1
|
Fan L, Feng W. Preparation of PANI-SA/CF anode to enhance the remediation and power generation capabilities of plant microbial fuel cells for chromium contaminated soil. Bioprocess Biosyst Eng 2024; 47:509-518. [PMID: 38492005 DOI: 10.1007/s00449-024-02981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Plant microbial fuel cells (PMFCs) has important value for soil remediation and power generation. To improve the performance of PMFCs, a PMFC experimental system was established based on potted scindapsus aureus. Polyaniline (PANI) and sodium alginate (SA) were used as modifiers to prepare PANI-SA modified carbon felt anode. The soil remediation ability and electricity generation ability of PMFCs with four different anodes were compared and analyzed. The experimental results show that the steady-state voltage, the removal rate of hexavalent chromium, and the total chromium removal rate of PMFC using PANI-SA modified anode were 5.25 mV, 98%, and 90%, respectively, which are 253%, 10.4%, and 10% higher than those of PMFCs using unmodified carbon felt anode. PMFC is effective and feasible for removing soil chromium pollution and achieving efficient soil remediation, while modifying anodes with PANI-SA can further improve the soil remediation and electricity generation capabilities of PMFC.
Collapse
Affiliation(s)
- Liping Fan
- Key Laboratory of Collaborative Control and Optimization Technology of Industrial Environment and Resource of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, 110142, China.
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Wanxue Feng
- Key Laboratory of Collaborative Control and Optimization Technology of Industrial Environment and Resource of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, 110142, China
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| |
Collapse
|
2
|
Le CV, Yoon H. Advances in the Use of Conducting Polymers for Healthcare Monitoring. Int J Mol Sci 2024; 25:1564. [PMID: 38338846 PMCID: PMC10855550 DOI: 10.3390/ijms25031564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Conducting polymers (CPs) are an innovative class of materials recognized for their high flexibility and biocompatibility, making them an ideal choice for health monitoring applications that require flexibility. They are active in their design. Advances in fabrication technology allow the incorporation of CPs at various levels, by combining diverse CPs monomers with metal particles, 2D materials, carbon nanomaterials, and copolymers through the process of polymerization and mixing. This method produces materials with unique physicochemical properties and is highly customizable. In particular, the development of CPs with expanded surface area and high conductivity has significantly improved the performance of the sensors, providing high sensitivity and flexibility and expanding the range of available options. However, due to the morphological diversity of new materials and thus the variety of characteristics that can be synthesized by combining CPs and other types of functionalities, choosing the right combination for a sensor application is difficult but becomes important. This review focuses on classifying the role of CP and highlights recent advances in sensor design, especially in the field of healthcare monitoring. It also synthesizes the sensing mechanisms and evaluates the performance of CPs on electrochemical surfaces and in the sensor design. Furthermore, the applications that can be revolutionized by CPs will be discussed in detail.
Collapse
Affiliation(s)
- Cuong Van Le
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Alkahtani ME, Elbadawi M, Chapman CAR, Green RA, Gaisford S, Orlu M, Basit AW. Electroactive Polymers for On-Demand Drug Release. Adv Healthc Mater 2024; 13:e2301759. [PMID: 37861058 PMCID: PMC11469020 DOI: 10.1002/adhm.202301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/16/2023] [Indexed: 10/21/2023]
Abstract
Conductive materials have played a significant role in advancing society into the digital era. Such materials are able to harness the power of electricity and are used to control many aspects of daily life. Conductive polymers (CPs) are an emerging group of polymers that possess metal-like conductivity yet retain desirable polymeric features, such as processability, mechanical properties, and biodegradability. Upon receiving an electrical stimulus, CPs can be tailored to achieve a number of responses, such as harvesting energy and stimulating tissue growth. The recent FDA approval of a CP-based material for a medical device has invigorated their research in healthcare. In drug delivery, CPs can act as electrical switches, drug release is achieved at a flick of a switch, thereby providing unprecedented control over drug release. In this review, recent developments in CP as electroactive polymers for voltage-stimuli responsive drug delivery systems are evaluated. The review demonstrates the distinct drug release profiles achieved by electroactive formulations, and both the precision and ease of stimuli response. This level of dynamism promises to yield "smart medicines" and warrants further research. The review concludes by providing an outlook on electroactive formulations in drug delivery and highlighting their integral roles in healthcare IoT.
Collapse
Affiliation(s)
- Manal E. Alkahtani
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- Department of PharmaceuticsCollege of PharmacyPrince Sattam bin Abdulaziz UniversityAlkharj11942Saudi Arabia
| | - Moe Elbadawi
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Christopher A. R. Chapman
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
- Centre for Bioengineering, School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Rylie A. Green
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Simon Gaisford
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Mine Orlu
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Abdul W. Basit
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| |
Collapse
|
4
|
Abstract
Rapid and specific assaying of molecules that report on a pathophysiological condition, environmental pollution, or drug concentration is pivotal for establishing efficient and accurate diagnostic systems. One of the main components required for the construction of these systems is the recognition element (receptor) that can identify target analytes. Oligonucleotide switching structures, or aptamers, have been widely studied as selective receptors that can precisely identify targets in different analyzed matrices with minimal interference from other components in an antibody-like recognition process. These aptasensors, especially when integrated into sensing platforms, enable a multitude of sensors that can outperform antibody-based sensors in terms of flexibility of the sensing strategy and ease of deployment to areas with limited resources. Research into compounds that efficiently enhance signal transduction and provide a suitable platform for conjugating aptamers has gained huge momentum over the past decade. The multifaceted nature of conjugated polymers (CPs), notably their versatile electrical and optical properties, endows them with a broad range of potential applications in optical, electrical, and electrochemical signal transduction. Despite the substantial body of research demonstrating the enhanced performance of sensing devices using doped or nanostructure-embedded CPs, few reviews are available that specifically describe the use of conjugated polymers in aptasensing. The purpose of this review is to bridge this gap and provide a comprehensive description of a variety of CPs, from a historical viewpoint, underpinning their specific characteristics and demonstrating the advances in biosensors associated with the use of these conjugated polymers.
Collapse
Affiliation(s)
- Razieh Salimian
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| | - Corinne Nardin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| |
Collapse
|
5
|
Goswami MK, Srivastava A, Dohare RK, Tiwari AK, Srivastav A. Recent advances in conducting polymer-based magnetic nanosorbents for dyes and heavy metal removal: fabrication, applications, and perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27458-4. [PMID: 37195615 DOI: 10.1007/s11356-023-27458-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Globally, treating and disposing of industrial pollutants is a techno-economic challenge. Industries' large production of harmful heavy metal ions (HMIs) and dyes and inappropriate disposal worsen water contamination. Much attention is required on the development of efficient and cost-effective technologies and approaches for removing toxic HMIs and dyes from wastewater as they pose a severe threat to public health and aquatic ecosystems. Due to the proven superiority of adsorption over other alternative methods, various nanosorbents have been developed for the efficient removal of HMIs and dyes from wastewater and aqueous solutions. Being a good adsorbent, conducting polymer-based magnetic nanocomposites (CP-MNCPs) has drawn more attention for HMIs and dye removal. Conductive polymers' pH-responsiveness makes CP-MNCP ideal for wastewater treatment. The composite material absorbed dyes and/or HMIs from contaminated water could be removed by changing the pH. Here, we review the production strategies and applications of CP-MNCPs for HMIs and dye removal. The review also sheds light on the adsorption mechanism, adsorption efficiency, kinetic and adsorption models, and regeneration capacity of the various CP-MNCPs. To date, various modifications to conducting polymers (CPs) have been explored to improve the adsorption properties. It is evident from the literature survey that the combination of SiO2, graphene oxide (GO), and multi-walled carbon nanotubes (MWCNTs) with CPs-MNCPs enhances the adsorption capacity of nanocomposites to a large extent, so future research should lean toward the development of cost-effective hybrid CPs-nanocomposites.
Collapse
Affiliation(s)
| | | | - Rajeev Kumar Dohare
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, India
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, UP, India
| | - Anupam Srivastav
- Department of Chemistry, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| |
Collapse
|
6
|
Kausar A. Epitome of Fullerene in Conducting Polymeric Nanocomposite—Fundamentals and Beyond. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
7
|
Brza MA, Aziz SB, Abdulwahid RT, Tahir HB, F. Z. Kadir M. Ion Transport and Electrochemical Properties of Proton Conducting SPE for EDLC with Constant Specific Capacitance and Energy Density. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Ganash A, Alshammari S, Ganash E. Development of a Novel Electrochemical Sensor Based on Gold Nanoparticle-Modified Carbon-Paste Electrode for the Detection of Congo Red Dye. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010019. [PMID: 36615215 PMCID: PMC9822423 DOI: 10.3390/molecules28010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
In this study, gold nanoparticles (AuNPs) were electrodeposited on samples of a carbon-paste electrode (CPE) with different thicknesses. The prepared AuNPs were characterized using different analysis techniques, such as FTIR, UV-Vis, SEM, EDX, TEM images, and XRD analysis. The fabricated modified electrode AuNPs/CPE was used for the sensitive detection of Congo red (CR) dye. Electrochemical sensing was conducted using square-wave voltammetry (SWV) in a 0.1 M acetate buffer solution at pH 6.5. The proposed sensor exhibited high efficiency for the electrochemical determination of CR dye with high selectivity and sensitivity and a low detection limit of 0.07 μM in the concentration range of 1-30 μM and 0.7 μM in the concentration range of 50-200 μM. The practical application of the AuNPs/CPE was verified by detecting CR dye in various real samples involving jelly, candy, wastewater, and tap water. The calculated recoveries (88-106%) were within the acceptable range.
Collapse
Affiliation(s)
- Aisha Ganash
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 23714, Saudi Arabia
- Correspondence:
| | - Sahar Alshammari
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 23714, Saudi Arabia
| | - Entesar Ganash
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 23714, Saudi Arabia
| |
Collapse
|
9
|
Polypyrrole based cathode material for battery application. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Synthesis and characterization of porous TiO2 film decorated with bilayer hematite thin film for effective photocatalytic activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Liu X, Zheng W, Kumar R, Kumar M, Zhang J. Conducting polymer-based nanostructures for gas sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Abdul Kadar CH, Faisal M, Maruthi N, Raghavendra N, Prasanna BP, Manohara SR. Corrosion-Resistant Polyaniline-Coated Zinc Tungstate Nanocomposites with Enhanced Electric Properties for Electromagnetic Shielding Applications. Macromol Res 2022. [DOI: 10.1007/s13233-022-0067-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Aranthady C, Shanbhag GV, Sundaram NG. Polyaniline/(Ta 2O 5-SnO 2) hybrid nanocomposite for efficient room temperature CO gas sensing. RSC Adv 2022; 12:15759-15766. [PMID: 35685707 PMCID: PMC9132034 DOI: 10.1039/d2ra00602b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022] Open
Abstract
Development of efficient CO sensors that can detect low concentration CO at room temperature is of prime importance. Herein, we present a Ta2O5-SnO2-PANI hybrid composite for the efficient sensing of CO at room temperature and at very low concentrations. The material was synthesized by the oxidative polymerization method. The structural and morphological characteristics of the nanostructured (Ta2O5-SnO2)-PANI hybrid composite were examined using p-XRD and FESEM techniques. The oxygen vacancies in the material were confirmed by XPS analysis. The hybrid material exhibited superior CO sensing performance with high sensitivity, low operating temperature, and fast response and recovery time compared to the individual counterparts. The enhanced sensing ability of the hybrid material is accredited to the synergistic properties such as conductivity of PANI, improved oxygen vacancies and the heterostructure formed between the PANI and the (Ta2O5-SnO2) composite. These remarkable features make TaSn : PANI a potential sensor at room temperature for sensing of low concentration CO.
Collapse
Affiliation(s)
- Chethana Aranthady
- Materials Science and Catalysis Division, Poornaprajna Institute of Scientific Research Devanahalli-562164 Bengaluru India
- Graduate Studies, Manipal Academy of Higher Education Manipal-576104 Karnataka India
| | - Ganapati V Shanbhag
- Materials Science and Catalysis Division, Poornaprajna Institute of Scientific Research Devanahalli-562164 Bengaluru India
| | - Nalini G Sundaram
- Materials Science and Catalysis Division, Poornaprajna Institute of Scientific Research Devanahalli-562164 Bengaluru India
- Department of Chemistry, St. Josephs's College (Autonomous) Bengaluru-560027 India
| |
Collapse
|
14
|
Mahdavi SS, Abdekhodaie MJ. Engineered conducting polymer-based scaffolds for cell release and capture. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2060219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. Sharareh Mahdavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J. Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
15
|
Shah SS, Aziz MA, Yamani ZH. Recent Progress in Carbonaceous and Redox‐active Nanoarchitectures for Hybrid Supercapacitors: Performance Evaluation, Challenges, and Future Prospects. CHEM REC 2022; 22:e202200018. [DOI: 10.1002/tcr.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/10/2022] [Accepted: 04/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Syed Shaheen Shah
- Physics Department King Fahd University of Petroleum & Minerals, KFUPM Box 5047 Dhahran 31261 Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum & Minerals, KFUPM Box 5040 Dhahran 31261 Saudi Arabia
| | - Md. Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum & Minerals, KFUPM Box 5040 Dhahran 31261 Saudi Arabia
- K.A.CARE Energy Research & Innovation Center King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Zain H. Yamani
- Physics Department King Fahd University of Petroleum & Minerals, KFUPM Box 5047 Dhahran 31261 Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum & Minerals, KFUPM Box 5040 Dhahran 31261 Saudi Arabia
| |
Collapse
|
16
|
Devi N, Ray SS. Electromagnetic interference cognizance and potential of advanced polymer composites toward electromagnetic interference shielding: A review. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25876] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nishu Devi
- Department of Chemical Sciences University of Johannesburg Doornfontein South Africa
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences University of Johannesburg Doornfontein South Africa
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| |
Collapse
|
17
|
Mariano A, Lubrano C, Bruno U, Ausilio C, Dinger NB, Santoro F. Advances in Cell-Conductive Polymer Biointerfaces and Role of the Plasma Membrane. Chem Rev 2022; 122:4552-4580. [PMID: 34582168 PMCID: PMC8874911 DOI: 10.1021/acs.chemrev.1c00363] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 02/07/2023]
Abstract
The plasma membrane (PM) is often described as a wall, a physical barrier separating the cell cytoplasm from the extracellular matrix (ECM). Yet, this wall is a highly dynamic structure that can stretch, bend, and bud, allowing cells to respond and adapt to their surrounding environment. Inspired by shapes and geometries found in the biological world and exploiting the intrinsic properties of conductive polymers (CPs), several biomimetic strategies based on substrate dimensionality have been tailored in order to optimize the cell-chip coupling. Furthermore, device biofunctionalization through the use of ECM proteins or lipid bilayers have proven successful approaches to further maximize interfacial interactions. As the bio-electronic field aims at narrowing the gap between the electronic and the biological world, the possibility of effectively disguising conductive materials to "trick" cells to recognize artificial devices as part of their biological environment is a promising approach on the road to the seamless platform integration with cells.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Claudia Lubrano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Ugo Bruno
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Chiara Ausilio
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Nikita Bhupesh Dinger
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Francesca Santoro
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
18
|
Novel hybrid materials based on poly (4,4′-Diaminodiphenyl sulfone) and TiO2 nanoparticles: synthesis, characterization, physical and electrochemical properties. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04676-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Aziz SB, Abdulwahid RT, F. Z. Kadir M, Ghareeb HO, Ahamad T, Alshehri SM. Design of non-faradaic EDLC from plasticized MC based polymer electrolyte with an energy density close to lead-acid batteries. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Singh N, Chand S, Taunk M. Facile in-situ synthesis, microstructural, morphological and electrical transport properties of polypyrrole-cuprous iodide hybrid nanocomposites. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Kalaycioglu GD, Yuksel D, Okmen B, Aydogan N. Interfacial properties and aggregates of novel redox-active surfactant to synthesize silver nanoparticles at the air/water interface. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
23
|
Lee M, Kim S, Jang M, Park HS, Lee JY. One-Pot electrochemical fabrication of high performance amperometric enzymatic biosensors using polypyrrole and polydopamine. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Lobov IA, Davletkildeev NA, Sokolov DV, Mosur EY. Formation of Fibril-Like Structures in Thin Polyaniline Films during Redoping with a Mixture of Dodecylbenzenesulfonic Acid and N-Methyl-2-pyrrolidone. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
He Y, Pan D, Chi H, Luo F, Jiang Y, Ge D, Bai H. Continuous and Patterned Conducting Polymer Coatings on Diverse Substrates: Rapid Fabrication by Oxidant-Intermediated Surface Polymerization and Application in Flexible Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5583-5591. [PMID: 33476144 DOI: 10.1021/acsami.0c20159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conducting polymer coatings and patterns are the most important forms of these materials for many practical applications, but a simple and efficient approach to these forms remains challenging. Herein, we report a universal oxidant-intermediated surface polymerization (OISP) for the fabrication of conducting polymer coatings and patterns on various substrates. A coating or pattern composed of densely packed colloidal V2O5·nH2O nanowires is deposited on the substrate via spin coating, dip coating, or printing, which is converted into a conducting polymer one after in situ oxidation polymerization. The polymerization occurs selectively on the V2O5·nH2O coatings, and high-quality polypyrrole, polyaniline, and poly(3,4-ethylenedioxythiophene) coatings and patterns on planar and curved polymeric, metallic, and ceramic substrates are obtained in a fast reaction rate similar to the electrochemical polymerization. The mechanistic study reveals that the method relies on the excellent processability and formability of V2O5·nH2O nanowires, which is further explained by their large aspect ratio and surface activity. A flexible gas sensor array comprising three individual sensors made of different conducting polymers is fabricated using oxidant-intermediated surface polymerization, and it is successfully used to distinguish various analyte vapors. The method developed here will provide a powerful tool for the fabrication of conducting polymer-based devices.
Collapse
Affiliation(s)
- Yuan He
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Deng Pan
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Hang Chi
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Feiyu Luo
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Yuan Jiang
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Dongtao Ge
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Hua Bai
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
26
|
Novel CuO/TiO2/PANI nanocomposite: Preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113038] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Samukaite-Bubniene U, Valiūnienė A, Bucinskas V, Genys P, Ratautaite V, Ramanaviciene A, Aksun E, Tereshchenko A, Zeybek B, Ramanavicius A. Towards supercapacitors: Cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy based evaluation of polypyrrole electrochemically deposited on the pencil graphite electrode. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125750] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Kumar N, Goyal RN. Simultaneous determination of melatonin and 5-hydroxytrptophan at the disposable poly-(melamine)/poly-(o-aminophenol) composite modified screen printed sensor. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Khokhar D, Jadoun S, Arif R, Jabin S. Functionalization of conducting polymers and their applications in optoelectronics. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1819312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Deepali Khokhar
- Department of Chemistry, Lingaya’s Vidyapeeth, Faridabad, India
| | - Sapana Jadoun
- Department of Chemistry, Lingaya’s Vidyapeeth, Faridabad, India
| | - Rizwan Arif
- Department of Chemistry, Lingaya’s Vidyapeeth, Faridabad, India
| | - Shagufta Jabin
- Department of Chemistry, Manav Rachna International Institute of Research & Studies, Faridabad, India
| |
Collapse
|
30
|
|
31
|
Polyacetylene polyelectrolyte via the non-catalyst polymerization of 2-ethynylpyridine using heptafluorobenzyl iodide. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Wang Q, Li J, Wang D, Niu J, Du P, Liu J, Liu P. Enhanced electrochemical performance of polyaniline-based electrode for supercapacitors in mixed aqueous electrolyte. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Graphene/V2O5@polyaniline ternary composites enable waterborne epoxy coating with robust corrosion resistance. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Jian M, Xue P, Shi K, Li R, Ma L, Li P. Efficient degradation of indole by microbial fuel cell based Fe 2O 3-polyaniline-dopamine hybrid composite modified carbon felt anode. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122123. [PMID: 31972431 DOI: 10.1016/j.jhazmat.2020.122123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 05/20/2023]
Abstract
Indole is a high-toxic refractory nitrogen-containing compound that could cause serious harm to the human and ecosystem. It has been a challenge to develop economical and efficient technology for degrading indole. Microbial fuel cell (MFC) has great potential in the removal of organic pollutants utilizing microorganisms as catalysts to degrade organic matter into the nutrients. Herein, a novel anode of Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt (Fe2O3-PDHC/CF) was prepared by electrochemical deposition. The degradation efficiency of indole by the MFC loading Fe2O3-PDHC/CF anode was up to 90.3 % in 120 h operation, while that of the MFC loading CF anode was only 44.0 %. The maximum power density of the MFC loading Fe2O3-PDHC/CF anode was 3184.4 mW·m-2, increasing 113 % compared to the MFC loading CF anode. The superior performances of the MFC with Fe2O3-PDHC surface-modified anode owned to the synergistic effect of high conductive Fe2O3 and admirably biocompatible polyaniline-dopamine. MFC with the Fe2O3-PDHC/CF anode could produce considerable electricity and effectively degrade indole in water, which demonstrated a practical approach for the efficient degradation of refractory organic compounds in wastewater.
Collapse
Affiliation(s)
- Minjie Jian
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China; Ningxia Academy of Metrology & Quality Inspection, Yinchuan, 750200, PR China
| | - Ping Xue
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.
| | - Keren Shi
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Rui Li
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Lan Ma
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Peng Li
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| |
Collapse
|
35
|
Lacerda GRDBS, dos Santos Junior GA, Rocco MLM, Lavall RL, Matencio T, Calado HDR. Development of nanohybrids based on carbon nanotubes/P(EDOT-co-MPy) and P(EDOT-co-PyMP) copolymers as electrode materials for aqueous supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Kim DS, Choi HS, Yang X, Yang JH, Lee JH, Yoo HY, Lee J, Park C, Kim SW. Improvement of power generation of enzyme fuel cell by novel GO/Co/chitosan electrodeposition. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.08.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Conducting Polymer Nanocomposite-Based Gas Sensors. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2020. [DOI: 10.1007/978-981-15-4810-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Lota K, Acznik I, Sierczynska A, Lota G. Enhancing the performance of polypyrrole composites as electrode materials for supercapacitors by carbon nanotubes additives. J Appl Polym Sci 2019. [DOI: 10.1002/app.48867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Katarzyna Lota
- Łukasiewicz Research Network ‐ Institute of Non‐Ferrous Metals Division in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12 Poznan 61‐362 Poland
| | - Ilona Acznik
- Łukasiewicz Research Network ‐ Institute of Non‐Ferrous Metals Division in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12 Poznan 61‐362 Poland
| | - Agnieszka Sierczynska
- Łukasiewicz Research Network ‐ Institute of Non‐Ferrous Metals Division in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12 Poznan 61‐362 Poland
| | - Grzegorz Lota
- Łukasiewicz Research Network ‐ Institute of Non‐Ferrous Metals Division in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12 Poznan 61‐362 Poland
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4 Poznan 60‐965 Poland
| |
Collapse
|
39
|
Lim B, Han SY, Jung SH, Jung YJ, Park JM, Lee W, Shim HS, Nah YC. Synthesis and electrochromic properties of a carbazole and diketopyrrolopyrrole-based small molecule semiconductor. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Ahmadi Y, Ahmad S. Recent Progress in the Synthesis and Property Enhancement of Waterborne Polyurethane Nanocomposites: Promising and Versatile Macromolecules for Advanced Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1673403] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Younes Ahmadi
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Sharif Ahmad
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
41
|
Poly(1,5-diaminoanthraquinone) coated carbon cloth composites as flexible electrode with extraordinary cycling stability for symmetric solid-state supercapacitors. J Colloid Interface Sci 2019; 546:60-69. [PMID: 30903810 DOI: 10.1016/j.jcis.2019.03.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 03/17/2019] [Indexed: 11/23/2022]
Abstract
Poly(1,5-diaminoanthraquinone) (PDAA) coated carbon cloth (ROCC@PDAA) composites were fabricated as flexible electrode by in-situ chemical oxidation polymerization of 1,5-diaminoanthraquinone (DAA) on the surface of oxidized carbon cloth (OCC) using ammonium persulfate (APS) as oxidant in the mixture of N,N-dimethylformamide/acetonitrile by refluxing with HClO4 as initiator, followed by reducing the OCC with hydrazine. The optimized flexible composites possessed high areal capacitance of 1.3 F cm-2 (specific capacitance of 81.9 F g-1) at the current density of 1 mA cm-2 with excellent rate properties (61% at 20 mA cm-2) and extraordinary cycling stability (159% after 20,000 cycles). The flexible symmetric solid-state supercapacitor (SSC) constructed with the optimized ROCC@PDAA composite could light up a red light emitting diode, also exhibited excellent electrochemical performance with remarkable mechanical and flexible properties. All the results demonstrated the potential application of the proposed ROCC@PDAA composites for flexible energy storage devices.
Collapse
|
42
|
New blue light emitting cyanopyridine based conjugated polymers: From molecular engineering to PLED applications. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Hosseini H, Teymouri M, Saboor S, Khalili A, Goodarzi V, Poudineh Hajipoor F, Khonakdar HA, Shojaei S, Asefnejad A, Bagheri H. Challenge between sequence presences of conductive additives on flexibility, dielectric and supercapacitance behaviors of nanofibrillated template of bacterial cellulose aerogels. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Influence of medium on structure, morphology and electrochemical properties of polydiphenylamine/vanadium pentoxide composite. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0285-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
Lee JY, Han SY, Lim B, Nah YC. A novel quinoxaline-based donor-acceptor type electrochromic polymer. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Preparation and characterization of polypyrrole/organophilic montmorillonite nanofibers obtained by electrospinning. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Electrochemical DNA Sensors with Layered Polyaniline-DNA Coating for Detection of Specific DNA Interactions. SENSORS 2019; 19:s19030469. [PMID: 30678376 PMCID: PMC6387217 DOI: 10.3390/s19030469] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
A DNA sensor has been proposed on the platform of glassy carbon electrode modified with native DNA implemented between two electropolymerized layers of polyaniline. The surface layer was assembled by consecutive stages of potentiodynamic electrolysis, DNA drop casting, and second electrolysis, which was required for capsulation of the DNA molecules and prevented their leaching into the solution. Surface layer assembling was controlled by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force, and scanning electron microscopy. For doxorubicin measurement, the DNA sensor was first incubated in the Methylene blue solution that amplified signal due to DNA intercalation and competition with the doxorubicin molecules for the DNA binding sites. The charge transfer resistance of the inner layer interface decreased with the doxorubicin concentration in the range from 1.0 pM to 0.1 μM (LOD 0.6 pM). The DNA sensor was tested for the analysis of spiked artificial urine samples and showed satisfactory recovery in concentration range of 0.05⁻10 μM. The DNA sensor developed can find application in testing of antitumor drugs and some other DNA damaging factors.
Collapse
|
48
|
Khatoon H, Ahmad S. Vanadium Pentoxide-Enwrapped Polydiphenylamine/Polyurethane Nanocomposite: High-Performance Anticorrosive Coating. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2374-2385. [PMID: 30561187 DOI: 10.1021/acsami.8b17861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanocomposite coatings with synergistic properties hold a potential in long-term corrosion protection for carbon steel. Polydiphenylamine (PDPA) and vanadium pentoxide (V2O5) have rarely been used as a corrosion inhibitor. Moreover, oleo polyurethanes are always demanded in the field of anticorrosive coatings. In view of this, we have synthesized safflower oil polyurethane (SFPU) and their nanocomposites using V2O5-enwrapped PDPA (V2O5-PDPA) as nanofiller. Fourier-transform infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis were used to characterize the structural, morphological, and thermal properties of these coatings. Corrosion resistance performance of these coatings in 5 wt % NaCl solution was determined by electrochemical measurements and salt spray tests. These studies exhibited very low Icorr (7.45 × 10-11 A cm-2), high Ecorr (-0.04 V), impedance (1.69 × 1011 Ω cm2), and phase angle (84°) after the exposure of 30 days. An immersion test, in 1 M H2SO4 solution for 24 h, was also performed to investigate the effect of oxidizing acid on the surface of coatings. These results revealed the superior anticorrosive activity of nanocomposite coatings compared to those of plain SFPU and other such reported systems. The superior anticorrosive property of the proposed nanocomposite coatings provides a new horizon in the development of high-performance anticorrosive coatings for various industries.
Collapse
Affiliation(s)
- Halima Khatoon
- Materials Research Laboratory, Department of Chemistry , Jamia Millia Islamia (A Central University) , New Delhi 110025 , India
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry , Jamia Millia Islamia (A Central University) , New Delhi 110025 , India
| |
Collapse
|
49
|
Bulky carbon layer inlaid with nanoscale Fe2O3 as an excellent lithium-storage anode material. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Characteristics of Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers for VOC Detection. SENSORS 2018; 18:s18072401. [PMID: 30041499 PMCID: PMC6069493 DOI: 10.3390/s18072401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 02/04/2023]
Abstract
Surface Acoustic Wave (SAW) sensors with several types of polymer sensing films, containing embedded Fe₃O₄ nanoparticles (NPs) with various dimensions and concentrations, were studied. A sensor with a sensing film consisting of the polymer alone was used for comparison. NPs with a mean diameter of 7 nm were produced by laser ablation with 5 ns pulse durations, and NPs with 13 nm diameters were obtained with a laser having 10 ps pulse durations. The properties of the Surface Acoustic Wave sensors with such sensing films were analyzed. Their response (frequency shift, sensitivity, noise and response time) to three different volatile organic components (VOCs) at various concentrations were compared with one another. The frequency shift and sensitivity increased with increasing NP concentration in the polymer for a given NP dimension and with decreasing NP diameter for a given concentration. The best results were obtained for the smallest NPs used. The SAW sensor containing 7 nm NPs had a limit of detection (LOD) of 65 ppm (almost five times better than the sensor with polymer alone), and a response time of about 9 s for ethanol.
Collapse
|