1
|
Amani H, Alipour M, Shahriari E, Taboas JM. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv Healthc Mater 2024:e2401253. [PMID: 39370571 DOI: 10.1002/adhm.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Indexed: 10/08/2024]
Abstract
The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahdieh Alipour
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
2
|
Muniz NO, Baudequin T. Biomimetic and Nonbiomimetic Approaches in Dura Substitutes: The Influence of Mechanical Properties. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38874958 DOI: 10.1089/ten.teb.2024.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The dura mater, the furthest and strongest layer of the meninges, is crucial for protecting the brain and spinal cord. Its biomechanical behavior is vital, as any alterations can compromise biological functions. In recent decades, interest in the dura mater has increased due to the need for hermetic closure of dural defects prompting the development of several substitutes. Collagen-based dural substitutes are common commercial options, but they lack the complex biological and structural elements of the native dura mater, impacting regeneration and potentially causing complications like wound/postoperative infection and cerebrospinal fluid (CSF) leakage. To face this issue, recent tissue engineering approaches focus on creating biomimetic dura mater substitutes. The objective of this review is to discuss whether mimicking the mechanical properties of native tissue or ensuring high biocompatibility and bioactivity is more critical in developing effective dural substitutes, or if both aspects should be systematically linked. After a brief description of the properties and architecture of the native cranial dura, we describe the advantages and limitations of biomimetic dura mater substitutes to better understand their relevance. In particular, we consider biomechanical properties' impact on dura repair's effectiveness. Finally, the obstacles and perspectives for developing the ideal dural substitute are explored.
Collapse
Affiliation(s)
- Nathália Oderich Muniz
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne Cedex, France
| | - Timothée Baudequin
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne Cedex, France
| |
Collapse
|
3
|
Kellaway SC, Ullrich MM, Dziemidowicz K. Electrospun drug-loaded scaffolds for nervous system repair. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1965. [PMID: 38740385 DOI: 10.1002/wnan.1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Nervous system injuries, encompassing peripheral nerve injury (PNI), spinal cord injury (SCI), and traumatic brain injury (TBI), present significant challenges to patients' wellbeing. Traditional treatment approaches have limitations in addressing the complexity of neural tissue regeneration and require innovative solutions. Among emerging strategies, implantable materials, particularly electrospun drug-loaded scaffolds, have gained attention for their potential to simultaneously provide structural support and controlled release of therapeutic agents. This review provides a thorough exploration of recent developments in the design and application of electrospun drug-loaded scaffolds for nervous system repair. The electrospinning process offers precise control over scaffold characteristics, including mechanical properties, biocompatibility, and topography, crucial for creating a conducive environment for neural tissue regeneration. The large surface area of the resulting fibrous networks enhances biomolecule attachment, influencing cellular behaviors such as adhesion, proliferation, and migration. Polymeric electrospun materials demonstrate versatility in accommodating a spectrum of therapeutics, from small molecules to proteins. This enables tailored interventions to accelerate neuroregeneration and mitigate inflammation at the injury site. A critical aspect of this review is the examination of the interplay between structural properties and pharmacological effects, emphasizing the importance of optimizing both aspects for enhanced therapeutic outcomes. Drawing upon the latest advancements in the field, we discuss the promising outcomes of preclinical studies using electrospun drug-loaded scaffolds for nervous system repair, as well as future perspectives and considerations for their design and implementation. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Simon C Kellaway
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Mathilde M Ullrich
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| | - Karolina Dziemidowicz
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
4
|
Ravasi E, Melocchi A, Arrigoni A, Chiappa A, Gennari CGM, Uboldi M, Bertarelli C, Zema L, Briatico Vangosa F. Electrospinning of pullulan-based orodispersible films containing sildenafil. Int J Pharm 2023; 643:123258. [PMID: 37479102 DOI: 10.1016/j.ijpharm.2023.123258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Feasibility of electrospinning in the manufacturing of sildenafil-containing orodispersible films (ODFs) intended to enhance oxygenation and to reduce pulmonary arterial pressure in pediatric patients was evaluated. Given the targeted subjects, the simplest and safest formulation was chosen, using water as the only solvent and pullulan, a natural polymer, as the sole fiber-forming agent. A systematic characterization in terms of shear and extensional viscosity as well as surface tension of solutions containing different amounts of pullulan and sildenafil was carried out. Accordingly, electrospinning parameters enabling the continuous production, at the highest possible rate, of defect-free fibers with uniform diameter in the nanometer range were assessed. Morphology, microstructure, drug content and relevant solid state as well as ability of the resulting non-woven films to interact with aqueous fluids were evaluated. To better define the role of the fibrous nanostructure on the performance of ODFs, analogous films were produced by spin- and blade-coating and tested. Interestingly, the disintegration process of electrospun products turned out to be the fastest (i.e. occurring within few s) and compliant with Ph. Eur. and USP limits, making relevant ODFs particularly promising for increasing sildenafil bioavailability, thus lowering its dosages.
Collapse
Affiliation(s)
- Elisabetta Ravasi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Alessia Arrigoni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Arianna Chiappa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Chiara Grazia Milena Gennari
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Chiara Bertarelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy.
| | - Francesco Briatico Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
5
|
Stem cell laden nano and micro collagen/PLGA bimodal fibrous patches for myocardial regeneration. Biomater Res 2022; 26:79. [PMID: 36514148 DOI: 10.1186/s40824-022-00319-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/13/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although the use of cardiac patches is still controversial, cardiac patch has the significance in the field of the tissue engineered cardiac regeneration because it overcomes several shortcomings of intra-myocardial injection by providing a template for cells to form a cohesive sheet. So far, fibrous scaffolds fabricated using electrospinning technique have been increasingly explored for preparation of cardiac patches. One of the problems with the use of electrospinning is that nanofibrous structures hardly allow the infiltration of cells for development of 3D tissue construct. In this respect, we have prepared novel bi-modal electrospun scaffolds as a feasible strategy to address the challenges in cardiac tissue engineering . METHODS Nano/micro bimodal composite fibrous patch composed of collagen and poly (D, L-lactic-co-glycolic acid) (Col/PLGA) was fabricated using an independent nozzle control multi-electrospinning apparatus, and its feasibility as the stem cell laden cardiac patch was systemically investigated. RESULTS Nano/micro bimodal distributions of Col/PLGA patches without beaded fibers were obtained in the range of the 4-6% collagen concentration. The poor mechanical properties of collagen and the hydrophobic property of PLGA were improved by co-electrospinning. In vitro experiments using bone marrow-derived mesenchymal stem cells (BMSCs) revealed that Col/PLGA showed improved cyto-compatibility and proliferation capacity compared to PLGA, and their extent increased with increase in collagen content. The results of tracing nanoparticle-labeled as well as GFP transfected BMSCs strongly support that Col/PLGA possesses the long-term stem cells retention capability, thereby allowing stem cells to directly function as myocardial and vascular endothelial cells or to secrete the recovery factors, which in turn leads to improved heart function proved by histological and echocardiographic findings. CONCLUSION Col/PLGA bimodal cardiac patch could significantly attenuate cardiac remodeling and fully recover the cardiac function, as a consequence of their potent long term stem cell engraftment capability.
Collapse
|
6
|
Effect of thrombin conjugation on hemostatic efficacy of PLGA mesh through reagent free surface modification. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Lin CW, Hung CM, Chen WJ, Chen JC, Huang WY, Lu CS, Kuo ML, Chen SG. New Horizons of Macrophage Immunomodulation in the Healing of Diabetic Foot Ulcers. Pharmaceutics 2022; 14:pharmaceutics14102065. [PMID: 36297499 PMCID: PMC9606988 DOI: 10.3390/pharmaceutics14102065] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are one of the most costly and troublesome complications of diabetes mellitus. The wound chronicity of DFUs remains the main challenge in the current and future treatment of this condition. Persistent inflammation results in chronic wounds characterized by dysregulation of immune cells, such as M1 macrophages, and impairs the polarization of M2 macrophages and the subsequent healing process of DFUs. The interactive regulation of M1 and M2 macrophages during DFU healing is critical and seems manageable. This review details how cytokines and signalling pathways are co-ordinately regulated to control the functions of M1 and M2 macrophages in normal wound repair. DFUs are defective in the M1-to-M2 transition, which halts the whole wound-healing machinery. Many pre-clinical and clinical innovative approaches, including the application of topical insulin, CCL chemokines, micro RNAs, stem cells, stem-cell-derived exosomes, skin substitutes, antioxidants, and the most recent Phase III-approved ON101 topical cream, have been shown to modulate the activity of M1 and M2 macrophages in DFUs. ON101, the newest clinically approved product in this setting, is designed specifically to down-regulate M1 macrophages and further modulate the wound microenvironment to favour M2 emergence and expansion. Finally, the recent evolution of macrophage modulation therapies and techniques will improve the effectiveness of the treatment of diverse DFUs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Liang Kuo
- Microbio Co., Ltd., Taipei 115, Taiwan
- Correspondence: (M.-L.K.); or (S.-G.C.); Tel.: +886-2-27031298 (ext. 550) (M.-L.K.); +886-2-27031098 (ext. 551) (S.-G.C.)
| | - Shyi-Gen Chen
- Oneness Biotech Co., Ltd., Taipei 106, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (M.-L.K.); or (S.-G.C.); Tel.: +886-2-27031298 (ext. 550) (M.-L.K.); +886-2-27031098 (ext. 551) (S.-G.C.)
| |
Collapse
|
8
|
Liu T, Zhu W, Zhang X, He C, Liu X, Xin Q, Chen K, Wang H. Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5079153. [PMID: 35978649 PMCID: PMC9377911 DOI: 10.1155/2022/5079153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating central nervous system disease caused by accidental events, resulting in loss of sensory and motor function. Considering the multiple effects of primary and secondary injuries after spinal cord injury, including oxidative stress, tissue apoptosis, inflammatory response, and neuronal autophagy, it is crucial to understand the underlying pathophysiological mechanisms, local microenvironment changes, and neural tissue functional recovery for preparing novel treatment strategies. Treatment based on cell transplantation has become the forefront of spinal cord injury therapy. The transplanted cells provide physical and nutritional support for the damaged tissue. At the same time, the implantation of biomaterials with specific biological functions at the site of the SCI has also been proved to improve the local inhibitory microenvironment and promote axonal regeneration, etc. The combined transplantation of cells and functional biomaterials for SCI treatment can result in greater neuroprotective and regenerative effects by regulating cell differentiation, enhancing cell survival, and providing physical and directional support for axon regeneration and neural circuit remodeling. This article reviews the pathophysiology of the spinal cord, changes in the microenvironment after injury, and the mechanisms and strategies for spinal cord regeneration and repair. The article will focus on summarizing and discussing the latest intervention models based on cell and functional biomaterial transplantation and the latest progress in combinational therapies in SCI repair. Finally, we propose the future prospects and challenges of current treatment regimens for SCI repair, to provide references for scientists and clinicians to seek better SCI repair strategies in the future.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Wenhao Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoyu Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaolong Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Qiang Xin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Kexin Chen
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Haifeng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
9
|
Joseph J, Parameswaran R, Gopalakrishna Panicker U. Recent advancements in blended and reinforced polymeric systems as bioscaffolds. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jasmin Joseph
- Department of Chemistry, National Institute of Technology, Calicut, India
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | |
Collapse
|
10
|
Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021; 146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) devastate event that is commonly caused by traumatic or non-traumatic events. The reinnervation of spinal cord axons is hampered through a myriad of devices counting on the damaged myelin, inflammation, glial scar, and defective inhibitory molecules. Unfortunately, an effective treatment to completely repair SCI and improve functional recovery has not been found. In this regard, strategies such as using cells, biomaterials, biomolecules, and drugs have been reported to be effective for SCI recovery. Furthermore, recent advances in combinatorial treatments, which address various aspects of SCI pathophysiology, provide optimistic outcomes for spinal cord regeneration. According to the global importance of SCI, the goal of this article review is to provide an overview of the pathophysiology of SCI, with an emphasis on the latest modes of intervention and current advanced approaches for the treatment of SCI, in conjunction with an assessment of combinatorial approaches in preclinical and clinical trials. So, this article can give scientists and clinicians' clues to help them better understand how to construct preclinical and clinical studies that could lead to a breakthrough in spinal cord regeneration.
Collapse
|
11
|
Politi S, Carotenuto F, Rinaldi A, Di Nardo P, Manzari V, Albertini MC, Araneo R, Ramakrishna S, Teodori L. Smart ECM-Based Electrospun Biomaterials for Skeletal Muscle Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1781. [PMID: 32916791 PMCID: PMC7558997 DOI: 10.3390/nano10091781] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
The development of smart and intelligent regenerative biomaterials for skeletal muscle tissue engineering is an ongoing challenge, owing to the requirement of achieving biomimetic systems able to communicate biological signals and thus promote optimal tissue regeneration. Electrospinning is a well-known technique to produce fibers that mimic the three dimensional microstructural arrangements, down to nanoscale and the properties of the extracellular matrix fibers. Natural and synthetic polymers are used in the electrospinning process; moreover, a blend of them provides composite materials that have demonstrated the potential advantage of supporting cell function and adhesion. Recently, the decellularized extracellular matrix (dECM), which is the noncellular component of tissue that retains relevant biological cues for cells, has been evaluated as a starting biomaterial to realize composite electrospun constructs. The properties of the electrospun systems can be further improved with innovative procedures of functionalization with biomolecules. Among the various approaches, great attention is devoted to the "click" concept in constructing a bioactive system, due to the modularity, orthogonality, and simplicity features of the "click" reactions. In this paper, we first provide an overview of current approaches that can be used to obtain biofunctional composite electrospun biomaterials. Finally, we propose a design of composite electrospun biomaterials suitable for skeletal muscle tissue regeneration.
Collapse
Affiliation(s)
- Sara Politi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
| | - Felicia Carotenuto
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Antonio Rinaldi
- Department of Sustainability (SSPT), ENEA, 00123 Rome, Italy;
| | - Paolo Di Nardo
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
- L.L. Levshin Institute of Cluster Oncology, I. M. Sechenov First Medical University, Moscow 119991, Russia
| | - Vittorio Manzari
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
| | | | - Rodolfo Araneo
- Department of Astronautics Electrical and Energy Engineering (DIAEE), University of Rome “La Sapienza”, 00184 Rome, Italy;
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore;
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
12
|
Bi X, Liu B, Mao Z, Wang C, Dunne N, Fan Y, Li X. Applications of materials for dural reconstruction in pre-clinical and clinical studies: Advantages and drawbacks, efficacy, and selections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111326. [PMID: 32919680 DOI: 10.1016/j.msec.2020.111326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
The dura mater provides a barrier to protect the tissue underneath and cerebrospinal fluid. However, dural defects normally cause cerebrospinal fluid leakage and other complications, such as wound infections, meningitis, etc. Therefore, the reconstruction of dura mater has important clinical significance. Current dural reconstruction materials include: homologous, acellular, natural, synthetic, and composite materials. This review comprehensively summarizes the characteristics and efficacy of these dural substitutes, especially in clinical applications, including the advantages and drawbacks of those from different sources, the host tissue response in pre-clinical studies and clinical practice, and the comparison of these materials across different surgical procedures. Furthermore, the selections of materials for different surgical procedures are highlighted. Finally, the challenges and future perspectives in the development of ideal dural repair materials are discussed.
Collapse
Affiliation(s)
- Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Bo Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Zhinan Mao
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
13
|
Bone Regeneration Using Duck's Feet-Derived Collagen Scaffold as an Alternative Collagen Source. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32601934 DOI: 10.1007/978-981-15-3262-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Collagen is an important component that makes 25-35% of our body proteins. Over the past decades, tissue engineers have been designing collagen-based biocompatible materials and studying their applications in different fields. Collagen obtained from cattle and pigs has been mainly used until now, but collagen derived from fish and other livestock has attracted more attention since the outbreak of mad cow disease, and they are also used as a raw material for cosmetics and foods. Due to the zoonotic infection using collagen derived from pigs and cattle, their application in developing biomaterials is limited; hence, the development of new animal-derived collagen is required. In addition, there is a religion (Islam, Hinduism, and Judaism) limited to export raw materials and products derived from cattle and pig. Hence, high-value collagen that is universally accessible in the world market is required. Therefore, in this review, we have dealt with the use of duck's feet-derived collagen (DC) as an emerging alternative to solve this problem and also presenting few original investigated bone regeneration results performed using DC.
Collapse
|
14
|
Ternary nanofiber matrices composed of PCL/black phosphorus/collagen to enhance osteodifferentiation. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Design and manufacture of 3D cell culture plate for mass production of cell-spheroids. Sci Rep 2019; 9:13976. [PMID: 31562370 PMCID: PMC6765015 DOI: 10.1038/s41598-019-50186-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
A 3D cell culture is preferred to 2D cell culture since it allows cells to grow in all directions in vitro, similar to how they would in vivo. 3D cell culture plates currently used in tissue engineering research have limited access to control the geometry. Furthermore, 3D cell culture plate manufacturing methods are relatively complex, time-consuming, labor-intensive, and expensive. Therefore, a design and manufacturing method, which has relatively low cost, high throughput, and high size flexibility, is proposed. Cell culture plate was fabricated by computer aided design and manufacturing software using polydimethylsiloxane as a plate constituent. With the successfully-developed 3D cell culture plate, the morphology and viability of the cultured mesenchymal stem cells were tested.The mesenchymal stem cells seeded on the newly-fabricated 3D cell culture plate aggregated to form 3D spheroids within 24 h of incubation and well-maintained their viability. Thus, due to the capacity of mass production of the cell spheroids with a desired cell viability, the newly-fabricated plate has a great promise to prepare 3D cell spheroids for experimental as well as clinical applications.
Collapse
|
16
|
Multi-Functional Electrospun Nanofibers from Polymer Blends for Scaffold Tissue Engineering. FIBERS 2019. [DOI: 10.3390/fib7070066] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrospinning and polymer blending have been the focus of research and the industry for their versatility, scalability, and potential applications across many different fields. In tissue engineering, nanofiber scaffolds composed of natural fibers, synthetic fibers, or a mixture of both have been reported. This review reports recent advances in polymer blended scaffolds for tissue engineering and the fabrication of functional scaffolds by electrospinning. A brief theory of electrospinning and the general setup as well as modifications used are presented. Polymer blends, including blends with natural polymers, synthetic polymers, mixture of natural and synthetic polymers, and nanofiller systems, are discussed in detail and reviewed.
Collapse
|
17
|
Xu T, Yang R, Ma X, Chen W, Liu S, Liu X, Cai X, Xu H, Chi B. Bionic Poly(γ-Glutamic Acid) Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars. Adv Healthc Mater 2019; 8:e1900123. [PMID: 30972958 DOI: 10.1002/adhm.201900123] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/15/2019] [Indexed: 12/16/2022]
Abstract
Hypertrophic scarring (HS) remains a great challenge in wound dressing. Although various bionic extracellular matrix (ECM) biomaterials have been designed towards HS treatment, not all biomaterials can synergize biological functions and application functions in wound repair. Bionic scar-inhibiting scaffolds, loaded with biomolecules or drugs, become promising strategies for scarless skin regeneration. In this work, inspired by the physicochemical environment of ECM, a versatile fabrication of poly(γ-glutamic acid) based on electrospun photocrosslinkable hydrogel fibrous scaffolds incorporated with ginsenoside Rg3 (GS-Rg3) is developed for tissue repair and wound therapy. Decorated with adhesive peptide, bionic fibrous scaffolds can accelerate fibroblasts to sprout and grow, forming organized space-filling basement that gradually fills a depression before wound close up in the early stage. Additionally, by sustained release of GS-Rg3 in late stage, fibrous scaffolds promote scarless wound healing in vivo as evidenced by the promotion of cell communication and skin regeneration, as well as the subsequent decrease of angiogenesis and collagen accumulation. These ECM-inspired fibrous scaffolds, therefore, offer new perspectives on accelerated wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Rong Yang
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Xuebin Ma
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing 210094 China
| | - Wei Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Shuai Liu
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing 210094 China
| | - Xin Liu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Xiaojun Cai
- College of Materials Science and EngineeringNanjing Tech University Nanjing 211816 Nanjing China
| | - Hong Xu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Bo Chi
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| |
Collapse
|