1
|
Kundu S, Khandaker T, Anik MAAM, Hasan MK, Dhar PK, Dutta SK, Latif MA, Hossain MS. A comprehensive review of enhanced CO 2 capture using activated carbon derived from biomass feedstock. RSC Adv 2024; 14:29693-29736. [PMID: 39297049 PMCID: PMC11409178 DOI: 10.1039/d4ra04537h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
The increasing level of atmospheric CO2 requires the urgent development of effective capture technologies. This comprehensive review thoroughly examines various methods for the synthesis of carbon materials, modification techniques for converting biomass feedstock into carbon materials and pivotal factors impacting their properties. The novel aspect of this review is its in-depth comparison of how these modifications specifically affect the pore structure and surface area together with the exploration of the mechanism underlying the enhancement of CO2 adsorption performance. Additionally, this review addresses research gaps and provides recommendations for future studies concerning the advantages and drawbacks of CO2 adsorbents and their prospects for commercialization and economic feasibility. This article revealed that among the various strategies, template carbonization offers a viable option for providing control of the material pore diameter and structure without additional modification treatments. Optimizing the pore structure of activated carbons, particularly those activated with agents such as KOH and ZnCl2, together with synthesizing hybrid activated carbons using multiple activating agents, is crucial for enhancing their CO2 capture performance. Cost-benefit analysis suggests that biomass-derived activated carbons can significantly meet the escalating demand for CO2 capture materials, offering economic advantages and supporting sustainable waste management.
Collapse
Affiliation(s)
- Shreyase Kundu
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| | - Tasmina Khandaker
- Department of Chemistry, Bangladesh Army University of Engineering & Technology (BAUET) Qadirabad Cantonment Natore-6431 Bangladesh
| | | | - Md Kamrul Hasan
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| | | | | | - M Abdul Latif
- Department of Chemistry, Begum Rokeya University Rangpur-5404 Bangladesh
| | | |
Collapse
|
2
|
Xu J, Xie Y, Yao Q, Lv L, Chu H. Advances in sustainable nano-biochar: precursors, synthesis methods and applications. NANOSCALE 2024; 16:15009-15032. [PMID: 39041285 DOI: 10.1039/d4nr01694g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Nano-biochar, characterized by its environmentally friendly nature and unique nanostructure, offers a promising avenue for sustainable carbon materials. With its small particle size, large specific surface area, abundant functional groups and tunable pore structure, nano-biochar stands out due to its distinct physical and chemical properties compared to conventional biochar. This paper aims to provide an in-depth exploration of nano-biochar, covering its sources, transformation mechanisms, properties, applications, and areas requiring further research. The discussion begins with an overview of biomass sources for nano-biochar production and the conversion processes involved. Subsequently, primary synthesis methods and strategies for functionalization enhancement are examined. Furthermore, the applications of nano-biochar in catalysis, energy storage, and pollutant adsorption and degradation are explored and enhanced in various fields.
Collapse
Affiliation(s)
- Junchao Xu
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| | - Yiming Xie
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| | - Qingdong Yao
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| | - Li Lv
- College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, Zhejiang Province, PR China
| | - Huaqiang Chu
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| |
Collapse
|
3
|
He Z, Lin H, Sui J, Wang K, Wang H, Cao L. Seafood waste derived carbon nanomaterials for removal and detection of food safety hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172332. [PMID: 38615776 DOI: 10.1016/j.scitotenv.2024.172332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Huiying Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
4
|
Stefanów J, Sobieraj K, Hejna M, Pawęska K, Świechowski K. Fuel Characteristics and Phytotoxicity Assay of Biochar Derived from Rose Pruning Waste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1895. [PMID: 38673252 PMCID: PMC11051787 DOI: 10.3390/ma17081895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
The aim of this study was the characterization and evaluation of applicability as a soil amendment of biochar derived from rose pruning waste at different pyrolysis temperatures (200-500 °C) and process durations (20-60 min). The biochar properties were compared to the raw material. The biochars produced at 300 °C for 40 and 60 min demonstrated the best fuel properties. These variants showed high energy gain rates (77.6 ± 1.5% and 74.8 ± 1.5%, respectively), energy densification ratios (1.35 ± 0.00 and 1.37 ± 0.00, respectively), high heating values (24,720 ± 267 J × g-1 and 25,113 ± 731 J × g-1, respectively), and relative low ash contents (5.9 ± 0.5% and 7.1 ± 0.3%, respectively). Regarding fertilizer properties, such as pH value, ash content, heavy metal content, and pollutant elution, the biochars showed better qualities than the raw material. All tested biochar did not exceed the permissible values for heavy metals, including Cr, Cd, Ni, and Pb. The most optimal properties for soil amendments were noted for biochar variants of 400 °C for 40 min, 450 °C for 20 min, and 500 °C for 20 min. Generally, biochars produced at temperatures ≥400 °C did not inhibit root elongation, except for the material produced at 450 °C for 60 min (4.08 ± 23.34%). Biochars obtained at ≥300 °C showed a positive impact on seed germination (86.67 ± 18.48-100 ± 24.14%).
Collapse
Affiliation(s)
- Julia Stefanów
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (J.S.); (K.S.); (K.Ś.)
| | - Karolina Sobieraj
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (J.S.); (K.S.); (K.Ś.)
| | - Małgorzata Hejna
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (J.S.); (K.S.); (K.Ś.)
| | - Katarzyna Pawęska
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 24 Grunwaldzki Square, 50-363 Wrocław, Poland;
| | - Kacper Świechowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (J.S.); (K.S.); (K.Ś.)
| |
Collapse
|
5
|
He W, Liu K, Zhang L, Liu M, Ni Z, Li Y, Xu D, Cui M, Zhao Y. Catalytic pyrolysis and in situ carbonization of walnut shells: poly-generation and enhanced electrochemical performance of carbons. RSC Adv 2024; 14:12255-12264. [PMID: 38628483 PMCID: PMC11019962 DOI: 10.1039/d4ra01608d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
In this study, walnut shell (WS) was used as feedstock, incorporating lithium carbonate (LC), sodium carbonate (SC), potassium carbonate (PC), and potassium hydroxide (PH) as pyrolysis catalysts and carbonization activators. A one-step method that allows catalytic pyrolysis and carbonization to be carried out consecutively under their respective optimal conditions is employed, enabling the concurrent production of high-quality pyrolysis oil, pyrolysis gas, and carbon materials from biomass conversion. The effects of LC, SC, PC, and PH on the yield and properties of products derived from WS pyrolysis as well as on the properties and performance of the resulting carbon materials were examined. The results indicated that the addition of LC, SC, PC, and PH enhanced the secondary cracking of tar, leading to increased solid and gas yields from WS. Additionally, it increased the production of phenolic compounds in bio-oil and H2 in syngas, concurrently yielding a walnut shell-based carbon material exhibiting excellent electrochemical performance. Specifically, when PC was used as an additive, the phenolic content in the pyrolysis oil increased by 27.64% compared to that without PC, reaching 74.9%, but the content of ketones, acids, aldehydes, and amines decreased. The hydrogen content increased from 2.5% (without the addition of PC) to 12.75%. The resulting carbon (WSC-PC) displayed a specific surface area of 598.6 m2 g-1 and achieved a specific capacitance of 245.18 F g-1 at a current density of 0.5 A g-1. Even after 5000 charge and discharge cycles at a current density of 2 A g-1, the capacitance retention rate remained at 98.16%. This method effectively enhances the quality of the biomass pyrolysis oil, gas, and char, contributing to the efficient and clean utilization of biomass in industrial applications.
Collapse
Affiliation(s)
- Wenjing He
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University Lianyungang 222005 China
| | - Keling Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Lanjun Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University Lianyungang 222005 China
| | - Muxin Liu
- School of Materials and Chemical Engineering, Bengbu University Bengbu Anhui 233030 PR China
| | - Zhengjie Ni
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Yueyang Li
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Duoduo Xu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Minjie Cui
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences Beijing 100190 China
| | - Yibo Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University Lianyungang 222005 China
| |
Collapse
|
6
|
Nidheesh PV, Kumar M, Venkateshwaran G, Ambika S, Bhaskar S, Vinay, Ghosh P. Conversion of locally available materials to biochar and activated carbon for drinking water treatment. CHEMOSPHERE 2024; 353:141566. [PMID: 38428536 DOI: 10.1016/j.chemosphere.2024.141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
For environmental sustainability and to achieve sustainable development goals (SDGs), drinking water treatment must be done at a reasonable cost with minimal environmental impact. Therefore, treating contaminated drinking water requires materials and approaches that are inexpensive, produced locally, and effortlessly. Hence, locally available materials and their derivatives, such as biochar (BC) and activated carbon (AC) were investigated thoroughly. Several researchers and their findings show that the application of locally accessible materials and their derivatives are capable of the adsorptive removal of organic and inorganic contaminants from drinking water. The application of locally available materials such as lignocellulosic materials/waste and its thermo-chemically derived products, including BC and AC were found effective in the treatment of contaminated drinking water. Thus, this review aims to thoroughly examine the latest developments in the use of locally accessible feedstocks for tailoring BC and AC, as well as their features and applications in the treatment of drinking water. We attempted to explain facts related to the potential mechanisms of BC and AC, such as complexation, co-precipitation, electrostatic interaction, and ion exchange to treat water, thereby achieving a risk-free remediation approach to polluted water. Additionally, this research offers guidance on creating efficient household treatment units based on the health risks associated with customized adsorbents and cost-benefit analyses. Lastly, this review work discusses the current obstacles for using locally accessible materials and their thermo-chemically produced by-products to purify drinking water, as well as the necessity for technological interventions.
Collapse
Affiliation(s)
- P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR - National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - G Venkateshwaran
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Ambika
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Bhaskar
- Department of Civil Engineering, National Institute of Technology, Calicut, NIT Campus, P.O 673 601, Kozhikode, India
| | - Vinay
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India; Industrial Pollution Control-IV Division, Central Pollution Control Board (CPCB), Ministry of Environment, Forest and Climate Change (MoEF&CC), Parivesh Bhawan, East Arjun Nagar, Delhi, 110032, India
| | - Pooja Ghosh
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
7
|
Sahu JN, Dhaouadi F, Sellaoui L, Khor LX, Lee SY, Daud WMAW, Chebaane S, Bouzidi M, Guergueb M, Bonilla-Petriciolet A, Lamine AB. Physicochemical assessment of ammonium adsorption using a palm shell-based adsorbent activated with acetic acid: experimental and theoretical studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27980-27987. [PMID: 38526713 DOI: 10.1007/s11356-024-33002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.
Collapse
Affiliation(s)
- Jaya Narayan Sahu
- Institute of Chemical Technology, Faculty of Chemistry, University of Stuttgart, D-70550, Stuttgart, Germany
- South Ural State University (National Research University), Chelyabinsk, Russian Federation, 454080
| | - Fatma Dhaouadi
- Laboratory of Quantum and Statistical Physics, LR18ES18, Department of Physics, Faculty of Sciences of Monastir, Monastir University, 5000, Monastir, Tunisia
| | - Lotfi Sellaoui
- Laboratory of Quantum and Statistical Physics, LR18ES18, Department of Physics, Faculty of Sciences of Monastir, Monastir University, 5000, Monastir, Tunisia.
- CRMN, Centre for Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE, LR16CRMN01, Code Postal, 4054, Sousse, Tunisia.
| | - Lean Xin Khor
- Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo-Ying Lee
- Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Mohd Ashri Wan Daud
- Chemical Engineering Department, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saleh Chebaane
- Department of Physics, College of Science, University of Ha'il, P.O. Box 2240, Ha'il, Saudi Arabia
| | - Mohamed Bouzidi
- Department of Physics, College of Science, University of Ha'il, P.O. Box 2240, Ha'il, Saudi Arabia
- Laboratoire de recherche sur les Hétéro-Epitaxies et Applications (LRHEA), Departement de Physique, Faculté des Sciences de Monastir, Université de Monastir, 5000, Monastir, Tunisia
| | - Mouhieddinne Guergueb
- Laboratory of Physico-Chemistry of Materials, Department of Physics, University of Monastir, 5000, Monastir, Tunisia
| | - Adrian Bonilla-Petriciolet
- Department of Chemical Engineering, InstitutoTecnológico de Aguascalientes, Aguascalientes, 20256, México
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum and Statistical Physics, LR18ES18, Department of Physics, Faculty of Sciences of Monastir, Monastir University, 5000, Monastir, Tunisia
| |
Collapse
|
8
|
Al-Hazmi HE, Hassan GK, Kurniawan TA, Śniatała B, Joseph TM, Majtacz J, Piechota G, Li X, El-Gohary FA, Saeb MR, Mąkinia J. Technological solutions to landfill management: Towards recovery of biomethane and carbon neutrality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120414. [PMID: 38412730 DOI: 10.1016/j.jenvman.2024.120414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt.
| | | | - Bogna Śniatała
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, Toruń, 87-100, Poland
| | - Xiang Li
- School of Environmental Science & Engineering, Donghua Univerisity, Dept Env. Room 4155, 2999 North Renmin Rd, Songjiang District, Shanghai, China
| | - Fatma A El-Gohary
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416, Gdańsk, Poland
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| |
Collapse
|
9
|
Kazemi A, Moghadaskhou F, Pordsari MA, Manteghi F, Tadjarodi A, Ghaemi A. Enhanced CO 2 capture potential of UiO-66-NH 2 synthesized by sonochemical method: experimental findings and performance evaluation. Sci Rep 2023; 13:19891. [PMID: 37964001 PMCID: PMC10645735 DOI: 10.1038/s41598-023-47221-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
The excessive release of greenhouse gases, especially carbon dioxide (CO2) pollution, has resulted in significant environmental problems all over the world. CO2 capture technologies offer a very effective means of combating global warming, climate change, and promoting sustainable economic growth. In this work, UiO-66-NH2 was synthesized by the novel sonochemical method in only one hour. This material was characterized through PXRD, FT-IR, FE-SEM, EDX, BET, and TGA methods. The CO2 capture potential of the presented material was investigated through the analysis of gas isotherms under varying pressure conditions, encompassing both low and high-pressure regions. Remarkably, this adsorbent manifested a notable augmentation in CO2 adsorption capacity (3.2 mmol/g), achieving an approximate enhancement of 0.9 mmol/g, when compared to conventional solvothermal techniques (2.3 mmol/g) at 25 °C and 1 bar. To accurately represent the experimental findings, three isotherm, and kinetic models were used to fit the experimental data in which the Langmuir model and the Elovich model exhibited the best fit with R2 values of 0.999 and 0.981, respectively. Isosteric heat evaluation showed values higher than 80 kJ/mol which indicates chemisorption between the adsorbent surface and the adsorbate. Furthermore, the selectivity of the adsorbent was examined using the Ideal Adsorbed Solution Theory (IAST), which showed a high value of 202 towards CO2 adsorption under simulated flue gas conditions. To evaluate the durability and performance of the material over consecutive adsorption-desorption processes, cyclic tests were conducted. Interestingly, these tests demonstrated only 0.6 mmol/g capacity decrease for sonochemical UiO-66-NH2 throughout 8 consecutive cycles.
Collapse
Affiliation(s)
- Amir Kazemi
- Research Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Moghadaskhou
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mahyar Ashourzadeh Pordsari
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Faranak Manteghi
- Research Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
10
|
Brief History, Preparation Method, and Biological Application of Mesoporous Silica Molecular Sieves: A Narrative Review. Molecules 2023; 28:molecules28052013. [PMID: 36903259 PMCID: PMC10004212 DOI: 10.3390/molecules28052013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
It has been more than 30 years since the first ordered mesoporous silica molecular sieve (MCM-41) was reported, but the enthusiasm for exploiting mesoporous silica is still growing due to its superior properties, such as its controllable morphology, excellent hosting capability, easy functionalization, and good biocompatibility. In this narrative review, the brief history of the discovery of mesoporous silica and several important mesoporous silica families are summarized. The development of mesoporous silica microspheres with nanoscale dimensions, hollow mesoporous silica microspheres, and dendritic mesoporous silica nanospheres is also described. Meanwhile, common synthesis methods for traditional mesoporous silica, mesoporous silica microspheres, and hollow mesoporous silica microspheres are discussed. Then, we introduce the biological applications of mesoporous silica in fields such as drug delivery, bioimaging, and biosensing. We hope this review will help people to understand the history of the development of mesoporous silica molecular sieves and become familiar with their synthesis methods and applications in biology.
Collapse
|
11
|
Chen X, Lin J, Wang H, Yang Y, Wang C, Sun Q, Shen X, Li Y. Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel as adsorbents for carbon dioxide capture. Carbohydr Polym 2023; 302:120389. [PMID: 36604067 DOI: 10.1016/j.carbpol.2022.120389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Developing affordable and effective carbon dioxide (CO2) capture technology has attracted substantial intense attention due to the continued growth of global CO2 emissions. The low-cost and biodegradable cellulosic materials are developed into CO2 adsorbent recently. Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel (EBPCa) was synthesized from alkaline cellulose solution, epoxy-functionalized polyethyleneimine (EB-PEI), and epichlorohydrin (ECH) through the freezing-thawing processes and freeze-drying. The Fourier transform infrared spectroscopy confirmed that the cellulose aerogel was successfully modified by EB-PEI. The X-ray photoelectron spectroscopy analyses confirmed the presence of N 1s and Cl 2p in EBPCa, meaning that the chlorine of ECH and the amino groups of EB-PEI exist in the cellulose surface. The obtained sample has a rich porous structure with a specific surface area in the range of 97.5-149.5 m2/g. Owing to its uniformly three-dimensional porous structure, the sample present preferable rigidity and carrying capacity, which 1 g of sample could easily carry the weight of a 3000 ml Erlenmeyer flask filled with water (total 4 kg). The sample showed good adsorption performance, with a maximum adsorption capacity of 6.45 mmol/g. This adsorbent has broad prospects in the CO2 capture process.
Collapse
Affiliation(s)
- Xinjie Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Jian Lin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Hanwei Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Yushan Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Chao Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| | - Xiaoping Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| | - Yingying Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| |
Collapse
|
12
|
Esfandiarpour R, Zamanian F, Badalkhani-Khamseh F, Reza Hosseini M. Carbon dioxide sensor device based on biphenylene nanotube: A density functional theory study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Yu Z, Fan Y, Liu T, Zhang Y, Hu P. Surface Modification of Biomass with Di-(2-Ethylhexyl)phosphoric Acid and Its Use for Vanadium Adsorption. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7300. [PMID: 36295365 PMCID: PMC9607080 DOI: 10.3390/ma15207300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The method of carbonizing biomass using di-(2-Ethylhexyl) phosphoric acid and tributyl phosphate impregnation (SICB) was studied in this research. SICB combines the benefits of an extractant and an ion exchange resin. The adsorption and desorption properties of vanadium were investigated, and the adsorption mechanism was analyzed. The results showed that the carrier was first prepared at a temperature of 1073.15 K using sawdust as a biomass substitute and then cooled to room temperature. The best adsorption performance was obtained by impregnating the carriers with di-(2-Ethylhexyl) phosphoric acid and tributyl phosphate for 60 min. The vanadium adsorption rate of 98.12% was achieved using the biomass at an initial V(IV) solution concentration of 1.1 g/L, a pH value of 1.6, and a solid-to-liquid ratio of 1:20 g·mL for 24 h. Using 25 wt.% sulfuric acid solution as desorbent, the desorption rate of vanadium was as high as 98.36%. The analysis showed that the adsorption of vanadium by SICB was chemisorption, and the adsorption process was more consistent with the proposed second-order kinetic equation. Therefore, SICB has high selectivity and high saturation capacity because of the mesopores and micropores produced by carbonization.
Collapse
Affiliation(s)
- Zhekun Yu
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
- Collaborative Innovation Center of Strategic Vanadium Resources Utilization, Wuhan 430081, China
- Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yong Fan
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
- Collaborative Innovation Center of Strategic Vanadium Resources Utilization, Wuhan 430081, China
- Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Tao Liu
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
- Collaborative Innovation Center of Strategic Vanadium Resources Utilization, Wuhan 430081, China
- Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yimin Zhang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
- Collaborative Innovation Center of Strategic Vanadium Resources Utilization, Wuhan 430081, China
- Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Pengcheng Hu
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
- Collaborative Innovation Center of Strategic Vanadium Resources Utilization, Wuhan 430081, China
- Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
14
|
|