1
|
Xu X, Cheng W, Zhao S, Liu Y, Li L, Song X, Zhang Y, Ding C. Pan-cancer analysis of the role of MPP7 in human tumors. Heliyon 2024; 10:e36148. [PMID: 39224268 PMCID: PMC11367567 DOI: 10.1016/j.heliyon.2024.e36148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
MAGUK p55 subfamily member 7, a part of the membrane palmitoylated protein subfamily, is an essential adapter that promotes epithelial cell polarity and has increasing significance in multiple cancers, including esophageal cancer, clear cell renal cell carcinoma, breast cancer, and pancreatic ductal adenocarcinoma. This paper aims to determine the effect of the MAGUK p55 subfamily member 7 in various tumor types using The Cancer Genome Atlas and Genotype-Tissue Expression database. A variety of software and web platforms, such as cBioPortal, GEPIA2, TIMER2, UALCAN, R, STRING, and DAVID, were used to obtain and analyze data. Notably, low expression of MAGUK p55 subfamily member 7 was observed in most cancers. In addition, low expression of MAGUK p55 subfamily member 7 predicted poor prognoses in cancer patients. Mutation was the most frequent genetic alteration type in MAGUK p55 subfamily member 7, with the phosphorylation sites identified as S412 and S490 in various cancers. Furthermore, expression of MAGUK p55 subfamily member 7 was associated with cancer-related fibroblasts and CD8+ T cells. Gene enrichment analysis indicated that MAGUK p55 subfamily member 7 influences cancer through the Rap1 signaling pathway. This paper elucidates the biological significance of MAGUK p55 subfamily member 7 in human pan-cancer prognosis and immune response.
Collapse
Affiliation(s)
- Xiaotong Xu
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Weyland Cheng
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Shuai Zhao
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Yuchun Liu
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Lifeng Li
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Xiaorui Song
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Cong Ding
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| |
Collapse
|
2
|
Shen X, Wang C, Zhou X, Zhou W, Hornburg D, Wu S, Snyder MP. Nonlinear dynamics of multi-omics profiles during human aging. NATURE AGING 2024:10.1038/s43587-024-00692-2. [PMID: 39143318 DOI: 10.1038/s43587-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Aging is a complex process associated with nearly all diseases. Understanding the molecular changes underlying aging and identifying therapeutic targets for aging-related diseases are crucial for increasing healthspan. Although many studies have explored linear changes during aging, the prevalence of aging-related diseases and mortality risk accelerates after specific time points, indicating the importance of studying nonlinear molecular changes. In this study, we performed comprehensive multi-omics profiling on a longitudinal human cohort of 108 participants, aged between 25 years and 75 years. The participants resided in California, United States, and were tracked for a median period of 1.7 years, with a maximum follow-up duration of 6.8 years. The analysis revealed consistent nonlinear patterns in molecular markers of aging, with substantial dysregulation occurring at two major periods occurring at approximately 44 years and 60 years of chronological age. Distinct molecules and functional pathways associated with these periods were also identified, such as immune regulation and carbohydrate metabolism that shifted during the 60-year transition and cardiovascular disease, lipid and alcohol metabolism changes at the 40-year transition. Overall, this research demonstrates that functions and risks of aging-related diseases change nonlinearly across the human lifespan and provides insights into the molecular and biological pathways involved in these changes.
Collapse
Affiliation(s)
- Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Singapore, Singapore
| | - Chuchu Wang
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Xu H, Du W, Jing X, Xie J, Li P. Development of a prognostic model for lung adenocarcinoma polarity-related genes and analysis of immune landscape. Biotechnol Appl Biochem 2024; 71:817-834. [PMID: 38475658 DOI: 10.1002/bab.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Despite the progress made in the management of lung adenocarcinoma (LUAD), the overall prognosis for LUAD individuals remains suboptimal. While the role of cell polarity in tumor invasion and metastasis is well established, its prognostic significance in LUAD is still unknown. Differential analysis was performed on the Cancer Genome Atlas (TCGA)-LUAD and normal lung tissue, and candidate genes were identified by intersecting differentially expressed genes with polarity-related genes (PRGs). A prognostic model was constructed using univariate and multivariate Cox regression and LASSO regression. To enhance the robustness of the analysis, an independent prognostic analysis was conducted by incorporating relevant clinical information. The accuracy and sensitivity of the model were validated using survival analysis and ROC curves. Finally, immune landscape, immune therapy, tumor mutation burden, and drug sensitivity analysis were carried out on high- and low-risk patients. Ten prognostic genes were screened to divide LUAD patients into different risk groups. Survival analysis, ROC curves, and univariate/multivariate Cox regression analyses collectively demonstrated the favorable predictive performance of the model, which could be an independent prognostic factor. The nomogram, in conjunction with the calibration curve, demonstrated the model's compelling predictive capacity in prognosticating the overall survival of LUAD individuals. Low-risk LUAD patients exhibited heightened levels of immune cell infiltration, immune scores, and immune checkpoint expression compared to high-risk individuals. So, they may have a greater likelihood of benefiting from immune therapy. The high-risk group demonstrated a remarkably higher tumor mutation burden (TMB) in contrast with the low-risk group. XAV-939, Fulvestrant, and SR16157 may have potential value in the clinical use of LUAD. We revealed the potential linkage between PRGs and LUAD prognosis, and the application of these prognostic factors in risk stratification and prognosis prediction of LUAD patients may be of great significance.
Collapse
Affiliation(s)
- Hongqiu Xu
- Department of General Medicine, Huai'an Hospital of Huai'an City, Huai'an City, Jiangsu Province, China
| | - Wenqiang Du
- Department of General Medicine, Huai'an Hospital of Huai'an City, Huai'an City, Jiangsu Province, China
| | - Xuelong Jing
- Department of General Medicine, Huai'an Hospital of Huai'an City, Huai'an City, Jiangsu Province, China
| | - Jingen Xie
- Department of General Medicine, Huai'an Hospital of Huai'an City, Huai'an City, Jiangsu Province, China
| | - Pengfei Li
- Department of General Medicine, Huai'an Hospital of Huai'an City, Huai'an City, Jiangsu Province, China
| |
Collapse
|
4
|
Dong Y, Zhang Y, Yu H, Zhou L, Zhang Y, Wang H, Hu Z, Luo S. Poly-l-lactic acid microspheres delay aging of epidermal stem cells in rat skin. Front Immunol 2024; 15:1394530. [PMID: 38881903 PMCID: PMC11177849 DOI: 10.3389/fimmu.2024.1394530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Injectable skin fillers offer a wider range of options for cutaneous anti-aging and facial rejuvenation. PLLA microspheres are increasingly favored as degradable and long-lasting fillers. The present study focused solely on the effect of PLLA on dermal collagen, without investigating its impact on the epidermis. In this study, we investigated the effects of PLLA microspheres on epidermal stem cells (EpiSCs). Methods Different concentrations of PLLA microspheres on epidermal stem cells (EpiSCs) in vitro through culture, and identification of primary rat EpiSCs. CCK-8 detection, apoptosis staining, flow cytometry, Transwell assay, wound healing assay, q-PCR analysis, and immunofluorescence staining were used to detect the effects of PLLA on EpiSCs. Furthermore, we observed the effect on the epidermis by injecting PLLA into the dermis of the rat skin in vivo. Results PLLA microspheres promote cell proliferation and migration while delaying cell senescence and maintaining its stemness. In vitro, Intradermal injection of PLLA microspheres in the rat back skin resulted in delayed aging, as evidenced by histological and immunohistochemical staining of the skin at 2, 4, and 12 weeks of follow-up. Conclusion This study showed the positive effects of PLLA on rat epidermis and EpiSCs, while providing novel insights into the anti-aging mechanism of PLLA.
Collapse
Affiliation(s)
- Yunxian Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Youliang Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hao Yu
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lingcong Zhou
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yaan Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Haibin Wang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shengkang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
5
|
Di Russo J, Magin TM, Leube RE. A keratin code defines the textile nature of epithelial tissue architecture. Curr Opin Cell Biol 2023; 85:102236. [PMID: 37708744 DOI: 10.1016/j.ceb.2023.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
We suggest that the human body can be viewed as of textile nature whose fabric consists of interconnected fiber systems. These fiber systems form highly dynamic scaffolds, which respond to environmental changes at different temporal and spatial scales. This is especially relevant at sites where epithelia border on connective tissue regions that are exposed to dynamic microenvironments. We propose that the enormous heterogeneity and adaptability of epithelia are based on a "keratin code", which results from the cell-specific expression and posttranslational modification of keratin isotypes. It thereby defines unique cytoskeletal intermediate filament networks that are coupled across cells and to the correspondingly heterogeneous fibers of the underlying extracellular matrix. The resulting fabric confers unique local properties.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
6
|
Herranz-Pinto P, Alonso-Pacheco ML, Feltes-Ochoa R, Mayor-Ibarguren A, Servera-Negre G, Busto-Leis JM, Gonzalez-Fernández MA, Herrero-Ambrosio A. Real-world Performance of a New Strategy for Off-Label Use of Guselkumab in Moderate to Severe Psoriasis: Super-Responder Patients as the Epitome of Efficacy and Optimisation. Clin Drug Investig 2023; 43:517-527. [PMID: 37402097 PMCID: PMC10374766 DOI: 10.1007/s40261-023-01280-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Guselkumab is a drug used to treat moderate to severe plaque psoriasis. However, real-life clinical data on its off-label use are limited, especially regarding the optimal drug dosage regimen for different patient profiles. OBJECTIVE The main objective of this real-world, single-centre, retrospective study was to identify the off-label guselkumab dosing regimen used in clinical practice. The study also aimed to evaluate the drug's efficacy, safety, and survival, as well as the proportion of super-responders (SR) based on a newly proposed definition. METHODS The study included 69 patients who started treatment with guselkumab between March 2019 and July 2021. Patients were followed up until April 2022, during which time their efficacy, safety, persistence, and use of guselkumab were recorded. Patients were aged ≥ 18 years and had moderate to severe plaque psoriasis. RESULTS The mean disease duration was 18.6 years, and 59% of patients had received at least one biologic treatment before guselkumab with a mean of 1.3 biologics per patient. The initial absolute Psoriasis Area and Severity Index (PASI) was 10.1 and decreased to 2.1 between Week 11-20 without significant changes in the PASI value throughout the 90 weeks of follow-up. The cumulative probability of drug survival was 93.5% at Week 52. No differences were found in terms of efficacy and survival associated with the off-label drug dosage regimens compared to the doses described in the Summary of Product Characteristics (SmPC). The greatest adjustments in the drug administration regimen were achieved in the subgroups of bio-naïve and SR patients, with a reduction in the number of administrations by 40% and 47% compared to the regimen described in the SmPC. Super-response to guselkumab was mainly associated with patients naïve to previous biologic treatment. CONCLUSION The study demonstrated that off-label use of guselkumab was safe and effective in real-life clinical practice. The findings suggest that adjustments to the drug administration regimen may be necessary to optimise its use in different patient profiles, especially in SR and bio-naïve patients. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Pedro Herranz-Pinto
- Department of Dermatology, La Paz University Hospital, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| | - Maria Luisa Alonso-Pacheco
- Department of Dermatology, La Paz University Hospital, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Rosa Feltes-Ochoa
- Department of Dermatology, La Paz University Hospital, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Ander Mayor-Ibarguren
- Department of Dermatology, La Paz University Hospital, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Guillermo Servera-Negre
- Department of Dermatology, La Paz University Hospital, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Jose Manuel Busto-Leis
- Department of Dermatology, La Paz University Hospital, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | - Alicia Herrero-Ambrosio
- Department of Hospital Pharmacy, La Paz University Hospital, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Altay Benetti A, Tarbox T, Benetti C. Current Insights into the Formulation and Delivery of Therapeutic and Cosmeceutical Agents for Aging Skin. COSMETICS 2023. [DOI: 10.3390/cosmetics10020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
“Successful aging” counters the traditional idea of aging as a disease and is increasingly equated with minimizing age signs on the skin, face, and body. From this stems the interest in preventative aesthetic dermatology that might help with the healthy aging of skin, help treat or prevent certain cutaneous disorders, such as skin cancer, and help delay skin aging by combining local and systemic methods of therapy, instrumental devices, and invasive procedures. This review will discuss the main mechanisms of skin aging and the potential mechanisms of action for commercial products already on the market, highlighting the issues related to the permeation of the skin from different classes of compounds, the site of action, and the techniques employed to overcome aging. The purpose is to give an overall perspective on the main challenges in formulation development, especially nanoparticle formulations, which aims to defeat or slow down skin aging, and to highlight new market segments, such as matrikines and matrikine-like peptides. In conclusion, by applying enabling technologies such as those delivery systems outlined here, existing agents can be repurposed or fine-tuned, and traditional but unproven treatments can be optimized for efficacious dosing and safety.
Collapse
|
8
|
Cho IS, Gupta P, Mostafazadeh N, Wong SW, Saichellappa S, Lenzini S, Peng Z, Shin J. Deterministic Single Cell Encapsulation in Asymmetric Microenvironments to Direct Cell Polarity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206014. [PMID: 36453581 PMCID: PMC9875620 DOI: 10.1002/advs.202206014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Various signals in tissue microenvironments are often unevenly distributed around cells. Cellular responses to asymmetric cell-matrix adhesion in a 3D space remain generally unclear and are to be studied at the single-cell resolution. Here, the authors developed a droplet-based microfluidic approach to manufacture a pure population of single cells in a microscale layer of compartmentalized 3D hydrogel matrices with a tunable spatial presentation of ligands at the subcellular level. Cells elongate with an asymmetric presentation of the integrin adhesion ligand Arg-Gly-Asp (RGD), while cells expand isotropically with a symmetric presentation of RGD. Membrane tension is higher on the side of single cells interacting with RGD than on the side without RGD. Finite element analysis shows that a non-uniform isotropic cell volume expansion model is sufficient to recapitulate the experimental results. At a longer timescale, asymmetric ligand presentation commits mesenchymal stem cells to the osteogenic lineage. Cdc42 is an essential mediator of cell polarization and lineage specification in response to asymmetric cell-matrix adhesion. This study highlights the utility of precisely controlling 3D ligand presentation around single cells to direct cell polarity for regenerative engineering and medicine.
Collapse
Affiliation(s)
- Ik Sung Cho
- Department of Pharmacology and Regenerative MedicineUniversity of Illinois at Chicago College of MedicineChicagoIL60612USA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Prerak Gupta
- Department of Pharmacology and Regenerative MedicineUniversity of Illinois at Chicago College of MedicineChicagoIL60612USA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Nima Mostafazadeh
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Sing Wan Wong
- Department of Pharmacology and Regenerative MedicineUniversity of Illinois at Chicago College of MedicineChicagoIL60612USA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Saiumamaheswari Saichellappa
- Department of Pharmacology and Regenerative MedicineUniversity of Illinois at Chicago College of MedicineChicagoIL60612USA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Stephen Lenzini
- Department of Pharmacology and Regenerative MedicineUniversity of Illinois at Chicago College of MedicineChicagoIL60612USA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Zhangli Peng
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Jae‐Won Shin
- Department of Pharmacology and Regenerative MedicineUniversity of Illinois at Chicago College of MedicineChicagoIL60612USA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| |
Collapse
|
9
|
Khalil K, Eon A, Janody F. Cell Architecture-Dependent Constraints: Critical Safeguards to Carcinogenesis. Int J Mol Sci 2022; 23:8622. [PMID: 35955754 PMCID: PMC9369145 DOI: 10.3390/ijms23158622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Animal cells display great diversity in their shape. These morphological characteristics result from crosstalk between the plasma membrane and the force-generating capacities of the cytoskeleton macromolecules. Changes in cell shape are not merely byproducts of cell fate determinants, they also actively drive cell fate decisions, including proliferation and differentiation. Global and local changes in cell shape alter the transcriptional program by a multitude of mechanisms, including the regulation of physical links between the plasma membrane and the nuclear envelope and the mechanical modulation of cation channels and signalling molecules. It is therefore not surprising that anomalies in cell shape contribute to several diseases, including cancer. In this review, we discuss the possibility that the constraints imposed by cell shape determine the behaviour of normal and pro-tumour cells by organizing the whole interconnected regulatory network. In turn, cell behaviour might stabilize cells into discrete shapes. However, to progress towards a fully transformed phenotype and to acquire plasticity properties, pro-tumour cells might need to escape these cell shape restrictions. Thus, robust controls of the cell shape machinery may represent a critical safeguard against carcinogenesis.
Collapse
Affiliation(s)
- Komal Khalil
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Master Programme in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Alice Eon
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Magistère Européen de Génétique, Université Paris Cité, 5 Rue Thomas Mann, 75013 Paris, France
| | - Florence Janody
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Anillin governs mitotic rounding during early epidermal development. BMC Biol 2022; 20:145. [PMID: 35710398 PMCID: PMC9205045 DOI: 10.1186/s12915-022-01345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background The establishment of tissue architecture requires coordination between distinct processes including basement membrane assembly, cell adhesion, and polarity; however, the underlying mechanisms remain poorly understood. The actin cytoskeleton is ideally situated to orchestrate tissue morphogenesis due to its roles in mechanical, structural, and regulatory processes. However, the function of many pivotal actin-binding proteins in mammalian development is poorly understood. Results Here, we identify a crucial role for anillin (ANLN), an actin-binding protein, in orchestrating epidermal morphogenesis. In utero RNAi-mediated silencing of Anln in mouse embryos disrupted epidermal architecture marked by adhesion, polarity, and basement membrane defects. Unexpectedly, these defects cannot explain the profoundly perturbed epidermis of Anln-depleted embryos. Indeed, even before these defects emerge, Anln-depleted epidermis exhibits abnormalities in mitotic rounding and its associated processes: chromosome segregation, spindle orientation, and mitotic progression, though not in cytokinesis that was disrupted only in Anln-depleted cultured keratinocytes. We further show that ANLN localizes to the cell cortex during mitotic rounding, where it regulates the distribution of active RhoA and the levels, activity, and structural organization of the cortical actomyosin proteins. Conclusions Our results demonstrate that ANLN is a major regulator of epidermal morphogenesis and identify a novel role for ANLN in mitotic rounding, a near-universal process that governs cell shape, fate, and tissue morphogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01345-9.
Collapse
|
11
|
Afzal MW, Duan K, Zhang Y, Gao Y, Qin B, Wang G, Lei L, Tang H, Guo Y. A rhodol-based fluorescent probe with a pair of hydrophilic and rotatable wings for sensitively monitoring intracellular polarity. Chem Asian J 2022; 17:e202200063. [PMID: 35191194 DOI: 10.1002/asia.202200063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Indexed: 11/06/2022]
Abstract
Cell polarity, as a vital intracellular microenvironment characteristic, has immense effects on numerous pathological and biological processes. Therefore, the tracking of polarity variations is highly essential to explore the role and mechanism of the polarity in pathophysiological processes. Herein, we designed and synthesized a novel rhodol-based fluorescent probe RDS sensitive to polarity by introducing a bis(2-hydroxyethylthio)methyl group, like a pair of hydrophilic and rotatable wings, into the rhodol skeleton. This unique design makes RDS adopt the colorless and non-fluorescent spirocyclic form in low polarity medium while the colored and fluorescent ring-open form in high polarity system, resulting in a positive-correlation response of fluorescence intension to polarity. Importantly, RDS was successfully applied to monitor the polarity changes in living cells including cancer cells, healthy cells and senescent healthy cells, visualizing that the polarity of cancer cells is lower than that of healthy cells in which the more senescent ones have higher polarity.
Collapse
Affiliation(s)
| | - Kaixuan Duan
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Yanhui Zhang
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Ying Gao
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Bo Qin
- Xi'an University of Posts and Telecommunications, School of Automation, CHINA
| | - Guangwei Wang
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Lin Lei
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Haoyang Tang
- Xi'an University of Posts and Telecommunications, School of Automation, CHINA
| | - Yuan Guo
- Northwest University, College of Chemistry and Materials Science, 1 Xuefu Road, Chang'an district, 710127, Xi'an, CHINA
| |
Collapse
|
12
|
Valerio HP, Ravagnani FG, Ronsein GE, Di Mascio P. A single dose of Ultraviolet-A induces proteome remodeling and senescence in primary human keratinocytes. Sci Rep 2021; 11:23355. [PMID: 34857819 PMCID: PMC8639817 DOI: 10.1038/s41598-021-02658-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
Epidermal photoaging contributes to skin fragility over time and it is a risk factor for skin cancer. Photoaging has been associated for a long time with exposure to Ultraviolet-A (UVA) light, the predominant component of the solar ultraviolet radiation. While the cellular mechanisms underlying UVA-induced photoaging in the dermis have been well characterized, UVA's action on the epidermis remains elusive. Here, proteomic analysis was conducted to derive the cellular responses induced by an environmentally relevant dose of UVA in primary human keratinocytes. We also investigated the effects of UVA on non-transformed immortalized keratinocytes (HaCaT cells), bearing potentially oncogenic mutations. We showed that UVA induces proteome remodeling and senescence in primary keratinocytes, eliciting potent antioxidant and pro-inflammatory responses. Additionally, we showed that UVA modulates the secretory phenotype of these cells to the extent of inducing paracrine oxidative stress and immune system activation in pre-malignant keratinocytes. These observations offer insights into the cellular mechanisms by which UVA drives photoaging in the skin.
Collapse
Affiliation(s)
- Hellen Paula Valerio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Felipe Gustavo Ravagnani
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
13
|
Bauer EM, Cecchetti D, Guerriero E, Nisticò S, Germinario G, Sennato S, Gontrani L, Tagliatesta P, Carbone M. Laser vs. thermal treatments of green pigment PG36: coincidence and toxicity of processes. Arch Toxicol 2021; 95:2367-2383. [PMID: 33948695 PMCID: PMC8241676 DOI: 10.1007/s00204-021-03052-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
Comparative laser and thermal treatments were carried out on PG36, a green phthalocyanine-based pigment, permitted in European countries where legislation on tattoo composition was issued. Prior to the treatments, PG36 was characterized by SEM imaging, EDX, IR and UV-Vis spectroscopies, revealing an excess of Si and C and O as compared to the pure halogenated Cu-phthalocyanine. Laser treatments were carried out with a Nd:YAG device applied to H2O and propan-2-ol dispersions. Pyrolysis and calcinations were carried out in air or under N2 flow. The outcome of the different procedures was analyzed by UV-Vis spectroscopy, GC-mass spectrometry, X-ray diffraction of the solid residues, SEM microscopy and dynamic light scattering. The comparative analysis indicated the production of different fragment compounds depending on the treatment, (pyrolysis or laser), and, to some extent, to the solvent of the dispersion, with pyrolysis generating a larger number of hazardous compounds. Hydrocarbons and cyclic siloxanes present as additives in PG36 were stable or degraded depending on the treatment. The morphology of the products is also treatment-dependent with nanoparticles < 20 nm and fibers being produced upon laser treatments only. Based on the experimental findings, the equivalence of laser and thermal treatments is evaluated.
Collapse
Affiliation(s)
- Elvira Maria Bauer
- Italian National Research Council, Institute of Structure of Matter (CNR-ISM), Via Salaria km 29.3, 00015, Monterotondo, RM, Italy
| | - Daniele Cecchetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Ettore Guerriero
- Italian National Research Council, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29.3, 00015, Monterotondo, RM, Italy
| | - Steven Nisticò
- Department of Health Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Giulia Germinario
- Department of Pure and Applied Science, University of Urbino, Piazza Rinascimento 6, 61029, Urbino, Italy
| | - Simona Sennato
- Institute of Complex Systems, National Research Council (CNR-ISC), Sapienza Unit, and Physics Department, Sapienza University, P.le A. Moro 5, 00185, Rome, Italy
| | - Lorenzo Gontrani
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 2, 00185, Rome, Italy
| | - Pietro Tagliatesta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|