1
|
Kim SH, Oh JM, Roh H, Lee KW, Lee JH, Lee WJ. Zinc-Alpha-2-Glycoprotein Peptide Downregulates Type I and III Collagen Expression via Suppression of TGF-β and p-Smad 2/3 Pathway in Keloid Fibroblasts and Rat Incisional Model. Tissue Eng Regen Med 2024; 21:1079-1092. [PMID: 39105875 PMCID: PMC11416446 DOI: 10.1007/s13770-024-00664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Keloids and hypertrophic scars result from abnormal collagen accumulation and the inhibition of its degradation. Although the pathogenesis remains unclear, excessive accumulation of the extracellular matrix (ECM) is believed to be associated with the TGF-β/SMAD pathway. Zinc-alpha-2-glycoprotein (ZAG) inhibits TGF-β-mediated epithelial-to-mesenchymal transdifferentiation and impacts skin barrier functions. In this study, we investigated the potential of a small ZAG-derived peptide against hypertrophic scars and keloids. METHODS The study examined cell proliferation and mRNA expression of collagen types I and III in human dermal fibroblast (HDF) cell lines and keloid-derived fibroblasts (KF) following ZAG peptide treatment. A rat incisional wound model was used to evaluate the effect of ZAG peptide in scar tissue. RESULTS Significantly lower mRNA levels of collagen types I and III were observed in ZAG-treated fibroblasts, whereas matrix metalloproteinase (MMP)-1 and MMP-3 mRNA levels were significantly increased in HDFs and KFs. Furthermore, ZAG peptide significantly reduced protein expression of collagen type I and III, TGF-β1, and p-Smad2/3 complex in KFs. Rat incisional scar models treated with ZAG peptide presented narrower scar areas and reduced immature collagen deposition, along with decreased expression of collagen type I, α-SMA, and p-Smad2/3. CONCLUSION ZAG peptide effectively suppresses the TGF-β and p-Smad2/3 pathway and inhibits excessive cell proliferation during scar formation, suggesting its potential therapeutic implications against keloids and hypertrophic scars.
Collapse
Affiliation(s)
- Shin Hyun Kim
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Jung Min Oh
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Hyun Roh
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Kee-Won Lee
- R&D Center, L&C BIO Co., Ltd, 82, Naruteo-Ro, Seocho-Gu, Seoul, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea
| | - Won Jai Lee
- Department of Plastic and Reconstructive Surgery, Yonsei University, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea.
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Le Faouder J, Guého A, Lavigne R, Wauquier F, Boutin-Wittrant L, Bouvret E, Com E, Wittrant Y, Pineau C. Human Serum, Following Absorption of Fish Cartilage Hydrolysate, Promotes Dermal Fibroblast Healing through Anti-Inflammatory and Immunomodulatory Proteins. Biomedicines 2024; 12:2132. [PMID: 39335645 PMCID: PMC11430497 DOI: 10.3390/biomedicines12092132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Marine collagen peptides (MCPs) and glycosaminoglycans (GAGs) have been described as potential wound-healing (WH) agents. Fish cartilage hydrolysate (FCH) is a natural active food ingredient obtained from enzymatic hydrolysis which combines MCPs and GAGs. Recently, the clinical benefits of FCH supplementation for the skin, as well as its mode of action, have been demonstrated. Some of the highlighted mechanisms are common to the WH process. The aim of the study is therefore to investigate the influence of FCH supplementation on the skin healing processes and the underlying mechanisms. Methods: To this end, an ex vivo clinical approach, which takes into account the clinical digestive course of nutrients, coupled with primary cell culture on human dermal fibroblasts (HDFs) and ultra-deep proteomic analysis, was performed. The effects of human serum enriched in circulating metabolites resulting from FCH ingestion (FCH-enriched serum) were assessed on HDF WH via an in vitro scratch wound assay and on the HDF proteome via diaPASEF (Data Independent Acquisition-Parallel Accumulation Serial Fragmentation) proteomic analysis. Results: Results showed that FCH-enriched human serum accelerated wound closure. In support, proteins with anti-inflammatory and immunomodulatory properties and proteins prone to promote hydration and ECM stability showed increased expression in HDFs after exposure to FCH-enriched serum. Conclusions: Taken together, these data provide valuable new insights into the mechanisms that may contribute to FCH's beneficial impact on human skin functionality by supporting WH. Further studies are needed to reinforce these preliminary data and investigate the anti-inflammatory and immunomodulatory properties of FCH.
Collapse
Affiliation(s)
- Julie Le Faouder
- Abyss Ingredients, 860 Route de Caudan, 56850 Caudan, France;
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
| | - Aurélie Guého
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
| | - Régis Lavigne
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Fabien Wauquier
- Clinic’n’Cell SAS, Faculty of Medicine and Pharmacy, TSA 50400, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (F.W.); (Y.W.)
| | - Line Boutin-Wittrant
- Clinic’n’Cell SAS, Faculty of Medicine and Pharmacy, TSA 50400, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (F.W.); (Y.W.)
| | - Elodie Bouvret
- Abyss Ingredients, 860 Route de Caudan, 56850 Caudan, France;
| | - Emmanuelle Com
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Yohann Wittrant
- Clinic’n’Cell SAS, Faculty of Medicine and Pharmacy, TSA 50400, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (F.W.); (Y.W.)
- UNH, UMR1019, INRAE, 63009 Clermont-Ferrand, France
- Human Nutrition Unit, Clermont Auvergne University, BP 10448, 63000 Clermont-Ferrand, France
| | - Charles Pineau
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, F-35000 Rennes, France; (A.G.); (R.L.); , (C.P.)
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
3
|
Yang S, Yin Y, Sun Y, Ai D, Xia X, Xu X, Song J. AZGP1 Aggravates Macrophage M1 Polarization and Pyroptosis in Periodontitis. J Dent Res 2024; 103:631-641. [PMID: 38491721 DOI: 10.1177/00220345241235616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
Periodontal tissue destruction in periodontitis is a consequence of the host inflammatory response to periodontal pathogens, which could be aggravated in the presence of type 2 diabetes mellitus (T2DM). Accumulating evidence highlights the intricate involvement of macrophage-mediated inflammation in the pathogenesis of periodontitis under both normal and T2DM conditions. However, the underlying mechanism remains elusive. Alpha-2-glycoprotein 1 (AZGP1), a glycoprotein featuring an MHC-I domain, has been implicated in both inflammation and metabolic disorders. In this study, we found that AZGP1 was primarily colocalized with macrophages in periodontitis tissues. AZGP1 was increased in periodontitis compared with controls, which was further elevated when accompanied by T2DM. Adeno-associated virus-mediated overexpression of Azgp1 in the periodontium significantly enhanced periodontal inflammation and alveolar bone loss, accompanied by elevated M1 macrophages and pyroptosis in murine models of periodontitis and T2DM-associated periodontitis, while Azgp1-/- mice exhibited opposite effects. In primary bone marrow-derived macrophages stimulated by lipopolysaccharide (LPS) or LPS and palmitic acid (PA), overexpression or knockout of Azgp1 markedly upregulated or suppressed, respectively, the expression of macrophage M1 markers and key components of the NLR Family Pyrin Domain Containing 3 (NLRP3)/caspase-1 signaling. Moreover, conditioned medium from Azgp1-overexpressed macrophages under LPS or LPS+PA stimulation induced higher inflammatory activation and lower osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs). Furthermore, elevated M1 polarization and pyroptosis in macrophages and associated detrimental effects on hPDLSCs induced by Azgp1 overexpression could be rescued by NLRP3 or caspase-1 inhibition. Collectively, our study elucidated that AZGP1 could aggravate periodontitis by promoting macrophage M1 polarization and pyroptosis through the NLRP3/casapse-1 pathway, which was accentuated in T2DM-associated periodontitis. This finding deepens the understanding of AZGP1 in the pathogenesis of periodontitis and suggests AZGP1 as a crucial link mediating the adverse effects of diabetes on periodontal inflammation.
Collapse
Affiliation(s)
- S Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Y Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Y Sun
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - D Ai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - X Xia
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - X Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - J Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
4
|
Lee SG, Ham S, Lee J, Jang Y, Suk J, Lee YI, Lee JH. Evaluation of the anti-aging effects of Zinc-α2-glycoprotein peptide in clinical and in vitro study. Skin Res Technol 2024; 30:e13609. [PMID: 38419415 PMCID: PMC10902615 DOI: 10.1111/srt.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Skin aging, characterized by the deterioration of skin density and elasticity, is a common concern among individuals seeking to maintain a youthful appearance. Zinc-α2-glycoprotein (ZAG) is secreted by various body fluids, and is associated with lipolysis and identified as an atopic dermatitis biomarker. This study evaluated the potential of ZAG peptides, which exert multiple benefits such as anti-aging. MATERIALS AND METHODS We conducted a 4-week clinical trial on patients with noticeable periorbital wrinkles (n = 22) using a ZAG peptide-containing product. The effects of the products on skin density, elasticity, and the depth of periorbital wrinkles were evaluated using Cutometer Dual MPA580, Ultrascan, and Antera 3D CS, respectively. The effect of ZAG peptides on UVB-treated keratinocyte cells was evaluated in vitro to understand the mechanisms underlying its effects against impaired skin barrier function, collagen degradation, and senescence. In addition, the effects of ZAG peptides on cell viability and expression of aging and skin barrier-related genes were assessed using cell counting kit assay and quantitative reverse transcription-polymerase chain reaction, respectively. RESULTS The patients demonstrated improved skin density, elasticity, and reduced periorbital wrinkles. Further, more than 85% patients scored the product as satisfactory regarding anti-aging effects. Furthermore, ZAG peptides reduced SA-β-gal staining, downregulated the senescence-related genes, and upregulated the skin barrier function-related genes in UVB-irradiated keratinocyte cells. CONCLUSIONS Our clinical and in vitro findings showed that ZAG peptides exert anti-aging effects and improve skin barrier functions, suggesting their promising potential as therapeutic agents to combat skin aging and improve skin health.
Collapse
Affiliation(s)
- Sang Gyu Lee
- Department of Dermatology & Cutaneous Biology Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
| | - Seoyoon Ham
- Department of Dermatology & Cutaneous Biology Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
| | - Joohee Lee
- Department of Dermatology & Cutaneous Biology Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
| | - Yujin Jang
- Department of Pharmacology & TherapeuticsMcGill UniversityMontrealCanada
| | - Jangmi Suk
- Global Medical Research CenterSeoulRepublic of Korea
| | - Young In Lee
- Department of Dermatology & Cutaneous Biology Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
- Scar Laser and Plastic Surgery CenterYonsei Cancer HospitalSeoulRepublic of Korea
| | - Ju Hee Lee
- Department of Dermatology & Cutaneous Biology Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
- Scar Laser and Plastic Surgery CenterYonsei Cancer HospitalSeoulRepublic of Korea
| |
Collapse
|
5
|
Hanamura T, Yokoyama K, Kitano S, Kagamu H, Yamashita M, Terao M, Okamura T, Kumaki N, Hozumi K, Iwamoto T, Honda C, Kurozumi S, Richer JK, Niikura N. Investigating the immunological function of alpha-2-glycoprotein 1, zinc-binding in regulating tumor response in the breast cancer microenvironment. Cancer Immunol Immunother 2024; 73:42. [PMID: 38349455 PMCID: PMC10864576 DOI: 10.1007/s00262-024-03629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/07/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Alpha-2-glycoprotein 1, zinc-binding (ZAG), a secreted protein encoded by the AZGP1 gene, is structurally similar to HLA class I. Despite its presumed immunological function, little is known about its role in tumor immunity. In this study, we thus aimed to determine the relationship between the expression of AZGP1/ZAG and the immunological profiles of breast cancer tissues at both the gene and protein level. METHODS Using a publicly available gene expression dataset from a large-scale breast cancer cohort, we conducted gene set enrichment analysis (GSEA) to screen the biological processes associated with AZGP1. We analyzed the correlation between AZGP1 expression and immune cell composition in breast cancer tissues, estimated using CIBERSORTx. Previously, we evaluated the infiltration of 11 types of immune cells for 45 breast cancer tissues using flow cytometry (FCM). ZAG expression was evaluated by immunohistochemistry on these specimens and analyzed for its relationship with immune cell infiltration. The action of ZAG in M1/M2 polarization models using primary cultures of human peripheral blood mononuclear cells (PBMC)-derived macrophage (Mφ) was analyzed based on the expression of M1/M2 markers (CD86, CD80/CD163, MRC1) and HLA class I/II by FCM. RESULTS AZGP1 expression was negatively correlated with multiple immunological processes and specific immune cell infiltration including Mφ M1 using GSEA and CIBERSORTx. ZAG expression was associated with decreased infiltration of monocytes/macrophages, non-classical monocytes, and myeloid-derived suppressor cells in tumor tissues assessed using FCM. In in vitro analyses, ZAG decreased the expression of CD80, CD163, MRC1, and HLA classes I/II in the M1 polarization model and the expression of CD163 and MRC1 in the M2 polarization model. CONCLUSION ZAG is suggested to be a novel immunoregulatory factor affecting the Mφ phenotype in breast cancer tissues.
Collapse
Affiliation(s)
- Toru Hanamura
- Department of Breast Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan.
| | - Kozue Yokoyama
- Department of Breast Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Department of Advanced Medical Development, The Cancer Institute Hospital of JFCR, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Hiroshi Kagamu
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama Prefecture, 350-1298, Japan
| | - Makiko Yamashita
- Division of Cancer Immunotherapy Development, Department of Advanced Medical Development, The Cancer Institute Hospital of JFCR, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Mayako Terao
- Department of Breast Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan
| | - Takuho Okamura
- Department of Breast Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan
| | - Nobue Kumaki
- Department of Pathology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan
| | - Takayuki Iwamoto
- Kawasaki Medical School Hospital, Breast and Thyroid Surgery, 577 Matsushima, Kurashiki-shi, Okayama Prefecture, 701-0192, Japan
| | - Chikako Honda
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 39-22, Showa-Machi 3-Chome, Maebashi-shi, Gunma Prefecture, 371-8511, Japan
| | - Sasagu Kurozumi
- Department of Breast Surgery, International University of Health and Welfare, 4-3, Kozunomori, Narita-shi, Chiba Prefecture, 286-8686, Japan
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Mailstop 8104, Aurora, CO, 80045, USA
| | - Naoki Niikura
- Department of Breast Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa Prefecture, 259-1193, Japan
| |
Collapse
|
6
|
Zhang S, Zhang B, Liu Y, Li L. Adipokines in atopic dermatitis: the link between obesity and atopic dermatitis. Lipids Health Dis 2024; 23:26. [PMID: 38263019 PMCID: PMC10804547 DOI: 10.1186/s12944-024-02009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic skin condition with intense pruritus, eczema, and dry skin. The recurrent intense pruritus and numerous complications in patients with AD can profoundly affect their quality of life. Obesity is one of its comorbidities that has been confirmed to be the hazard factor of AD and also worsen its severity. Nevertheless, the specific mechanisms that explain the connection between obesity and AD remain incompletely recognized. Recent studies have built hopes on various adipokines to explain this connection. Adipokines, which are disturbed by an obese state, may lead to immune system imbalances in people with AD and promote the development of the disease. This review focuses on the abnormal expression patterns of adipokines in patients with AD and their potential regulatory molecular mechanisms associated with AD. The connection between AD and obesity is elucidated through the involvement of adipokines. This conduces to the in-depth exploration of AD pathogenesis and provides a new perspective to develop therapeutic targets.
Collapse
Affiliation(s)
- Shiyun Zhang
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730
| | - Bingjie Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730
| | - Yuehua Liu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730
| | - Li Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730.
| |
Collapse
|
7
|
Sahin RB, Kilic FA, Hizli P, Baykan O. Serum zinc-alpha-2 glycoprotein and insulin levels and their correlation with metabolic syndrome in patients with rosacea. J Cosmet Dermatol 2023; 22:645-650. [PMID: 36207990 DOI: 10.1111/jocd.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Metabolic syndrome and insulin resistance may accompany rosacea. Zinc-alpha-2 glycoprotein (ZAG) is an adipokine involved in lipid, glucose, and insulin metabolism and might be associated with metabolic syndrome and insulin resistance. AIMS To investigate the serum ZAG levels, presence of metabolic syndrome, insulin resistance, and the correlation between ZAG levels, rosacea severity, and metabolic syndrome in patients with rosacea. PATIENTS/METHODS Seventy-nine patients with rosacea and 80 healthy volunteers were included. Anthropometric and demographic features, personal and family histories, clinical data, the subtype, severity, and duration of rosacea were recorded. Metabolic syndrome, insulin resistance, and dyslipidemia were evaluated in both groups. Fasting blood sugar, lipid panel, C-reactive protein, sedimentation rate, insulin, and serum ZAG levels were investigated. RESULTS Frequency of metabolic syndrome, systolic and diastolic blood pressures, and C-reactive protein levels were significantly higher in the rosacea group (p < 0.001 and p = 0.001, respectively). Frequency of dyslipidemia and insulin resistance did not significantly differ between the groups (p = 0.175 and 0.694, respectively). The mean serum ZAG levels were lower in the rosacea group, but no significant difference was evident. In rosacea patients with metabolic syndrome, serum ZAG levels were significantly lower (p = 0.043); however, serum ZAG levels, insulin, and the homeostasis model assessment-estimated insulin resistance values were significantly higher (p = 0.168, 0.013 and 0.001, respectively). CONCLUSION Metabolic syndrome, high blood pressure, and high C-reactive protein levels were associated with rosacea indicating chronic systemic inflammation. ZAG levels were associated with metabolic syndrome in patients with rosacea but not associated with rosacea subtype and disease severity.
Collapse
Affiliation(s)
| | - Fatma Arzu Kilic
- Department of Dermatology, Faculty of Medicine, Balikesir University, Balikesir, Turkey
| | - Pelin Hizli
- Department of Dermatology, Faculty of Medicine, Balikesir University, Balikesir, Turkey
| | - Ozgur Baykan
- Department of Biochemistry, Faculty of Medicine, Balikesir University, Balikesir, Turkey
| |
Collapse
|
8
|
Guan J, Wu C, He Y, Lu F. Skin-associated adipocytes in skin barrier immunity: A mini-review. Front Immunol 2023; 14:1116548. [PMID: 36761769 PMCID: PMC9902365 DOI: 10.3389/fimmu.2023.1116548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
The skin contributes critically to health via its role as a barrier tissue against a multitude of external pathogens. The barrier function of the skin largely depends on the uppermost epidermal layer which is reinforced by skin barrier immunity. The integrity and effectiveness of skin barrier immunity strongly depends on the close interplay and communication between immune cells and the skin environment. Skin-associated adipocytes have been recognized to play a significant role in modulating skin immune responses and infection by secreting cytokines, adipokines, and antimicrobial peptides. This review summarizes the recent understanding of the interactions between skin-associated adipocytes and other skin cells in maintaining the integrity and effectiveness of skin barrier immunity.
Collapse
Affiliation(s)
| | | | - Yunfan He
- *Correspondence: Feng Lu, ; Yunfan He,
| | - Feng Lu
- *Correspondence: Feng Lu, ; Yunfan He,
| |
Collapse
|
9
|
Yeregui E, Masip J, Viladés C, Domingo P, Pacheco YM, Blanco J, Mallolas J, Alba V, Vargas M, García-Pardo G, Negredo E, Olona M, Vidal-González J, Peraire M, Martí A, Reverté L, Gómez-Bertomeu F, Leal M, Vidal F, Peraire J, Rull A. Adipokines as New Biomarkers of Immune Recovery: Apelin Receptor, RBP4 and ZAG Are Related to CD4+ T-Cell Reconstitution in PLHIV on Suppressive Antiretroviral Therapy. Int J Mol Sci 2022; 23:ijms23042202. [PMID: 35216318 PMCID: PMC8874604 DOI: 10.3390/ijms23042202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022] Open
Abstract
A significant proportion of people living with HIV (PLHIV) who successfully achieve virological suppression fail to recover CD4+ T-cell counts. Since adipose tissue has been discovered as a key immune organ, this study aimed to assess the role of adipokines in the HIV immunodiscordant response. This is a multicenter prospective study including 221 PLHIV starting the first antiretroviral therapy (ART) and classified according to baseline CD4+ T-cell counts/µL (controls > 200 cells/µL and cases ≤ 200 cells/µL). Immune failure recovery was considered when cases did not reach more than 250 CD4+ T cells/µL at 144 weeks (immunological nonresponders, INR). Circulating adipokine concentrations were longitudinally measured using enzyme-linked immunosorbent assays. At baseline, apelin receptor (APLNR) and zinc-alpha-2-glycoprotein (ZAG) concentrations were significantly lower in INRs than in immunological responders (p = 0.043 and p = 0.034), and they remained lower during all ART follow-up visits (p = 0.044 and p = 0.028 for APLNR, p = 0.038 and p = 0.010 for ZAG, at 48 and 144 weeks, respectively). ZAG levels positively correlated with retinol-binding protein 4 (RBP4) levels (p < 0.01), and low circulating RBP4 concentrations were related to a low CD4+ T-cell gain (p = 0.018 and p = 0.039 at 48 and 144 weeks, respectively). Multiple regression adjusted for clinical variables and adipokine concentrations confirmed both low APLNR and RBP4 as independent predictors for CD4+ T cells at 144 weeks (p < 0.001). In conclusion, low APLNR and RBP4 concentrations were associated with poor immune recovery in treated PLHIV and could be considered predictive biomarkers of a discordant immunological response.
Collapse
Affiliation(s)
- Elena Yeregui
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Institut Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
| | - Jenifer Masip
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
| | - Consuelo Viladés
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Institut Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
| | - Pere Domingo
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
| | - Yolanda M. Pacheco
- Laboratory of Immunology, Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- UGC Clinical Laboratories, Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Julià Blanco
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
- Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
| | - Josep Mallolas
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
- HIV Unit and Infectious Diseases Service, Hospital Clinic-IDIBAPS, 08036 Barcelona, Spain
| | - Verónica Alba
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
| | - Montserrat Vargas
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
| | - Graciano García-Pardo
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Institut Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
| | - Eugènia Negredo
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
- Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- Fundació de la Lluita contra les Infeccions, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Montserrat Olona
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
| | | | - Maria Peraire
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
| | - Anna Martí
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Institut Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
| | - Laia Reverté
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Institut Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
| | - Fréderic Gómez-Bertomeu
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
| | - Manuel Leal
- Internal Medicine Service, Hospital Viamed Santa Ángela de la Cruz, 41014 Seville, Spain;
| | - Francesc Vidal
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Institut Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
- Correspondence: (F.V.); (A.R.)
| | - Joaquim Peraire
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Institut Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
| | - Anna Rull
- Infection and Immunity Research Group (INIM), Hospital Universitari de Tarragona Joan XXIII (HJ23), 43005 Tarragona, Spain; (E.Y.); (J.M.); (C.V.); (V.A.); (M.V.); (G.G.-P.); (M.O.); (A.M.); (L.R.); (F.G.-B.); (J.P.)
- Institut Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- Infection and Immunity Research Group (INIM), Universitat Rovira i Virgili (URV), 43003 Tarragona, Spain;
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.); (J.M.); (E.N.)
- Correspondence: (F.V.); (A.R.)
| |
Collapse
|
10
|
Termer M, Jaeger A, Carola C, Salazar A, Keck CM, Kolmar H, von Hagen J. Methoxy-Monobenzoylmethane Protects Skin from UV-Induced Damages in a Randomized, Placebo Controlled, Double-Blinded Human In Vivo Study and Prevents Signs of Inflammation While Improving the Skin Barrier. Dermatol Ther (Heidelb) 2022; 12:435-449. [PMID: 34939179 PMCID: PMC8850519 DOI: 10.1007/s13555-021-00652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Sun protection is important in skin care and requires special attention as inefficient protection might trigger skin pathologies including polymorphic light eruption (PLE). The reduce-improve-protect (RIP) concept to avoid the onset of ultraviolet (UV) irradiation-induced diseases or damage to human skin is important. Methoxy-monobenzoylmethane (MeO-MBM), which is neither a UVB nor a UVA filter, converts to the UV filter avobenzone under UV irradiation and further acts as a photoantioxidant during its conversion process and initially as an antioxidant material. The aim of this study was to understand the mechanisms by which MeO-MBM improves the condition of UV-stressed skin through its photoantioxidant properties. The improvement of the skin condition by the activity of MeO-MBM as active ingredient was also investigated. METHODS Potential molecular targets were identified by in silico docking to numerous cellular membrane receptors on the cell surface or nuclear membrane, followed by microarray analysis of 164 genes after MeO-MBM treatment of normal human epidermal keratinocytes (NHEK). We conducted randomized, double-blinded, intra-individual comparison vs. placebo studies on ten volunteers, aged between 34 and 65 years, to assess the effect of MeO-MBM in vivo. The effect after UV-induced inflammation was assessed in a protective and curative set-up with 2% MeO-MBM vs. 1% hydrocortisone and placebo based on the change in blood flow. The barrier function of the skin was assessed by the change in transepidermal water loss (TEWL), skin scaling and skin thickness after the treatment with MeO-MBM. Additionally, the effect of MeO-MBM after UV-induced stress on the activation of ferritin in human explants was determined ex vivo. RESULTS A docking simulation of MeO-MBM showed a potential interaction with the retinoic acid receptor gamma and further revealed downregulation of proteins related to inflammation. In the protective treatment set-up, after 24 h MeO-MBM significantly reduced the delta blood flow compared to placebo, while this reduction was more prominent with hydrocortisone. In the curative treatment set-up, a greater reduction in delta blood flow was also observed with MeO-MBM compared to placebo and similar to hydrocortisone. Treatment with MeO-MBM revealed an improvement in skin barrier function as a result of decreased TEWL, reduced skin scaling and increased skin thickness. Immunohistochemistry staining of ferritin on human skin explants further showed that the treatment with MeO-MBM reduced the ferritin expression. CONCLUSION Based on these results, MeO-MBM is capable of exerting an anti-aging activity via the retinoic acid receptor gamma. Its anti-inflammatory and anti-oxidative activity manifested via the downregulation of multiple anti-inflammatory genes as well as the reduction of ferritin in skin tissue. This study shows that the multidimensional functionality of MeO-MBM offers an effective approach to combat acute and chronic deleterious effects of oxidative UV damage while simultaneously enhancing the skin barrier function.
Collapse
Affiliation(s)
- Michael Termer
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Marburg, Germany
| | - Anita Jaeger
- Department of Applied Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | | | | | - Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Marburg, Germany
| | - Harald Kolmar
- Department of Applied Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
11
|
Role of Epithelium-Derived Cytokines in Atopic Dermatitis and Psoriasis: Evidence and Therapeutic Perspectives. Biomolecules 2021; 11:biom11121843. [PMID: 34944487 PMCID: PMC8699296 DOI: 10.3390/biom11121843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis and psoriasis are two of the most common chronic skin conditions. Current target therapies represent viable and safe solutions for the most severe cases of these two dermatoses but, presently, several limitations exist in terms of efficacy and side effects. A new class of products, epithelium-derived cytokines (TSLP, IL-25, IL-33), show an increasing potential for use in target therapy for these patients, and demonstrate a direct link between a generalized inflammatory and oxidative stress status and the human skin. A review was conducted to better understand their role in the aforementioned conditions. Of these three molecules, TSLP led has been most often considered in studies regarding target therapies, and most of the results in the literature are related to this cytokine. These three cytokines share common stimuli and are linked to each other in both acute and chronic phases of these diseases, and have been challenged as target therapies or biomarkers of disease activity. The results lead to the conclusion that epithelium-derived cytokines could represent a therapeutic opportunity for these patients, especially in itch control. Furthermore, they might work better when paired together with currently available therapies or in combination with in-development treatments. Further studies are needed in order to verify the efficacy and safety of the biologic treatments currently under development.
Collapse
|
12
|
Barrier defect in atopic dermatitis - possibilities and limits of basic skin therapy. Allergol Select 2021; 5:287-292. [PMID: 34532637 PMCID: PMC8439110 DOI: 10.5414/alx02268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
The increased permeability of the skin barrier towards environmental factors such as allergens is considered a key factor in the pathogenesis of atopic dermatitis (AD). Strengthening the skin barrier through basic skin therapy represents the basis of any therapy for AD. It is well known that genetic factors as well as the skin inflammation itself contribute to the weakening of the barrier; here, recent studies have led to a deeper understanding of the complex structures of the epidermis. The possibility of counteracting the disease preventively by the use of basic skin therapy from birth on has been studied intensively in recent years. This article summarizes recent findings on the effects of basic skin therapy as a primary and secondary preventive measure.
Collapse
|
13
|
Morelli P, Gaspari M, Gabriele C, Dastoli S, Bennardo L, Pavel AB, Patruno C, Del Duca E, Nisticò SP. Proteomic analysis from skin swabs reveals a new set of proteins identifying skin impairment in atopic dermatitis. Exp Dermatol 2021; 30:811-819. [PMID: 33394542 DOI: 10.1111/exd.14276] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Atopic Dermatitis (AD) is a common inflammatory skin disease characterized by skin and systemic inflammation, and barrier dysfunction. Herein, we investigate the proteomic profile of AD skin barrier to identify a unique signature with an easy-performed sampling approach. We enrolled 8 moderate-to-severe AD patients and 8 age- and gender-matched healthy controls. Swabs were obtained from non-lesional skin of retroauricular area and antecubital fold. Peptide mixtures obtained through protein precipitation and in-solution digestion were analysed using NanoLC-MS/MS. Label-free quantification and statistical analysis were conducted in MaxQuant and Perseus. Bioinformatics analysis was performed using Gene Ontology and STRING. We identified 908 proteins and 35 differentially expressed proteins were selected (fold change 2, FDR < 0.05). Particularly, AD skin showed downregulation of skin hydration factors, structural and epidermal proteins, abnormalities in protease-proteasome complex and lipid metabolism profile. Imbalance of antioxidant and inflammatory processes, along with TDRD15 upregulation was also observed. Our result showed partial overlap with skin biopsy/tape-strips studies, showing the reliability of our sampling approach which could be an easier method of detection of hallmark barrier proteins in AD. Furthermore, we displayed a new differentially expressed set of proteins, not yet explored in AD which can have a potential role in AD pathomechanisms.
Collapse
Affiliation(s)
- Paola Morelli
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Caterina Gabriele
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Stefano Dastoli
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Luigi Bennardo
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Ana Brandusa Pavel
- Department of Biomedical Engineering, University of Mississippi, University, MS, USA
| | - Cataldo Patruno
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Ester Del Duca
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Steven P Nisticò
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
14
|
Xu D, You J, Chen G, Su H, Zhang L, Cui L, Li Z, Huang G, Feng C. Changes of Serum Zinc- α2-Glycoprotein Level and Analysis of Its Related Factors in Gestational Diabetes Mellitus. J Diabetes Res 2021; 2021:8879786. [PMID: 33681385 PMCID: PMC7910037 DOI: 10.1155/2021/8879786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/17/2021] [Accepted: 02/06/2021] [Indexed: 11/17/2022] Open
Abstract
Previous studies have discovered that zinc-α2-glycoprotein (ZAG) is related to insulin resistance and lipid metabolism. The aim of the study is to explore the change of serum ZAG and its related factors in gestational diabetes mellitus (GDM). Eighty newly diagnosed GDM patients were enrolled in the case group, and 80 normal pregnant women were selected as the control group. The differences of baseline data between the two groups were compared, and the change of serum ZAG level and its relationship with related indexes was analyzed. Compared to the control group, the level of serum ZAG in GDM women decreased (P < 0.001). What is more, the serum ZAG level of overweight and normal subjects in two groups was also found to have statistical differences. The Pearson correlation (or Spearman correlation) analysis showed that serum ZAG level was negatively correlated with FPG, FINS, HOMA-IR, and TG (all P < 0.05) and positively correlated with HDL (P < 0.05). Multiple linear regression showed that HDL and HOMA-IR were independent factors of serum ZAG (P < 0.05). The level of serum ZAG in patients with gestational diabetes mellitus decreased, and HDL and HOMA-IR are the influencing factors in the case group.
Collapse
Affiliation(s)
- Dongmei Xu
- Department of Health, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jie You
- Department of Clinical Nutrition, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Guixia Chen
- Department of Health, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hongli Su
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
| | - Li Zhang
- Department of Health, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lingling Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou Henan 450001, China
| | - Zhonglei Li
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou Henan 450001, China
| | - Guoling Huang
- Department of Financial, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Caiying Feng
- Department of Clinical Nutrition, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
15
|
Kovács D, Fazekas F, Oláh A, Törőcsik D. Adipokines in the Skin and in Dermatological Diseases. Int J Mol Sci 2020; 21:ijms21239048. [PMID: 33260746 PMCID: PMC7730960 DOI: 10.3390/ijms21239048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Adipokines are the primary mediators of adipose tissue-induced and regulated systemic inflammatory diseases; however, recent findings revealed that serum levels of various adipokines correlate also with the onset and the severity of dermatological diseases. Importantly, further data confirmed that the skin serves not only as a target for adipokine signaling, but may serve as a source too. In this review, we aim to provide a complex overview on how adipokines may integrate into the (patho) physiological conditions of the skin by introducing the cell types, such as keratinocytes, fibroblasts, and sebocytes, which are known to produce adipokines as well as the signals that target them. Moreover, we discuss data from in vivo and in vitro murine and human studies as well as genetic data on how adipokines may contribute to various aspects of the homeostasis of the skin, e.g., melanogenesis, hair growth, or wound healing, just as to the pathogenesis of dermatological diseases such as psoriasis, atopic dermatitis, acne, rosacea, and melanoma.
Collapse
Affiliation(s)
- Dóra Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (D.K.); (F.F.)
| | - Fruzsina Fazekas
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (D.K.); (F.F.)
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary;
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (D.K.); (F.F.)
- Correspondence: ; Tel.: +36-52-255-602
| |
Collapse
|
16
|
Liu M, Zhang J, Wang Y, Xin C, Ma J, Xu S, Wang X, Gao J, Zhang X, Yang S. Non‑invasive proteome‑wide quantification of skin barrier‑related proteins using label‑free LC‑MS/MS analysis. Mol Med Rep 2020; 21:2227-2235. [PMID: 32186761 PMCID: PMC7115193 DOI: 10.3892/mmr.2020.11020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
A number of epidermal proteins are closely related to skin barrier function, the abnormalities of which can lead to specific skin diseases. These proteins must be quantified to further investigate the changes in the skin barrier between healthy and disease states. However, the non-invasive and proteome-wide quantification of skin proteins without any labelling steps remains a challenge. In this study, 3M medical adhesive tapes were used to obtain skin samples from volunteers. Proteins were extracted from fresh skin samples and digested with trypsin. Each tryptic peptide was analysed in three replicates using liquid chromatography with tandem mass spectrometry analysis and label-free quantification. The data were searched against the Human Universal Protein Resource (UniProt) to match with known proteins. Using this method, 1,157 skin proteins recorded in the UniProt were quantified. A total of 50 identical proteins were identified in the three replicate analyses of all samples with no significant differences in abundance. The results provided an objective metric for further study of skin ageing and various skin diseases. Specifically, the non-invasive proteome-wide method used in this study can be applied to future studies of skin diseases related to barrier destruction by monitoring the changes in the levels of epidermal proteins.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jing Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yaochi Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Cong Xin
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Ma
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shuangjun Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaomeng Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xuejun Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sen Yang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
17
|
Li Q, Fang H, Dang E, Wang G. The role of ceramides in skin homeostasis and inflammatory skin diseases. J Dermatol Sci 2019; 97:2-8. [PMID: 31866207 DOI: 10.1016/j.jdermsci.2019.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
Ceramides, members of sphingolipid family, are not only the building blocks of epidermal barrier structure, but also bioactive metabolites involved in epidermal self-renewal and immune regulation. Hence, abnormal ceramide expression profile is recognized to defect extracellular lipid organization, disturb epidermal self-renewal, exacerbate skin immune response and actively participate in progression of several inflammatory dermatoses, exemplifying by psoriasis and atopic dermatitis. Here, we discuss recent advances in understanding skin ceramides and their regulatory roles in skin homeostasis and pathogenic roles of altered ceramide metabolism in inflammatory skin diseases. These insights provide new opportunities for therapeutic intervention in inflammatory dermatoses.
Collapse
Affiliation(s)
- Qingyang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|