s41467-022-35071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory skin conditions are increasingly recognised as being associated with systemic inflammation. The mechanisms connecting the cutaneous and systemic disease are not well understood. CD1a is a virtually monomorphic major histocompatibility complex (MHC) class I-like molecule, highly expressed by skin and mucosal Langerhans cells, and presents lipid antigens to T-cells. Here we show an important role for CD1a in linking cutaneous and systemic inflammation in two experimental disease models. In human CD1a transgenic mice, the toll-like receptor (TLR)7 agonist imiquimod induces more pronounced splenomegaly, expansion of the peripheral blood and spleen T cell compartments, and enhanced neutrophil and eosinophil responses compared to the wild-type, accompanied by elevated skin and plasma cytokine levels, including IL-23, IL-1α, IL-1β, MCP-1 and IL-17A. Similar systemic escalation is shown in MC903-induced skin inflammation. The exacerbated inflammation could be counter-acted by CD1a-blocking antibodies, developed and screened in our laboratories. The beneficial effect is epitope dependent, and we further characterise the five best-performing antibodies for their capacity to modulate CD1a-expressing cells and ameliorate CD1a-dependent systemic inflammatory responses. In summary, we show that a therapeutically targetable CD1a-dependent pathway may play a role in the systemic spread of cutaneous inflammation.
Collapse
Affiliation(s)
- Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Soo Weei Ng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | - Carl Doyle
- UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | | | | | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | | | - Graham S Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Zhu Y, Wu Z, Yan W, Shao F, Ke B, Jiang X, Gao J, Guo W, Lai Y, Ma H, Chen D, Xu Q, Sun Y. Allosteric inhibition of SHP2 uncovers aberrant TLR7 trafficking in aggravating psoriasis. EMBO Mol Med 2021; 14:e14455. [PMID: 34936223 PMCID: PMC8899919 DOI: 10.15252/emmm.202114455] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Psoriasis is a complex chronic inflammatory skin disease with unclear molecular mechanisms. We found that the Src homology‐2 domain‐containing protein tyrosine phosphatase‐2 (SHP2) was highly expressed in both psoriatic patients and imiquimod (IMQ)‐induced psoriasis‐like mice. Also, the SHP2 allosteric inhibitor SHP099 reduced pro‐inflammatory cytokine expression in PBMCs taken from psoriatic patients. Consistently, SHP099 significantly ameliorated IMQ‐triggered skin inflammation in mice. Single‐cell RNA sequencing of murine skin demonstrated that SHP2 inhibition impaired skin inflammation in myeloid cells, especially macrophages. Furthermore, IMQ‐induced psoriasis‐like skin inflammation was significantly alleviated in myeloid cells (monocytes, mature macrophages, and granulocytes)—but not dendritic cells conditional SHP2 knockout mice. Mechanistically, SHP2 promoted the trafficking of toll‐like receptor 7 (TLR7) from the Golgi to the endosome in macrophages by dephosphorylating TLR7 at Tyr1024, boosting the ubiquitination of TLR7 and NF‐κB‐mediated skin inflammation. Importantly, Tlr7 point‐mutant knock‐in mice showed an attenuated psoriasis‐like phenotype compared to wild‐type littermates following IMQ treatment. Collectively, our findings identify SHP2 as a novel regulator of psoriasis and suggest that SHP2 inhibition may be a promising therapeutic approach for psoriatic patients.
Collapse
Affiliation(s)
- Yuyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhigui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Yan
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| | - Fenli Shao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xian Jiang
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
9
|
A systematic comparison of the effect of topically applied anthraquinone aglycones to relieve psoriasiform lesion: The evaluation of percutaneous absorption and anti-inflammatory potency. Biomed Pharmacother 2021; 145:112482. [PMID: 34915669 DOI: 10.1016/j.biopha.2021.112482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022] Open
Abstract
The anthraquinones derived from rhubarb are reported to have anti-inflammatory activity. The present study aimed to assess the topical application of rhubarb anthraquinone aglycones for psoriasis treatment. The antipsoriatic effect of five anthraquinones, including aloe-emodin, rhein, emodin, physcion, and chrysophanol, was compared to elucidate a structure-permeation relationship. Molecular modeling was employed to determine the physicochemical properties. Both macrophages (differentiated THP-1) and keratinocytes (HaCaT) were used to examine the anti-inflammatory activity in the cell-based study. The in vitro pig skin absorption showed that chrysophanol was the compound with the highest cutaneous accumulation. Topically applied rhein was detected to be largely delivered to the receptor compartment. The absorption of rhein was increased by 5-fold in the barrier-deficient skin as compared to intact skin. By stimulating macrophages with imiquimod (IMQ) to model the inflammation in psoriasis, it was found that the anthraquinones significantly reduced IL-6, IL-23, and TNF. The cytokine inhibition level was comparable for the five compounds. The anthraquinones suppressed cytokines by inhibiting the activation of MAPK and NF-κB signaling. The anthraquinones also downregulated IL-6, IL-8, and IL-24 in the inflammatory keratinocytes stimulated with TNF. Rhein and chrysophanol were comparable to curtail the STAT3 phosphorylation in keratinocytes induced by the conditioned medium of stimulated macrophages. The IMQ-induced psoriasiform mouse model demonstrated the improvement of scaling, erythema, and epidermal hyperplasia by topically applied rhein or chrysophanol. The epidermal acanthosis evoked by IMQ was reduced with rhein and chrysophanol by 3-fold. The histological profiles exhibit that both anthraquinone compounds diminished the number of macrophages and neutrophils in the lesional skin, skin-draining lymph node, and spleen. Rhein and chrysophanol showed multifunctional inhibition, by regulating several targets for alleviating psoriasiform inflammation.
Collapse
|
10
|
IL-6R/Signal Transducer and Activator of Transcription 3 Signaling in Keratinocytes rather than in T Cells Induces Psoriasis-Like Dermatitis in Mice. J Invest Dermatol 2021; 142:1126-1135.e4. [PMID: 34626614 PMCID: PMC8957489 DOI: 10.1016/j.jid.2021.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is important for psoriasis pathogenesis because STAT3 signaling downstream of IL-6, IL-21, IL-22, and IL-23 contributes to T helper type 17 cell development and because transgenic mice with keratinocyte (KC) STAT3 expression (K14-Stat3C mice) develop psoriasis-like dermatitis. In this study, the relative contribution of STAT3 signaling in KCs versus in T cells was evaluated in the imiquimod model of psoriasis-like dermatitis. Mice with STAT3-inducible deletion in KCs (K5-Stat3-/- mice) had decreased psoriasis-like dermatitis and epidermal STAT3 phosphorylation compared with wild-type mice, whereas mice with constitutive deletion of STAT3 in all T cells were similar to wild-type mice. Interestingly, mice with KC-inducible deletion of IL-6Rα had similar findings to those of K5-Stat3-/- mice, identifying IL-6/IL-6R as a predominant upstream signal for KC STAT3-induced psoriasis-like dermatitis. Moreover, psoriasis-like dermatitis inversely associated with type 1 immune gene products, especially CXCL10, whereas CXCL10 limited psoriasis-like dermatitis, suggesting that KC STAT3 signaling promoted psoriasis-like dermatitis by restricting downstream CXCL10 expression. Finally, treatment of mice with the pan-Jak inhibitor, tofacitinib, reduced psoriasis-like dermatitis and epidermal STAT3 phosphorylation. Taken together, STAT3 signaling in KCs rather than in T cells was a more important determinant for psoriasis-like dermatitis in a mechanism that involved upstream KC IL-6R signaling and downstream inhibition of type 1 immunity‒associated CXCL10 responses.
Collapse
|
11
|
Ondari E, Calvino-Sanles E, First NJ, Gestal MC. Eosinophils and Bacteria, the Beginning of a Story. Int J Mol Sci 2021; 22:8004. [PMID: 34360770 PMCID: PMC8347986 DOI: 10.3390/ijms22158004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are granulocytes primarily associated with TH2 responses to parasites or immune hyper-reactive states, such as asthma, allergies, or eosinophilic esophagitis. However, it does not make sense from an evolutionary standpoint to maintain a cell type that is only specific for parasitic infections and that otherwise is somehow harmful to the host. In recent years, there has been a shift in the perception of these cells. Eosinophils have recently been recognized as regulators of immune homeostasis and suppressors of over-reactive pro-inflammatory responses by secreting specific molecules that dampen the immune response. Their role during parasitic infections has been well investigated, and their versatility during immune responses to helminths includes antigen presentation as well as modulation of T cell responses. Although it is known that eosinophils can present antigens during viral infections, there are still many mechanistic aspects of the involvement of eosinophils during viral infections that remain to be elucidated. However, are eosinophils able to respond to bacterial infections? Recent literature indicates that Helicobacter pylori triggers TH2 responses mediated by eosinophils; this promotes anti-inflammatory responses that might be involved in the long-term persistent infection caused by this pathogen. Apparently and on the contrary, in the respiratory tract, eosinophils promote TH17 pro-inflammatory responses during Bordetella bronchiseptica infection, and they are, in fact, critical for early clearance of bacteria from the respiratory tract. However, eosinophils are also intertwined with microbiota, and up to now, it is not clear if microbiota regulates eosinophils or vice versa, or how this connection influences immune responses. In this review, we highlight the current knowledge of eosinophils as regulators of pro and anti-inflammatory responses in the context of both infection and naïve conditions. We propose questions and future directions that might open novel research avenues in the future.
Collapse
Affiliation(s)
| | | | | | - Monica C. Gestal
- LSU Health, Department of Microbiology and Immunology, Louisiana State University (LSU), Shreveport, LA 71103, USA; (E.O.); (E.C.-S.); (N.J.F.)
| |
Collapse
|
12
|
Chen J, Li C, Li H, Yu H, Zhang X, Yan M, Guo Y, Yao Z. Identification of a T H 2-high psoriasis cluster based on skin biomarker analysis in a Chinese psoriasis population. J Eur Acad Dermatol Venereol 2020; 35:150-158. [PMID: 32367566 DOI: 10.1111/jdv.16563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Psoriasis is an immune-mediated, chronic inflammatory disease with diverse phenotypes. However, its biological diversity has not been well-characterized in Chinese psoriasis population. OBJECTIVES To characterize psoriasis biological heterogenicity using gene expression profiles of lesional skin biopsy specimens in a Chinese psoriasis population. METHODS Lesional tissues and blood samples from Chinese psoriasis patients (n = 40), atopic dermatitis (AD) patients (n = 25) and age-matched healthy controls (n = 19) were investigated by using real-time PCR array, histological evaluation and flow cytometry. Unsupervised hierarchical clustering was performed using gene expression profiles of patients with psoriasis. RESULTS Two distinct psoriasis clusters were identified. Both clusters indicated high TH 17 activation. One cluster (n = 6 of 40 consecutive psoriasis patients) indicated a strong TH 2 component in skin lesions, with early onset and low peripheral blood eosinophil level. Significantly higher IL-4, IL-13, IL-25, IL-31 and TSLP gene induction typified this cluster of psoriasis patients, even compared with AD patients. Both psoriasis clusters were characterized by neutrophilic microabscess formation. Histologically, the TH 2 high psoriasis cluster indicated a low percentage of perivascular eosinophils. CONCLUSIONS Two distinct psoriasis clusters were identified. One presented early onset and a low eosinophil level, indicating TH 17 polarization and a strong TH 2 component. These results laid the foundation for further demonstrating the pathogenesis of psoriasis in Chinese population.
Collapse
Affiliation(s)
- J Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - H Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - H Yu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - M Yan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Guo
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Yoon J, Um HN, Jang J, Bae YA, Park WJ, Kim HJ, Yoon MS, Chung IY, Jung Y. Eosinophil Activation by Toll-Like Receptor 4 Ligands Regulates Macrophage Polarization. Front Cell Dev Biol 2019; 7:329. [PMID: 31921842 PMCID: PMC6933835 DOI: 10.3389/fcell.2019.00329] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/26/2019] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are terminally differentiated granulocytes that have long been considered as destructive cells associated with Th2 type immune responses such as allergic inflammation and helminth infections. Recently, eosinophils have been actively studied as multifunctional leukocytes regulating an array of physiological responses through interaction with other immune cells. In this study, we examined the expression and function of Toll-like receptors (TLRs) in eosinophilic EoL-1 cells and demonstrated the expression of a number of immune mediators in activated EoL-1 cells and their interaction with the macrophage cell line THP-1 upon TLR4 ligand stimulation. EoL-1 cells differentiated with butyrate increased expression of TLR3, TLR4, and TLR7 at mRNA and protein level with flow cytometry analysis. Mature eosinophils derived from human cord blood CD34+ cells were subjected to RNA-sequencing, and showed the expression of a panel of TLR transcripts and TLR4 was the most highly expressed TLR. Among the cognate ligands of TLR3, TLR4, and TLR7, lipopolysaccharide (LPS) or palmitic acid significantly increased mRNA expression of immune mediators in differentiated EoL-1 cells. Notably, Western blot analysis of palmitic acid-treated differentiated EoL-1 cells showed significantly up-regulated expression of Th2 type cytokines and transcription factors driving eosinophil differentiation. To evaluate functional significance of TLR4 ligand-stimulated eosinophils, we added conditioned media (CM) from EoL-1 cells to differentiated THP-1 cells and assessed the expression of M1 macrophage or M2 macrophage-related markers. M1 and M2 macrophage markers were significantly upregulated by CM from LPS and palmitic acid stimulated EoL-1 cells, respectively. In addition, the adipose tissue of obese mice, where eosinophils are decreased due to obesity-induced inflammation, showed significantly decreased frequency of M2 macrophages, despite an increase in the total macrophage numbers. Based on these collective data, we proposed that eosinophils regulate both inflammatory and anti-inflammatory polarization of macrophages through functional changes induced by different TLR4 ligands.
Collapse
Affiliation(s)
- Jiyoung Yoon
- Department of Microbiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Han-Na Um
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Jinsun Jang
- Department of Microbiology, College of Medicine, Gachon University, Incheon, South Korea.,Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Young-An Bae
- Department of Microbiology, College of Medicine, Gachon University, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Woo-Jae Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea.,Department of Biochemistry, College of Medicine, Gachon University, Incheon, South Korea
| | - Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Mee-Sup Yoon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea.,Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, South Korea
| | - Il Yup Chung
- Department of Bionano Technology, Hanyang University, Ansan, South Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| |
Collapse
|
14
|
Yue D, You Y, Zhang X, Wang B, Wang X, Qi R, Yang F, Meng X, Yoshikai Y, Wang Y, Sun X. CD30L/CD30 protects against psoriasiform skin inflammation by suppressing Th17-related cytokine production by Vγ4 + γδ T cells. J Autoimmun 2019; 101:70-85. [PMID: 31005389 DOI: 10.1016/j.jaut.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 11/24/2022]
Abstract
Psoriasis is a common, autoimmune, chronic inflammatory skin disease. It has been demonstrated that cutaneous T17 cells play an important pro-inflammatory role in the pathogenesis of psoriasis, through the production of various Th17-related cytokines. Our previous studies have demonstrated that CD30L/CD30 signal plays a pivotal role in the differentiation of CD4+ Th17 cells and Vγ6+γδ T17 cells in the gut-associated lymphoid tissues of mouse. However, its effect on the pathogenesis of psoriasis is unknown. Here, we fully prove that CD30L/CD30 signaling plays a novel protective role in the development of psoriasis in mice, through selective inhibition of CCR6 expression and Th17-related cytokine synthesis in the Vγ4+γδ T17 cell subset. Meanwhile, treatment with agonistic anti-CD30 mAb had a significant therapeutic effect on our psoriasis mouse model. Therefore, the CD30L/CD30 signaling pathway is an ideal target for antibody therapy, which may become a new approach for the immunobiological treatment of psoriasis.
Collapse
Affiliation(s)
- Dan Yue
- Department of Immunology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China; Laboratory Medicine Department, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, PR China; Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yong You
- Department of Immunology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Xiaoqing Zhang
- Department of Immunology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning Province, PR China
| | - Xiao Wang
- Department of Immunology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Ruiqun Qi
- Department of Dermatology, No.1 Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, Liaoning Province, PR China
| | - Fan Yang
- Department of Dermatology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, PR China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning Province, PR China
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuanyuan Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xun Sun
- Department of Immunology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|