1
|
Surfactant recovery and efficient separation of PAHs from surfactant solutions by low-cost waste activated sludge and two-stage design optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50484-50495. [PMID: 36795216 DOI: 10.1007/s11356-023-25921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The treatment and surfactant recovery of soil washing/flushing effluent containing high levels of surfactants and organic pollutants are critical for the surfactant-assisted remediation of soils and waste management due to their complexity and high-potential risks. Combination of waste activated sludge material (WASM) and a kinetic-based two-stage system design was introduced in this study as a novel strategy for the separation of phenanthrene and pyrene from Tween 80 solutions. The results showed that WASM can effectively sorb phenanthrene and pyrene with high affinities (Kd) of 2325.5 L·kg-1 and 9911.2 L·kg-1, respectively. This allowed a high-level recovery of Tween 80 of 90.47 ± 1.86%, with selectivity of up to 69.7. In addition, a two-stage design was constructed, and the results showed an improved reaction time (approximately 5% of equilibrium time in conventional single-stage process) and increased the separation levels of phenanthrene or pyrene from Tween 80 solutions. For instance, the minimal total operating time for the sorption of 99% pyrene from 1.0 g·L-1 Tween 80 was only 23.0 min in the two-stage process compared to that of 480 min with a 71.9% removal level in the single-stage system. Results indicated that the combination of low-cost waste WASH and two-stage design was a high-efficiency and time-saving way to recover surfactants from soil washing effluents.
Collapse
|
2
|
Kumar M, Bolan N, Jasemizad T, Padhye LP, Sridharan S, Singh L, Bolan S, O'Connor J, Zhao H, Shaheen SM, Song H, Siddique KHM, Wang H, Kirkham MB, Rinklebe J. Mobilization of contaminants: Potential for soil remediation and unintended consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156373. [PMID: 35649457 DOI: 10.1016/j.scitotenv.2022.156373] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Land treatment has become an essential waste management practice. Therefore, soil becomes a major source of contaminants including organic chemicals and potentially toxic elements (PTEs) which enter the food chain, primarily through leaching to potable water sources, plant uptake, and animal transfer. A range of soil amendments are used to manage the mobility of contaminants and subsequently their bioavailability. Various soil amendments, like desorbing agents, surfactants, and chelating agents, have been applied to increase contaminant mobility and bioavailability. These mobilizing agents are applied to increase the contaminant removal though phytoremediation, bioremediation, and soil washing. However, possible leaching of the mobilized pollutants during soil washing is a major limitation, particularly when there is no active plant uptake. This leads to groundwater contamination and toxicity to plants and soil biota. In this context, the present review provides an overview on various soil amendments used to enhance the bioavailability and mobility of organic and inorganic contaminants, thereby facilitating increased risk when soil is remediated in polluted areas. The unintended consequences of the mobilization methods, when used to remediate polluted sites, are discussed in relation to the leaching of mobilized contaminants when active plant growth is absent. The toxicity of targeted and non-targeted contaminants to microbial communities and higher plants is also discussed. Finally, this review work summarizes the existing research gaps in various contaminant mobilization approaches, and prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Srinidhi Sridharan
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shiv Bolan
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - James O'Connor
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Haochen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Hocheol Song
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, United States
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
3
|
Xiao Z, Li Y, Fan L, Wang Y, Li L. Degradation of organic dyes by peroxymonosulfate activated with water-stable iron-based metal organic frameworks. J Colloid Interface Sci 2021; 589:298-307. [DOI: 10.1016/j.jcis.2020.12.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
|
4
|
Sun Y, Li M, Gu X, Danish M, Shan A, Ali M, Qiu Z, Sui Q, Lyu S. Mechanism of surfactant in trichloroethene degradation in aqueous solution by sodium persulfate activated with chelated-Fe(II). JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124814. [PMID: 33338809 DOI: 10.1016/j.jhazmat.2020.124814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The mechanism of surfactants in surfactant-in situ chemical oxidation (S-ISCO) coupled process for trichloroethene (TCE) degradation was firstly reported. The performance of TCE solubilization and inhibition of TCE degradation in three nonionic surfactants (TW-80, Brij-35, TX-100) in PS/Fe(II)/citric acid (CA) system was compared and TW-80 was evaluated to be the optimal surfactant in S-ISCO coupled process due to the best TCE solubilizing ability and minimal inhibition for TCE degradation (only 31.8% TCE inhibition in the presence of 1 g L-1 TW-80 surfactant). The inhibition mechanism in TCE degradation was also demonstrated by comparing the strength of ROSs and PS utilization. In the presence of TW-80 (1 g L-1), over 97.5% TCE was removed at the PS/Fe(II)/CA/TCE molar ratio of 30/4/4/1, in which more than 86.7% TCE was dechlorinated. The result of scavenger experiments revealed that the dominant radicals were HO• and SO4-• in PS/Fe(II)/CA system in TW-80 containing aqueous solution, among which SO4-• performed a greater role in TCE removal. Moreover, over 85.3% TCE degradation in actual groundwater revealed the potential of PS/Fe(II)/CA process for actual groundwater remediation in containing TW-80 of TCE contaminant. This research provided a novel alternative technology for groundwater remediation with TCE contaminant when containing surfactants.
Collapse
Affiliation(s)
- Yong Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Li
- Shanghai Environment Green Ecological Restoration Technology Co. Ltd., Shanghai 200232, China
| | - Xiaogang Gu
- Shanghai Urban Construction Design & Research Institute (Group) Co., Ltd, 3447 Dongfang Road, Shanghai 200125, China
| | - Muhammad Danish
- Chemical Engineering Department University of Engineering and Technology (UET), Lahore (Faisalabad Campus), G.T. Road, Lahore, Pakistan
| | - Ali Shan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Department of Environmental Sciences, The University of Lahore, Lahore 46000, Pakistan
| | - Meesam Ali
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan 60000, Pakistan
| | - Zhaofu Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Hatsugai T, Nakayama R, Tomura S, Akiyoshi R, Nishitsuka S, Nakamura R, Takeya S, Ohmura R. Development and Continuous Operation of a Bench‐Scale System for the Production of O
3
+ O
2
+ CO
2
Hydrates. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomomi Hatsugai
- IHI Corporation, 1 Shin-Nakahara-Cho, Isogo-ku 235-8501 Yokohama Japan
- Keio University Department of Mechanical Engineering 223-8522 Yokohama Japan
| | - Ryutaro Nakayama
- IHI Corporation, 1 Shin-Nakahara-Cho, Isogo-ku 235-8501 Yokohama Japan
| | - Shigeo Tomura
- IHI Plant Services Corporation Toyosu IHI Bldg., 1-1, Toyosu 3-chome, Koto-ku 135-0061 Tokyo Japan
| | - Ryo Akiyoshi
- IHI Plant Services Corporation Toyosu IHI Bldg., 1-1, Toyosu 3-chome, Koto-ku 135-0061 Tokyo Japan
| | - Shirou Nishitsuka
- IHI Plant Services Corporation Toyosu IHI Bldg., 1-1, Toyosu 3-chome, Koto-ku 135-0061 Tokyo Japan
| | - Ryo Nakamura
- IHI Plant Services Corporation Toyosu IHI Bldg., 1-1, Toyosu 3-chome, Koto-ku 135-0061 Tokyo Japan
| | - Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1, Higashi 305-85654 Tsukuba Japan
| | - Ryo Ohmura
- Keio University Department of Mechanical Engineering 223-8522 Yokohama Japan
| |
Collapse
|
6
|
Liu J, Wang Y, Li H. Synergistic Solubilization of Phenanthrene by Mixed Micelles Composed of Biosurfactants and a Conventional Non-Ionic Surfactant. Molecules 2020; 25:molecules25184327. [PMID: 32967248 PMCID: PMC7570535 DOI: 10.3390/molecules25184327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/06/2023] Open
Abstract
This study investigated the solubilization capabilities of rhamnolipids biosurfactant and synthetic surfactant mixtures for the application of a mixed surfactant in surfactant-enhanced remediation. The mass ratios between Triton X-100 and rhamnolipids were set at 1:0, 9:1, 3:1, 1:1, 1:3, and 0:1. The ideal critical micelle concentration values of the Triton X-100/rhamnolipids mixture system were higher than that of the theoretical predicted value suggesting the existence of interactions between the two surfactants. Solubilization capabilities were quantified in term of weight solubilization ratio and micellar-water partition coefficient. The highest value of the weight solubilization ratio was detected in the treatment where only Triton X-100 was used. This ratio decreased with the increase in the mass of rhamnolipids in the mixed surfactant systems. The parameters of the interaction between surfactants and the micellar mole fraction in the mixed system have been determined. The factors that influence phenanthrene solubilization, such as pH, ionic strength, and acetic acid concentration have been discussed in the paper. The aqueous solubility of phenanthrene increased linearly with the total surfactant concentration in all treatments. The mixed rhamnolipids and synthetic surfactants showed synergistic behavior and enhanced the solubilization capabilities of the mixture, which would extend the rhamnolipids application.
Collapse
|
7
|
Zhang T, Liu Y, Zhong S, Zhang L. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. CHEMOSPHERE 2020; 246:125726. [PMID: 31901666 DOI: 10.1016/j.chemosphere.2019.125726] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Petroleum hydrocarbons are a class of anthropogenic compounds including alkanes, aromatic hydrocarbons, resins, asphaltenes and other organic matters, and soil pollution caused by petroleum hydrocarbons has drawn increasing interest in recent years. Multiple advanced oxidation processes (AOPs) are emerging to remediate petroleum hydrocarbons-contaminated soils, while very few studies have focused on the features of AOPs applied in soils. This review aims to provide an updated overview of the state of the science about the efficiency, influencing factors and environmental implications of AOPs. The key findings from this review include: 1) cyclodextrin and its derivatives can be used to synthesize targeting reagents; 2) soil organic matter (SOM), glucose and cement can activate persulfate; 3) SOM affects redox circumstance in soil and could be further developed for enhancing the catalysis effect of transition metals; 4) non-thermal plasma and wet oxidation are promising methods of AOPs to remove petroleum hydrocarbons from soil; 5) the occurrence, fate, and transformation of intermediates during the degradation of petroleum hydrocarbons in soil should be considered more. Overall, this review reveals an urgent need to develop the cost-effective remedial strategies for petroleum hydrocarbons contaminated soils, and to advance our knowledge on the generation, transport and propagation of radicals in soils.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yuanyuan Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Shan Zhong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Lishan Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
8
|
Cj S, T S. Enhanced biogeogenic controls on dichromate speciation in subsoil containment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110327. [PMID: 32092580 DOI: 10.1016/j.ecoenv.2020.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
In general, lab-based Cr (VI) reduction studies do not often corroborate the prevailing biogeochemical controls for on-site pollution abatement. To promulgate its importance, herein, we investigate the existing biogeogenic parameters of a contaminated site to attenuate the underground Cr (VI) toxicity. This study significantly assesses the speciation of dichromate by biogenic agents that are inherent and self-sustaining to treat the contaminated soil. Herein, a group of bacteria exposed to high concentrations of chromium (≥3500 mg/L) plays a vital role as an enhanced biogeogenic control for the detoxification of toxic Cr (VI). All identified bacteria were screened based on their ability to differentiate from extracellular speciation and harvested in a Cr (VI)-enriched molasses to achieve dichromate concentrations as low as 0.05 mg/L in 168 h. Under low O2 condition, the bacterial growth rate and doubling time were monitored to establish the half-life period of Cr (VI) for adequate containment treatment. Furthermore, to understand the soil decontamination, Cr (VI) reactive transport was demonstrated to facilitate the contaminant reduction under both saturated and unsaturated groundwater conditions. Herein, Cr (VI) speciation to Cr (III) by the influence of abiogenic factors are unlikely or less probable as studied in existing geogenic conditions. Moreover, the evidence of biogenic reduction of Cr (VI) in microcosm suggests its effectiveness in enhanced detoxification of Cr (VI) up to ≤ 0.1 mg/L, within the reaction period of 144 h and 192 h, for saturated and unsaturated flow conditions, respectively.
Collapse
Affiliation(s)
- Sangeetha Cj
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Shashidhar T
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India.
| |
Collapse
|
9
|
Zhou H, Wang D, Cao M, Li P, Wang L, Chen J, Lu X. Remediation of hexachlorobenzene-contaminated soils with alkyl glycoside-enhanced desorption and zero-valent iron-EDTA-air treatment. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:358-367. [PMID: 33016432 DOI: 10.1002/jeq2.20057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/09/2019] [Indexed: 06/11/2023]
Abstract
In this work, the use of a coupled process, alkyl glycoside (APG) enhanced soil desorption followed by the zero-valent iron-ethylenediaminetetraacetic acid (EDTA)-air (ZEA) Fenton-like system, was investigated for the remediation of a simulated hexachlorobenzene (HCB)-contaminated diatomite soil and a real HCB-contaminated soil. Three surfactants with different concentrations were studied to obtain the suitable soil desorption agent. Compared with APG0810 and Triton x-100, APG0814 showed a better solubilization effect due to its lower critical micelle concentration. With addition of 3000 mg L-1 APG0814, 35% of HCB was removed from contaminated diatomite soil, and a small amount of residual APG in diatomite soil was found to be beneficial for the soil dispersion. After treatment with the ZEA system, the removal efficiency of HCB in the diatomite soil desorption solution reached 76% in 2 h; we observed that a small amount of APG retained in the desorption solution accelerated the HCB removal. A real HCB-contaminated soil was used to verify the remediation effects. This study demonstrates that our approach is a feasible alternative for remediating soil contaminated with hydrophobic organic compounds.
Collapse
Affiliation(s)
- Haiyan Zhou
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong Univ. of Science and Technology, Wuhan, 430074, PR China
- Institute of Eco-environment and Soil-remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, PR China
| | - Di Wang
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong Univ. of Science and Technology, Wuhan, 430074, PR China
| | - Menghua Cao
- College of Resources and Environment, Huazhong Agricultural Univ., Wuhan, 430070, PR China
| | - Pengyu Li
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong Univ. of Science and Technology, Wuhan, 430074, PR China
| | - Linling Wang
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong Univ. of Science and Technology, Wuhan, 430074, PR China
| | - Jing Chen
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong Univ. of Science and Technology, Wuhan, 430074, PR China
| | - Xiaohua Lu
- Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong Univ. of Science and Technology, Wuhan, 430074, PR China
| |
Collapse
|
10
|
Tao Y, Brigante M, Zhang H, Mailhot G. Phenanthrene degradation using Fe(III)-EDDS photoactivation under simulated solar light: A model for soil washing effluent treatment. CHEMOSPHERE 2019; 236:124366. [PMID: 31344624 DOI: 10.1016/j.chemosphere.2019.124366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/14/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
In this work, for the first time, the nonionic surfactant polyoxyethylene-(20)-sorbitan monooleate (Tween 80, C64H124O26) aided soil washing effluent was treated by enhanced activation of persulfate (PS) using Fe(III)-EDDS (EDDS: ethylenediamine-N, N-disuccinic acid) complexes under simulated solar light irradiation. The performance of this system was followed via the production and reactivity of radical species (SO4-, HO, Cl2-) and degradation of phenanthrene (PHE) used as a model pollutant in soils. Different physico-chemical parameters such as the concentration of reactive species and pH were investigated through the PHE degradation efficiency. The second-order rate constants of the reactions for generated radicals with PHE and Tween 80 in solution were identified through competitive reaction experiments under steady-state conditions and application of nanosecond laser flash photolysis (LFP) as well. A kinetic approach was applied to assess the selectivity and reactivity of photo-generated radicals in aqueous medium in order to explain the observed degradation trends. This work proposes an innovative technology of management of soil washing solutions using Fe(III)-EDDS complexes and solar light for the activation of persulfate.
Collapse
Affiliation(s)
- Yufang Tao
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont, Ferrand, France; Department of Environmental Engineering, School of Resources and Environmental Science, Wuhan University, 430079, PR China
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont, Ferrand, France
| | - Hui Zhang
- Department of Environmental Engineering, School of Resources and Environmental Science, Wuhan University, 430079, PR China
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont, Ferrand, France.
| |
Collapse
|
11
|
Zhang M, Feng Y, Zhang D, Dong L, Pan X. Ozone-encapsulated colloidal gas aphrons for in situ and targeting remediation of phenanthrene-contaminated sediment-aquifer. WATER RESEARCH 2019; 160:29-38. [PMID: 31129379 DOI: 10.1016/j.watres.2019.05.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The hydrophobic polycyclic aromatic hydrocarbons (PAHs) are apt to adhere tightly to the sediments in aquifer and thus pose great threats to the aquatic environment of groundwater and surface water as well as human health. The present study constructed functionalized microbubbles, named colloidal ozone aphrons (COAs), by dissolving ozone-contained air into the nonionic surfactant (Tween-20) solution at the pressure of 300 kPa for the in situ remediation of phenanthrene (PHE)-contaminated sediments. The COA system aimed at improving the PHE elimination in terms of (i) enhancing the migration and transportation ability of the bubble system in the contaminated aquifer matrix, (ii) accurately desorbing the target hydrophobic contaminants from sediments, and (iii) reinforcing the in situ oxidation degradation immediately after or simultaneously when the PAHs are desorbed into the aqueous phase. Experimental results demonstrated that the COAs exhibited similar characteristics as the classical colloidal gas aphrons (CGAs), including the high stability (half-life time > 200 s), typical morphology and average bubble size (114-162 μm); higher air hold-up of COAs was achieved (i. e. > 20%) compared with the air-microbubbles (1-2%) obtained under the same generation conditions. Although the encapsulated ozone could oxidize the surfactant-layers, the properties and behaviors of COAs were not greatly affected. The surfactant multi-layers endowed the COAs with strong hydrophobic attraction with PHE, great migration capacity and enlarged oxidation area in the sediment matrix. Approximately 96.9% of PHE was removed from the sediments and 84.9% of the overall PHE was oxidized at the high ozone concentration of 0.6 mg/L when the initial PHE concentration was 240.0 μg/kg. The COA-involved remediation technology provided the insight of combining the processes of washing and oxidizing through adopting the particularly conceived microbubbles. The in situ and selective removal of hydrophobic organic contaminants from sediments in aquifer was well achieved in this study.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudong Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|